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Further results on deferred statistical convergence in
neutrosophic n-normed spaces

Kisi 0., Giirdal M.>>

This paper conducts an in-depth analysis of strong deferred summability and deferred statistical
convergence, offering key findings within the context of neutrosophic n-normed spaces. Addition-
ally, we thoroughly examine the concept of deferred statistical Cauchy sequences, demonstrating
that every neutrosophic n-normed space is deferred statistically complete under this framework.
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1 Introduction

Approximately 60 years ago, L.A. Zadeh [24] introduced fuzzy sets to address problems
beyond the reach of traditional crisp set theory. Since then, fuzzy sets have become essential
in fields like artificial intelligence, robotics, control engineering, and decision-making. Despite
their impact, fuzzy sets have sometimes fallen short, driving ongoing research to overcome
these limitations.

To address these challenges, K. Atanassov [4] introduced intuitionistic fuzzy sets as a more
nuanced approach. Recognizing that decision-making often involves more than binary
choices, F. Smarandache [23] introduced the neutrosophic set (NS) in 2005, expanding on
fuzzy sets (FSs) and intuitionistic fuzzy sets (IFSs). An NS considers all possible outcomes,
characterizing each element by a triplet: truth-membership (T), indeterminacy-membership
(I), and falsity-membership (F). The concept of neutrosophy first entered academic literature
in 1998 [22].

O. Kaleva and S. Seikkala [11] extended fuzzy set theory by introducing fuzzy metric spaces
(EMS), where the distance between two points is a non-negative fuzzy number. Building on
this, ].H. Park [19] generalized FMS by defining intuitionistic fuzzy metric spaces (IFMS) us-
ing t-norms and t-conorms, as initially applied to FMS by A. George and P. Veeramani [7].
A K. Katsaras [12] recognized the difficulty in determining exact vector norms in some cases,
proposing fuzzy norms as a better alternative.

H. Fast [6] conducted the earliest research on statistical convergence. Later on, in an effort
to improve knowledge of summability theory, M. Mursaleen and H.H.E. Edely [16] expanded
this idea to double sequences.
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Recently, M. Kirisci and N. Simsek [13] introduced a broader concept of fuzzy normed
spaces known as neutrosophic normed linear spaces (NNLS) and investigated statistical con-
vergence in these spaces. Following their pioneering work, numerous studies have been pub-
lished on NNLS and their connections to summability theory. V. Kumar et al. [15] defined
N-n-NLS, explored Cauchy sequences, and studied completeness within N-n-NLS. They also
established the relationships between these concepts.

In [3], R.P. Agnew introduced the deferred Cesaro mean, enhancing existing systems.
I. Dagadur and $. Sezgek [5] further expanded on this concept in the context of double se-
quences, thereby making a significant contribution to the field. For more details on deferred
statistical convergence and its extensions, see [8-10, 14, 18,20, 21].

This study examines deferred statistical convergence and the deferred Cesaro mean for
double sequences in N-n-NLS, deepening our understanding of these concepts. By introduc-
ing deferred statistical Cauchy sequences and proving their equivalence to deferred statistical
convergence, we offer key insights into sequence behavior within this framework. Our findings
enhance the understanding of N-n-NLS and contribute to the broader field of mathematical
analysis.

2 Definitions and Preliminaries

In this section, we provide an overview of basic definitions and terminology which will be
useful to describe our main results. Throughout the paper, N and R represent the set of all
natural numbers and the set of all real numbers, respectively.

Definition 1. A binary operation @ : | x ] — ], where | = [0, 1], is named to be a continuous
t-norm if for each vy, 1, v3,v4 € |, the below conditions hold:

(a) ® is associative and commutative;

(b) ® is continuous;

(c) 1®1=v forallv; € J;

(0) 11 ® 1 < 13 ® v4 whenever 11 < v3 and vy < vy.

Definition 2. A binary operation ® : | X | — ], where | = [0, 1] is named to be a continuous
t-conorm if for each v1, 15, v3,v4 € |, supplies the following requirements:

(a) ® is associative and commutative;

(6) ® is continuous;

(c) 1®0 = forallv; € J;

(0) 11 ®1p, < 13 ® 14 whenever v < vz and 1, < 14.

Lastly, we review the idea of the n-norm as follows.

Definition 3. Let W be a real space of dimension m > n (m is finite and infinite, n € IN).
The real valued function | - ||, on W" := W x --- x W is called n-norm on W if and only if it
satisfies the axioms listed below:

(@) ||, ..., |, =0ifand only if Ty, ..., T, € W are linearly dependent;

() |1, ..., ||, remains invariant for 1 <i < n;

) |t ..., atl, = |a| |T1,..., ||, forany o € R;

®) ..., -, u+o|, < |t .. v ull, T T, 2,
The pair (W, | - ||,,) is known as n-normed linear space.
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Definition 4. Let W be a linear space over F and ®, ® denote t-norm and t-conorm, respec-
tively. Let J,9R, p be functions from W" x (0, 0) to [0, 1]. A six tuple (W, J,R, p, ®, ®) is called
a neutrosophic n-normed linear space (N-n-NLS for short), if the below properties are satistied
forany (t1,..., ;) € W" x (0,00):

1) (o, ) +R(,-- ) +e(t,..., ;) <3;

[

@ (. Til) > O;
(3) J(t,..., ;) = 1ifand only if 7; are linearly dependent for 1 <i < n;

(4) J(t,..., ;) remains invariant for 1 <i < n;

G) I(t, .., T, aT;§) =7 (rl,...,rn,l,rn;vg(') fora #0,a € F;

(6) j(Tll ey Tn—1, Ty gl) X j(Tll ey Tn—1, Tifu' gZ) Z j(le ey Tn=1,Tn + T;fu' él + gZ)/'
(7) 3(7,..., ™ {) is non-decreasing continuous in (;

8) lmI(r,..., ;) =1landlimJ (1y,...,Ts;{) =0;
{—o0 {—0

9) R(t,...,mC) >0;

(10) R (71, -..., ™ ¢) = 1 if and only if 7; are linearly dependent for 1 <i < n;

(11) R (11, ..., Tw; {) remains invariant for 1 <i < n;

(12) R(t,..., -1, aT; ) =R <T1,...,Tn_1,Tn,'%) fora # 0,0 € F;

(13) R(t1,- - T-1, T C1) ®R(TL, o, T 1, Ts 2) 2 R(T1, -+, Tue 1, Tn + T 01+ 02);

(14) R (7, ..., Tw; {) is non-decreasing continuous in {;

(15) im R (11,0, ..., Tu_1, T; {) = 0and im R (1, 1o, - . ., Ty—1, T; §) = 1;
{—o0 {—0

(16) (..., ;¢) > 0;

(17) 9 (11,..., ™ ¢) = 1 if and only if 7; are linearly dependent for 1 < i < n;

(18) o (71, ..., {) remains invariant for 1 <i < n;

(19) p(t1,..., -1, 8T; {) = @ <T1,...,Tn_1,rn;|%> fora #0,u € F;

20) (T, Tu-1, Ti C1) @ (T, -, Tuot, Ti C2) = 9(T1, -, Tum1, T + T G0 4 82);
(21) o (7,..., ;) is non-decreasing continuous in {;

(22) élim o(t,T,..., Tu—1, ™ {) = 0 and %irré o(t, ..., i1, ™ () = 1.
—00 —
To keep things simple, we will refer to the neutrosophic n-norm as N, :== N, (J, R, p).

Definition 5. Let {q,} be a sequence in an N-n-NLS. Let us choose p € (0,1), { > 0 and
Ty,...,To—1 € W. Then {q,} is said to be convergent if there exists a uy € IN, q € W such that

j(Qu _q!Tll"'!Tnfl;C> >1 O
m(fh - q/ Tyee s Ti—1s g) < Pr @(qu - q/ Tyeeer =1, é) < P

for all u > uy.
Here, we will write N,,-lim g, = q or q, ﬂﬁ q and q is called Ny,-limit of {q,}.
Definition 6. Let K C IN. Given the existence of the limit, the natural density of K, represented
by 6(K), is defined as
5(K) = lim ~|{k <n:ke K}

n—oo 1

4

where the vertical bars represent the cardinality of the contained set.
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Definition 7. Let {q,} be a sequence in an N-n-NLS. Choose any p € (0,1), { > 0 and
T,...,Tu—1 € W. Then {q,} is identified as statistically convergent to g € W with regard
to N, if forevery 1y, ..., T,—1 € W we have

S({lueN:T(qu—9q1,..., -1;0) <1—p or
RGu—9 1,7 ..., T-1;0) >p and p(Gu—4q, 17,7, ..., Tu—1;{) > p}) =0,

Here, we will write S (N,) -limgq, = q.

Deferred Cesaro mean DZ was introduced by R.P. Agnew [3] in 1932 as a compelling gen-
eralization of Cesaro mean of real (complex) valued sequence t = {f,} by

q 1 q(n)
Dyt) = ——— ty, n=1273,...,
Pt = gy —ptm) =,
where ¢ = g(n) and p = p(n) are the sequences of non-negative integers satisfying

p(n) < g(n)and gq(n) — ccasn — oo.

A sequence t = {t,} is named to be DZ-convergent to t if nlgr(}o (Dgt)n = tp. The sequence

t = {t,} is named to be strong Dj-convergent to g if

1 q(n)

lim ———— ty, —tg| = 0.
0 G —pny 2

3 Deferred statistical convergence in N-n-NLS

In this section, we define and study deferred statistical convergence of sequences with
regard to N,, and we prove some interesting results.

Definition 8. Let (W,J, R, p, ®,®) be an N-n-NLS. A sequence {q.v} in W is called to be
strong deferred summable or D, ,s-summable to qo € W with respect to neutrosophic
n-norm N, if for every p € (0,1),¢ > 0Oand 7y,...,T,—1 € W there exists a ug € N such
that

Wuf Z J3(Guo— 90,1, -, Tu-1,0) > 1—p,

, u—q(ag—sw)
YR 9{(qu’(i_q()lTlr~~'/T}’171;€) <P
19(“)@(!3) u=p(a)+1,0=r(B)+1
and
1 u=a(,o=s(p)
W Z @(qu—QO/Tb---,Tn—l}g) <p

u=p(a)+1,v=r(p)+1
hold for all «, B > up, where 9(a) = q(a) — p(a) and o(B) = s(B) — r(B).

In this case, we write

. D s (j’m/p)n
DP"%T’,S [(jr 9{/ p)”] —hmquv =qo or quo pAa [_> ] fo-
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Definition 9. Let {q.»} be a sequence in an N-n-NLS. Then {q.,} is called to be deferred
statistically convergent to qo € W with respect to N;, (in short Dy 4,5 [S (Ny)]-convergent) if
foreveryp € (0,1), >0and 1y,...,T,—1 € W we have

5p,q,r,s({}7(“) +1<u< Q(“)/r(ﬁ) +1<0v< S(,B) : j(‘hv —4qo, Ty Tn—1s ) <1
or R(quo—q0, T, T-1;0) = 0,9 (Guo —qo, T, - - -, Tu—1;{) = p}) =0.

This can also be rephrased as

: 1 .
lim S@a) {p(a)+1<u<qa),r(p) +1<0v<s(p):

w,f—0o0
I (Guo — 90,71, -, Tw-1;0) <1 —p or
m(qu_QOrTll---rTnfl}C) Z o, p(quv_q()/rlr"'lrn*l;g) ZP}‘ = 0.

Dypgrs|S(Np
Itis denoted as Dy 4,rs [S (Nyu)] -lim gy = qo 0r quo W’L; ) qo and qo is identified as the

DY [S (Ny)] limit of {quy}

Remark 1. (1) By taking p(a) = 0, g(a) = &, ¥(B) = 0, s(B) = B and n = 2, Definition 9
coincides with the description of statistical convergence of double sequences in N, [17].

(2) By taking p(a) = 0,g(a) = Ay, r(B) = 0,s(B) = Ag and n = 2, Definition 9 coincides
with the idea of A-statistical convergence of double sequences with respect to N [1].

(3) By taking p(a) = ky—1, q(a) = ky, ¥(B) = lg_1, s(B) = lg and n = 2, Definition 9
coincides with the concept of lacunary statistical convergence of double sequences with respect
to N> [2].

Example 1. Let (W, R") be an n-normed space. For v1,v; € [0, 1], define t-norm, t-conorm by
V1 ®Vp =111y and v1 ® 1, = min (13 + 1, 1) and fuzzy sets J,R, p on R" x (0, ) by

4
C+ T, Tl
T2, .., Talln
C+ T, tlln”
lT1, -, Talln

o(t, ..., () = z

It,..., s 0) =

R(ty,..., () =

Then W becomes an N-n-NLS.
We define a sequence {q,v} € W as

2o, 0 g, IVI®I =0 <u<[Vawl,
Guo = Y T OIVEB — v <o <[IVsBIl, aB=12...,

0,...,0) e R", otherwise,

where q(«a), s(B) are monotonic increasing sequences with 0 < p(a) < [|\/q(a)|] — 1o and
0<r(B) <I[lv/s(B)|] —vo and up, vy € N are fixed.
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Then for eachp €(0,1),>0and1,..., 7,1 € W, we have
Kpgrs(o,0)={pa) +1 <u <q(a),r(B) +1 < v <5(B) : I(quo—0,71,..., Ty-1;{) <1—p or
R(Guo —0,71,..., Tu—1;{) = p and (quo —0,71,...,Tu-1,0) > p}

_ 4
{p( )+l <u<q(a),r(p)+1<v<s(p): T+ [ quor T - Tl
T, .-, Tulln
g‘f—Hqu/Tl/---lTﬂ”"
:{p(a)+1§u§q(oc) r(B) +1<v<s(B):

Gp
1—

C {p((x) +1<u<qa),r(B)+1<v<s5(B): quo = (uzvz,O,...,O)}
= {P(W) +1<u<qa),r(B)+1<0v<s(B):[l\/a@)]] —uo <u <[l\/q(a)]],
/5B =20 <o < [\/sB)Il &p=12...}.

|qur< Pé |

<1l-p or

HQuz;/TL---rTn”n
> p and 7 > p}

HquvlTll . Tﬂ”” > 0 >0 and ||qMU/T11"'/T1’l||i’l > Qp}

ThjS ngGS (Sp’q/rls (Kp,q’rls (p, g)) — lim“’[;%oo W < llmlx ‘B%OO % — O. Hence,
Dygr,s (S (Ny)]-limgy, = 0. But it is clear that the sequence {q,,} is not convergent in

(W,3,%, p, ®, ®) with respect to N-n-norm N,,.
From Definition 9, we can easily prove the following assertion.

Lemma 1. Let {g,,} be a sequence in an N-n-NLS. Then for every p € (0,1), { > 0 and
T1,...,Tu—1 € W the following properties hold:
(1) Dpgrs[S (Nu) ]-limguo = qo;
(2) deferred density of each of
{p(e) +1<u<gq(a),r(B) +1 <0 <s(B): I(quo — g0, T1,- ., Tu—1;¢) <1 —p},
{pla) +1<u<qa),r(B) +1<v<s(B) : R(Guo — 490,11, ---, T-1,{) > p} and
{p(a) +1<u <q(a),r(p) +1<v <s(B) : p(quo — G0, 71/, Ta-1;8) > P}
is zero;
3)
Opagrs({p(@) +1 <u <qa),r(B) +1<v<s(B): T (quo— 90, T, Tu-1:4) >1—p
or R(quo—q0, T Tu-1;0) <0, © Guo — 90, T+, Tu-1{) <p}) =1,
(4) deferred density of each of
{p(a) +1<u<q(a),r(B) +1<0<s(B) : I(quo — g0, T1,-- -, Tu-1;¢) > 1 —p},
{pla) +1<u<qa),r(B) +1<v<s(B) : R(Guo — 90,11, ---, T-1,{) < p} and
{p(0) +1<u<qg(a),r(p) +1 <0 <s(B) : 9(quo — qo, 11, -+, Tu-1:0) < p}
is one;
)
Dygrs S (Nu)| -im3 (quo — qo, T, - -, Tu1;0) = 1,
Dygrs S (Nu)] -imR (quo — g0, T1, -+ -, Tu—1;C) = 0,
Dpygr,s S (Ny)] -lim o (quo — g0, 1, - - -, Tu—1;{) = 0.
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Theorem 1. Let {g,0} be a sequence in an N-n-NLS. If {wy} is Dyp,rs[S(Ny)]-convergent,
then the Dy 415 [S (Nn)} -limit of {qu,} is unique.

Proof. Let Dy, g5 [S (Nn)]-limguy = q1 and Dy g5 [S (Ny)] -limg,p = g2 where g1 # g. For
agiven p € (0,1), choose @ € (0,1) suchthat (1-@)® (1-®@) >1—-pand @w®w@ < p.
Then, using Lemma 1, for any { > 0 and 71, 12, ..., Ty—1 € W deferred density of each of the
following

P3i(@,0) = {P(“)+1 <u<qga),r(B)+1<v<s(p):7 (quv = q1,T1,---,Tn_1;%) < 1—@},
Q2@ ) = {p(@)+1 < u < 9(@),(B)+1 <0 <5(8) : 3 (quo — 270, T-1:5) < 1-0,
Po1(@,8) = {p(0)+1 < u < q(a), r(B)+1 < 0 < 5(B) : R (quo — g1, 70, T 135 ) = @},
Qn2(@,0)={p()+1 < u < (@), 1(B)+1 < v < 5(B) R (4o — 271, 1w 135) = @},
Po(@,0)={p(a)+1 < u < g(a), 1(B)+1 < 0 <(B) : 9 (quo — 1,1, Tao135) = @},
Qua(@,0)={p(a)+1 < u < g@),r(B)+1 <0 <5(B) : 9 (quo— 2,1 T 135 ) > @}
is zero. Let

Aame)(0,0) = {P31(@,0) UQsp2(@,0) } N {Pri(®,{) UQna(@,)}
N{Py1(®,0) UQu2(®@,0)}.

Then we get 6,45 (A o,0)(0,C)) = 0. Obviously, 8y,4,rs(IN*\ A5, (0,0)) = 1. So, let
(u,v) € N?\ A@3,:,0) (0, ). This leads to three cases:

(i) (u,0) € N*\ (Py1(@,0) UQs2(@,0));

(i) (u,0) € N2\ (Pra(@,{) UQuna(@,0));

(iii) (u,0) € N*\ (Py1(®@,) UQp2(e, ).

Consider the first case. If (1, v) € N?\ (Py1(®,{) U Q52(®,)), then

j(Ql - Q21T17'~~/Tn71;€’) Z j(qu - qllrlr"'lri’lfl;%) ®j(qu - qZITlr"'rTnfl;%)
>(l-@)@(l-0)>1—p.

Since p € (0,1) is arbitrary, J (01 — 02,11, .., Tu—1; {) = 1, which yields 01 = 0».
In the second case, if (1,v) € N2\ (Py1(®,) UQn2(®,)), then

R (Ql — 02, T1,---,Tn—1}C) < m(‘hv —q1, T,y Tn—1s %) ®m(quv — 42,7, -, Tu—1s %)
<w®w <p.

Since p € (0,1) is arbitrary, %R (01 — 02,71, - - -, Tu—1; {) = 0, which yields 01 = 02.
Using the similar technique, for the third case we can prove the same. Hence the
Dygr,s [S (Ny)]-limit of {g,,} is unique. O
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Theorem 2. Let {q.,} be a sequence in an N-n-NLS. If N,-lim g, = g, then
Dp,q,r,s [S (Nn)] '].].m quv — q.
Proof. Suppose that N,-limg,, = q. Then for every p € (0,1), > Oand 7,..., 7,1 € W

there exists kg € N such that 3 (quo — 9,7, ..., Tu—1,0) > 1 =0, R (Guo — 9,11, - - -, Tn-1,C) < p
and o (quo — 4,71, T2, - - -, Tu—1;{) < p forall u,v > ky. Then it is obvious that the set

A={p@)+1<u<q(e)r(B)+1<0<s(B): 3o —q T, T1il) S 1—p

or R(quwo—9q,1,---, Tu—1;0) >p and 9 (Guo—q,11,---, Tu—1;C) Zp}

contains at most finite number of terms. Namely, A C {(1,1),(2,2),..., (ko —1,ko —1)}. So,
5p,q,Y,S(A) = O. Hel’lCe Dp,q,y,s [8 (Nn)] -111’1’1 quv = q, l:‘

However, as the following examples show, the converse of Theorem 2 does not hold in
general.

Example 2. Let (W,R") be an n-normed space. For v1,v, € [0,1], define t-norm, t-conorm
by v1 ® v = 111y and 11 ® v, = min (11 + 15, 1). We take N-n-NLS as defined in Example 1.
Define a sequence {q,,} € W by
[ (L,0,...,00 eR", ifu=i,v=74ij=12,...,
Juo = (0,0,...,0) =0, otherwise.
Then, foreachp € (0,1),{ >0and 1y, ..., 7,1 € W, we get

Kpars(0,C) = {P(“) +1<u<ga),r(B)+1<0<s(B):T(Guo—0,71,..., Tu-1;§) <1—p

or R(quv—0,7,...,T-1;0) > p and © (quo —0,71,..., Ty—1,0) Zp}

4
= a)+1<u<gla),r(B)+1<v<s : <1-—
{p@ 4(a),(B) R o P 0
uvy Ty Tnlln
|90, 11 1 >p}

7 >

”qMU/Tlr---/Tn”n
¢+ HQLtv/Tl/---rTn”n

= {p(a) +1 < u < q@),r(B) +1 <0 < s(B) :
gp

HQuwTL---rTn”n > ﬁ >0 and HqurTlranan > Cp}

C {p(rx) +1<u<qga),r(f)+1<0v<s(B):qu = (1,0)}
= {p@) +1<u<q@)r(B)+1<0<s(B)iu =7 0=,

or

> p and

. . . v/ O(a)/ .
This gives 6y g1, (Kp,q,r,s (p, C)) < lim Wﬁ@(ﬁ) = 0. S0, Dy g,r,s[S (Ny)] -limg,, = 0.

a,f—c0 (B)
But, {q.v} is not convergent to 0 with regard to N,.

Theorem 3. Let {q.,} and {wyo} be two sequences in an N-n-NLS. Then the below statements
hold true:

(1) If Dy g5 [S (Ny)] -limguy = g and Dy 4,15 [S (Ny)] -limwy,, = w, then
Dpgrs [S (Nn)] -lim(quo + o) = g+ w.
(2) If Dpgs [S (Ny)] -lim gy = g, then
Dygrs S (Ny)] -limxqu, = kg, x # 0.
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p € (0,1), choose @ € (0,1) such that (1 —®@)® (1 —®) >1—pand @ ® @ < p. Then for
every { > 0and 7q,...,T,—1 € W the sets

Alw, ) = {p(rx) +1<u<q@),rB)+1<v<sB):I(quw—9q7 - Wi <l-@

or i)%(quv—q,rl,...,rn_l;%) > @ and p(qw—q,rl,...,rn_l;%) > co}
and
B(w,7) = {p(oc) +1<u<ga),r(B)+1<v<s(B): I(wio —w,Tl,...,Tn_l,'%) <l—-®

or R(wy, — w,Tl,...,Tn_l,'g) > @ and (w0 — w,Tl,...,Tn_l;%) > w}

have deferred density zero. Consider the set
Clp,g) = {p(@) +1 < u < g(a),r(B) +1< 0 <s(B)
j((quv + W) — (+w), T, Tt %)

Then deferred density of A°(w, () and B®(®, ) is 1. So, let (u,v) € A°(®, ()
we have

j((‘hv + wuv) - (q + w)/ Tyeeer Tu-1s %)

> 3<quv —q,Tl,...,Tn,l;%> ®3<wuv—w,rl,...,rn,1;%) >(l-0)®(1l-w)>1-p
and
m((‘hw +wuv) - (q+w>/ Tl/---rTnfl}%>

< m(‘hv -4, T, Ty—1s %) ®m<wuv —W, T, Tn—-1s %) <O®@<P.
Similarly, we get
p((quv + Z/Uuy) - (q + w)/T1/- <o Tn—1s %) < o-

Therefore, A°(@, ) N B°(@,{) C C(p,{),i.e.C(p,{) C A(w,{) UB(w®, ).

Hel’lCe 5p,q,r,s(c(p, C)) — O, j..e. Dp,q,r,s [S (Nn)] '1im(quv + wuz;) — q + w.

Let us prove the second statement. Suppose that Dy s [S (Ny)]-limgu, = g. Then for
every p € (0,1), >0and 7q,...,T,—1 € W we get

(Sp,q,r,s:({}?(“) +1<u< Q(“)/r(,ﬁ) +1<0v< S(,B) : j(%tv —q,T1,---,Tn—1;|—§‘) <l-p

or %(quv—q,n,...,rn,l;r%> 2p,p(quv—q,rl,...,rn,l;‘%) Zp}) =0.

Since
{p(rx) +1<u<ga),r(B)+1<v<s(B):I(kGuo—Kq,T1,..., Tu—1;{) <1—p

or R(kquo —xq,T1,..., Tu—1;¢) > p and ©(kquo — k4,71, ..., Tu—1;{) Zp}
:{p((x) +1<u<ga),r(f)+1<v<s(p) :J(q,w —q,rl,...,rn,l;‘%> <l-p

or m<7{f7uv - qIT]./- . -/Tl’l—l; %) Z P and @(fhv - q/le .. -/Tn—l; |_§‘> 2 P}
Hence Dy 45 [S (Ny)]-limxq,, = kg, k # 0. O
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Theorem 4. If {q,,} is a sequence in an N-n-NLS, then Dy, 5,5 [S (Ny,)] -lim g, = q if and only
if there exists a set

K:{Ml<u2<"‘<up<"‘}vl<02<"'<vs<"‘} CN2
such that 8y ,+s(K) = 1 and Ny-lim gy, = q.

Proof. First suppose that D g5 [S (Ny)] -limg,, = q. Then for any j € IN, { > 0 and for each
T,...,T,—1 € W the sets

AGD) = {pe) +1< u < g@),r(B) +1< 0 <5(8) 3 (o — 4,71 T 1) > 1)

and R(quo — 4,71+, -1;¢) <7 and P(quo — 4,7+, Tu-1;) < %},

and
B(,¢) = {p(a) +1 < u < q@),r() +1 <0 <5(B) : I (quo — 4,71, Tu1iC) <11

or m(‘hv_qf"fl/---r"fnfl}g) Z % and @(‘7140_‘7/1—1/---/1—1171}@’) Z %}

have the deferred density one and zero, respectively. It is obvious that A(j +1,{) C A(j, 0).
We can express A(j, () as {ug < -+ <up <---;0v1 <--- <vs <--- }. Itissufficient to prove
the necessary part that for (up, vs) € A(j,{) we have N,-lim Juyos = 4- If possible, let the
subsequence {g,, pvs} is not convergent to g with regard to N,,. Then for some p € (0,1) we get
I(Guyo. — 4T+ Tu-1;C) <1 —p or R(Guyo, — 4,71+, Tu-1,0) > p,
and ©(qu,o, — 4,71/, Tu-1;0) 2
except for finite number of terms u p, Us. Consider the set

Clp,8) = {p(a) +1 < u < q(@),1(B) +1 <0 < 5(B) : Iy, — 4T+, T 1) > 1 p

and R(quyo, — 4,71, T-1;¢) <p and (quyo, — 4, T, Tu-1:¢) < p},

where p > } Then 6p,4,,s(C(p,0)) = 0. Asp > }, we obtain A(j,{) C C(p,{). This gives
Op,qrs(A(j,¢)) = 0, which is a contradiction. Therefore Ny-lim gy, = 4.
On the other hand, let us assume that there is a set

K:{M1<"'<Mp<"';?)1<"'<Us<"'}CN2
such that 6 4,+,s(K) = 1and Ny-limqy,,, = q. Thenforeveryp € (0,1),{ > 0,71,...,Ty-1 € W
there exists pyg € IN such that
I Gupoe =471, T-1;¢) > 1—p and R(Gupo, — 4,10+, T-1,) <p,
©(Guyo, — 4T Ta1;0) <p
for all p,s > po. Thus,
{p@) +1<u < g(0),7(B) +1 <0 <5(B) : Iquyo. — 4,1+, T 130) S1—p
or R(quyo, =4, 71, , Tu-1:¢) 2 p and ©(quyo, — 4, T, Tu-1,{) > p}
CIN? = { (py 11,0y 1) s (po42, Opo42) -} -
Therefore,
Opars({p(a) +1<u<qga),r(B) +1<v<s(B) : T (quo—q, T, -, Tu-1;0) <1—p
ofr R(quo—q, T, T-10) 2 0,9 (quo— 4, T, -, Tu-1;¢) = p}) =0,
ie. Dpgrs (S (Ny)|-limg,, = q. The evidence is now complete. O
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Corollary 1. Let {q,,} be a sequence in an N-n-NLS. Then Dy 4,5 [S (Ny)] -lim g, = q if and
only if there exists a sequence {w,,} € W such that N,-limw,,, = g and

Opars ({p(e) +1<u <g(a),r(B) +1 <0 <s(B) : quo = wuo}) = 1.

Theorem 5. Let {q,,} be a sequence in an N-n-NLS. Also, let { g g } and {g% } be bounded

sequences. If S (Ny,) -limq,, = q, then Dy 45 [S (Ny)] -lim gy = g.
Proof. Suppose S (Ny)-lim g, = q. Then for every p € (0,1), >0, 17,...,Ty—1 € W we get

hm _){u<wv<ﬁ J(qu qull--'rTnfl;g)Sl_p or

®,M—00 (X

Ww—%ﬁpuﬂwv@ZPami@Mw—%ﬁw~ﬂwU@ZPH:Q

Since g(« ) — coand s(B) — o0 as a, f — oo, we get

‘{ 2),v<s(B):T(quw—9, 1, .-, Tw-1;0) <1—por

win=seo (@
RGuw—9q7, -, w10 >p and o (Guo—9,T, ..., Tn1;() > p}’ =0.
Now, since the following inclusion
{P@)+1<u<q(e), r(B)+1<0<5(B) I —q, 7 Tu1;0) ST—p
or R(quo —q,T,---, T-1;¢) 2 p and 9 (Guo — 4, T, -+, T-1,§) = p}
C {u <ga),o<sB):T(Guw—9 1, .., Tu-1;0) <1—por
R(uo =97, Tw-1;0) > p and 9 (quo — 4,71, Tu-1,§) > p}
holds, we have

m‘{i?(oc) +1<u<q@),r(p) +1<v<5(B):T(uo—q T, T-1;§) S 1—p

or R(quo—q, T, Tu—1;4) > p and © (quo — 4,71, -, Tu—1,¢) Zp}’

q 1 s :
§ﬂ(a)g(ﬁ)q((x)s(ﬁ)‘{ugq(a),vgs(ﬁ).J(qw—q,rl,...,rn_l,g)gl—por
R(Guo—q, T, Tu-1;0) 2 p and © (quo —q,T1,- ., Tu-1,0) Zp}’
_ M r(P) 1 u ), <s :J —q,T Th—1; —
= (1 5w) (4 58 g = 002 <5020 ) <1

r (quo—q,T, -, Tu—1;0) > pand p (quo — 4,71, -+, Ta—1,§) > p}‘.

Given that { E g } and {g% } are bounded in the inequality above, we should obtain the
intended outcome. We can easily demonstrate this.
Since g(a) < a,s(B) < B forallw, B € IN the following inclusion

{p((x) +1<u<q),r(f)+1<v<s(B):TGuu—q T, .-, Th-10) <1—p or
m(%w_qf"fl/---r'l—nfl}g) ZP and @(qu_q/"flnn/"fn—l}g) ZP}
Q{1Suer,lSvS5:J(quv—q,ﬁ,---,fn71;6)Sl—p or

m(‘hv _qull'--rTnfl;C) Z P and @(qu_q/"flnn/"fn—l}g) Z P}
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and the inequality

’{p(oc)+1 <u<qa),rB)+1<v<s(B):T(Guu—qT,.---, T-1,) <1—p or
>p and o (quo—4q,T1,---, T-1;0) Zp})

R (qu —4q,7,-- ~/Tn71;€

)
< ‘{1SuSoc,lSvéﬁ:ﬁ(quv—q,ﬁ,.u,fnq;C) <1—p or
) >

m(qu_q/Thann—l}C Zp and p(quv_qull"'rTnfl;C) ZP})

hold. If we take limit as a,  — oo, we get Dy g5 [S (Ny)] -lim gy = q.

Throughout the proofs of following Theorem 6 and Theorem 7, for simplicity we denote

1 _j(qu_qolrlrann—l}C) :j(‘hv _qO!Tll"

IfJ3(quo —q0, 11, - - -, Tu-1,C) > 1 — p, then we restate it as J (quo — 90,1, - -

Theorem 6. Let (W,

J,R, o, ®,®) be an N-n-NLS and (q.») be a sequence in W.
Then Dp’qlrls [(j/ m, p)n] 'lim qMU — qO jmpljeS Dp’qlrls [8 (Nn)] 'lim quv — qo.

<y Tn—1s C) .

'rTnfl;C) < p

Proof. Let Dpgrs [(3,9R, 9)"] -limguo = go. Then for every p € (0,1), >0, 1,..., Ty—1 € W,

there exists a uy € IN such that

I (Guo —

d(a)o(B), _ L P (e
and

e, = #w

Z R (Fuo

and

swe = #w

qo, T1, - -

—4q0,T1,--

— 40,7, --

— 40, T, --

— 40,7, --

—q0, T,--

-/Tn—l}g) > 1 _p/

-/Tl’l—l; g) < p

'rTnfl;C) < P

7 Tnfl; C) < P/

~/T}’l71;€’) < p

-/Tn—l; g) < IO

1)
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hold for all «, B > uy. Now, we get

=q(a),0=s(p)
j (quz; - q()/ Tlr ceey Ti’l*l; g)
—(

u
u=p(a)+1,v

d(a)o(B) ()41
u=q(a),0=s(B) u=q(a),v=s(p) _
- 19("‘)19(/3) Z Z j(q,w — 40,1, -- ~/Tn71}€)
u=p(a)+1,0=r(B)+1and u=p(a)+1,0=r(p)+1and @
I(Guo=q0, 11 Tu-18)2p  I(Guo—q0, T,/ Tu-1,) <p

. u=q(a),v=5(p) B
= 8(a)o(B) Z 3 (Guo — G0, T, - -+ Tu-1,0)
u=p(a)+1,0=r(B)+1and
3(‘7111}*170,”(1,...,1'”,1;@)Zp

> s ip(@)+1 < u<q(@), r(B)+1<0 <s(B) : 3 (quo — o, T1, -, Tu—1;8) = p}|-

Denote
Anp = m}{pwﬂ <u<q(a),r(B)+1 <0 <s(B): T (quo—q0, T+ Ta-1:6) > p}|.

Now, from (1) and (2) we obtain

p > S a(B) Z j(quv_QO;Tll---,Tn_yC) 2 A“,B
ﬁ(“)@(ﬁ) u:P(DC)+1,U:V(ﬁ)+1

Since p > 0 is arbitrary, we get lim, g 00 Ayp = 0. This implies 64, (A,xﬁ) = 0 as deferred
density cannot be negative.
By similar process we get

Z m (l]uz; - ‘70/ Tl/ sy Tl’l—l; g) 2 thﬁ/

where
Bup = grarargy | (P10 +1 S 0(0)7(B) +1 50 5(6) : R (o — o, T Tro1i0) 2 0}

Also, by similar process dp,4r,s (Bxg) = 0. In addition

. u—q(ag—sw) ( |
YWY £ quv - ‘70/ Tyeeer Tu-1s g 2 CD{[BI
ﬂ(a)g(ﬁ) u=p(a)+1,0=r(p)+1

where
Caﬁ = m‘{p(“) +1<u< Q(“),r(ﬁ) +1<0< S(,B) : @(quv —qolez---/Tn—1}€> > PH

Then, we have 6, 4,6 (C,xﬁ) = 0. Hence, Dy 41,5 [S (Ny)] -lim g0 = go. O

In general, the converse of Theorem 6 is not true. Take a look at the sample below for this.
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Example 3. Consider the N-n-NLS as in Example 1. Define a sequence

(uZUZ 0.... O) cR" [|Vq(a)”_u0<u§ H\/‘](“)H/
oo = O O E RS B — 00 <0 < (V5B mB=12,...,

0,...,0) e R", otherwise,

where g(«), s(B) are monotonic increasing sequences with 0 < p(a) < [|\/g(a)|] — up and
0 < r(B) < [|Vs(B)|] —vo, and ug,v9 € N are fixed. We have shown in Example 1 that
Dygrs [S (Nu) -lim quo = 0. However, the sequence is not D, [(J,9R, p)"]-convergent to
zero as we have

. u—q(DC)Z,I:f—S(ﬁ)
YRS m(‘hv _qOr TyeeorTn—1s C)
19(&)@(’3) u:p(rx)+1,v:r(/3)+1

1 1) 0=s(p) 171, Tulln

ﬂ(“)@(ﬁ) P( )+1v r5+1€+HT1/ . ITY!”"

_ 1 <“§ O ([|Va@)]] —uo)zmxﬁs(ﬁ)u—vo)z
8(@)e(B) () omr(py1 C+ ([IVI@) T+ (VB
- (Va0 —“0) ([lv/s(B \—UO)

T (IVa@D)? VsBN)

Theorem 7. Let (W ,i)%, go,@ ®) be an N-n-NLS and (qm,) be a bounded sequence in W.

as a, — oo.

Proof. Suppose (quv) is a bounded sequence in W and Dp,4,s [S (Ny)] -lim g0 = qo. By the
assumption on (q,v), there exists a positive real number M such that

j(‘hv _QOrTlr---rTnfl;C) > 1 _M/ m(‘htv_qol"flnn/"fn—l}g) < M

and
© (quo —q0, T, -+, Tu-1,0) <M

hold for all u, v. Or equivalently,
3 (qu —4q0, Tse v Tn—1s g) < M/ R (qu —4q0, Tse o Tn—1s g) <M

and
1% (qm] — 4o, 1, -- -/Tn—l}g) <M

hold for all u, v. Now, we have

. M=q(rx)zﬂf=8(/5)
——— j(qu—qolez---/T—l;Q
19(&)@(’3) u=p(a)+1,v=r(p)+1 !
. u=q(a),0=s($) u=q(a),0=s($) ®)
= Z Z j(quv_qOrTll"-/Tﬂfl;C) .

19(“)@(!3) u=p(a)+1,0=r(f)+1and u=p(x)+1,0=r(p)+1and
I Guo—9q0, T Tu-10) 20 I(Guo—q0, Tty Tn—1,0) <p
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We rewrite (3) as follows

1 =q(a),v=s(p)

3 wo STl Tyl
3@)elB) o HX}, e, e ot Taeid)
1 (B) u=ﬂ(0¢£=5(5) d )
= —— J qu—qolez---zT—l?g
ﬂ(lX)Q(ﬁ) a)+1, v r(B)+1and u=p(a)+1,v=r(p)+1and !
qu q0,71,- Tn 17 €)>P 3(%1: 40,1 Tﬂ*1;§)<p
. Z (B) u—q(ag—sw)
< — | M 1+4+p 1
ﬂ(“)g(‘B) u=p(a)+1,0=r(p)+1and u=p(a)+1,v=r(p)+1and
M I(quo—q0,T1r Tu—1:8) =P 3(quo—90,T1,-Tu—1,0)<p
< gl (P@) 4150 @), 1(8) +1 < 0 <5(8) T s — 011 Tro1i0) 2 o}
+ol{p(@) +1 <u <qa),r(B) +1 <0 <s(B) : T (quo — o, T1,- -, Ta-1;¢) < P}]-

Now, we take the limit by considering Dy, 4,5 [S (Ny)] -lim g, = q. Then we get

1 u=q(n),v=s(m)
YRR Z j(QZw_QOrTl/---rTnfl}C)<M‘O+P'1/
19(11)@(71’1) u=p(n)+1,v=r(m)+1
SO
) u—q(a)iz:z—sw) . |
YR j qu_QOrTll---rTnfl}C <P/
ﬂ(d)@(ﬁ) u=p(a)+1,0=r(B)+1

or equivalently

W Z j(q“?’_qOIle---,Tn_l;g)>1—p_

1 ”—q(ag_s(ﬁ)
- - %(qu—%,"ﬁ,...,rnfl;g) <p
8@0B) i) i
and
1 u=q(a),v=s(p)

u=p(&)+Tv=r(B)+1

Therefore, Dp,qlr,s [(j/ ER/ @)n] - lim ‘]uv = qO' D
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4 Deferred Statistical Completeness in N-n-NLS

In this section, we discuss deferred statistical Cauchy sequences and deferred statistical
completeness with regard to N;,.

Definition 10. Let {q,,} be a sequence in an N-n-NLS. Then {q.v} is said to be deferred
statistical Cauchy sequence with regard to Ny (in short Dy s S (Ny)]-Cauchy) if for every
pe(01),>0andt,..., T,-1 € W, there exists ko = ko(p) € N and Iy = Ip(p) € IN such
that

Spqrs({p(a) +1 <u <q(a),r(B) +1 <0 <5(B) : T (quo — Grolyy T+ -+, T-18) <1 —p
or R (Guo — Groly Tr -+ Ti—1,C) = 0, © (Guo — Giglys Ths - - -» Ta—1;¢) = p}) = 0.

Theorem 8. Let {q,,} be a sequence in an N-n-NLS. If {q,v} is Dy g5 [S (Ny)]-convergent, it
is Dp,gr,s [S (Ny)]-Cauchy sequence.

Proof. Suppose that Dy ;s [S (Ny)] -limg,, = g. For p € (0,1), choose @ € (0,1) such that
l1-w)®@(1-w)>1—pand @ ® @ < p. Then forevery { > 0and 1y, ..., T,—1 € W deferred
density of the set

A@,8) = {p@) +1 < u < q@),r(B)+1<0 < s(B) : 3 (g0 — a7, Turi§) S1-@
or %(quv—q,Tl,...,Tn—l;%> > @ and p(qw—q,rl,...,rn_l;%) Zw}

is zero. Then 6,5 (A°(@,()) = 1. So, there exist elements ko, Iy € A°(®@,(). Therefore, we
have

j (qkolo - qull- . .,Tnfl; %) > 1 - (D, m (‘1k010 - q,Tl,_ . 'anfl} %) < (D,
£ (‘7kolo —q, T, Tyt %) < o.
Let
B(p,0) = {p(0) +1 < u < q@),r(B) +1 <0 <5(B) 3 (quo — oty T+, Ta1;0) <1
or R (‘iuv = Jkolos Tl -+ Tn—1; %) >p and p <quv ~ Gkolys Tl -+ Tu—1; %) > p}_

We assert that B(®@,{) C A(w,{). If this inclusion does not hold, then there must exist
some (i,j) € B(w,{) \ A(®@, ), which immediately leads to

j(qu - qkololTll S g) S 1 - P/ ,J <ql] - q/le S %) 2 1 —@.

In particular, J (‘7kolo — 4, T, Tn—1; %) > 1 — @. Therefore, we get

1—p> 3(41‘]‘ — Qkololﬁann*l}C)

2 j(ql] - q/le- . -/Tn—l; %) ®/J <qkolo - q; Tl/- . -/Tl’l—l; %)
> (1-—

l-o)®(1-w)>1-—p,

which is absurd.
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Again
p S m(ql] - l]koloz Tyeeor =1, g)
S R <ql] — q,Tl, ey Ty—1, %) @m <qk0l0 - q/ Tyeeer Tu-1s %)
<w®w < O,

which is absurd.
Similarly we achieve the impossibility o < © (9ij — qkylys Tt/ - - -, Ta—1;¢) < p. Hence,
B(p,¢) C A(@, ). This gives

Spars(B(@,0)) < 0pgrs(Al@,0)),
i.e. 0pgrs(B(p,C)) = 0, which shows that {qu,} is Dp g5 [S (Ny)]-Cauchy sequence. O

Theorem 9. Let {q,,} be a sequence in an N-n-NLS. If {quv} is Dy [S (Ny)]-Cauchy
sequence, it is Dy g5 [S (Ny)]-convergent.

Proof. Let {quv} is Dp g5 [S (Ny)]-Cauchy sequence, but not Dy 41,5 [S (Ny)]-convergent. For a
given p € (0,1), choose @ € (0,1) such that (1 —®@)® (1 —®@) >1—pand @ ® @ < p. Then
forevery { > 0and 1y,...,T,—1 € W there exist ko, [p € IN such that 6,4 ,s(B(p,{)) = 0, where

B, ) = {p(a) +1 < u < q(a),1(B) +1 0 < 5(B) 3 (o — iy T Tu130) <1
or R (wy —wy,v;¢) >p and @ (wy — wy, v; () Zp}.

Since {quov} isnot Dy 4,5 [S (Ny)]-convergent to g € W, we have

j(‘hv - qkolor Tyevoer Tn—1s C) Z j (‘hv - q/ TyeeerTu—1s %) X j (qkolo - qr Tyeeer Tn—1s %)
>(l-0)®(1l-w)>1-p,

m(‘hv - qkolor TyeeerTn—1s C) S m <¢]uv - qr TyeeorTn—1s %) ® m <4k010 - qr TyeeerTn=1s %)
<O®® < p,

and ¢ (Guo — Giglg: T1s - - -» Tu—1;C) < p. Therefore, 8,45 (B°(0,{)) = 0, i.e. 8pqrs(B(p,0)) =1,
a contradiction. Hence, the sequence is Dy 4,5 [S (Ny;)]-convergent to g. O

Definition 11. An N-n-NLS is said to be deferred statistically complete with regard
to N, (in short, Dyg4,s[S (Ny)]-complete) if every Dpgs|S (Ny)]-Cauchy sequence is
Dygr,s (S (Ny)]-convergent.

Remark 2. In the light of Theorem 9, we conclude that every N-n-NLS is N,-complete (in
short, Dy 45 [S(Ny)]-complete).

On the basis of Theorems 4, 8 and 9, we state an equivalent result.

Theorem 10. Let {q.} be a sequence in an N-n-NLS. Then the below properties are equivalent:
(1) {quo} is Dp g5 [S (Ny)]-convergent;
(2) {quv} 18 Dy g,rs [S (Nu)]-Cauchy sequence;
(3) there exists a set K = {u3 <+ <up<--;0; <---<vg<---} C IN? such that
dp,q,r,5(K) = 1 and the subsequence {Qu,,vs} is N-Cauchy sequence.
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5 Conclusion

In this research paper, we have explored the convergence properties of D, s [S (Nu)]

and the concept of D, s [S (Ny)]-Cauchy sequences. Our findings demonstrate that every
N-n-NLS is Dy 4,5 [S (Ny)]-complete. Building on this research, future work could focus on
generalizing these notions within the context of ideals and extending them to sequences of sets
of order a with regard to N,,. Additionally, the principles discussed in this study hold potential
for addressing convergence-related problems across various fields in science and engineering.
Future research aims to gain different features of the stated notion and produce its equivalent

in various sequence spaces.
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V @it craTTi MIpOBeA€HO MOTAMOAEHIIT aHaAI3 CMABHOI BiAKAaA€HOI MACYMOBHOCTI Ta BiaKAaae-
HOI CTaTMCTWUHOI 361KHOCTI, a TAKOX OTPMMAaHO OCHOBHI Pe3yAbTaTI B KOHTEKCTi HEMTpocodpiuHmX
1-HOpMOBaHMX NpocTopiB. KpiM TOro, AeTaAbHO AOCAIAKEHO MOHSTTSI BiAKAAA€HMX CTaTUCTUYHMX
niocaipoBHOCTelt Kol Ta Ioka3aHo, 110 KOXHMI HeMTpocodpiuHmii n-HOpMOBaHMIA IIPOCTIip € BiA-
KAaAEHO CTaTMCTMYHO TIOBHMM Y MeXaX IbOTO MAXOAY.

Kntouosi cnosa i ppasu: HeWTpocodpiuHIMIT 1-HOPMOBaHMI IIPOCTIp, BiAKAaAeHa CTaTUCTIIHA 36i-
>KHICTh, BiAKAAAE€HA CTaTUCTMYHA ITOCAIAOBHicTH KoIITi, BiAKAaA€Ha cTaTUCTMYHA ITOBHOTA.



