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This paper conducts an in-depth analysis of strong deferred summability and deferred statistical

convergence, offering key findings within the context of neutrosophic n-normed spaces. Addition-

ally, we thoroughly examine the concept of deferred statistical Cauchy sequences, demonstrating

that every neutrosophic n-normed space is deferred statistically complete under this framework.
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1 Introduction

Approximately 60 years ago, L.A. Zadeh [24] introduced fuzzy sets to address problems

beyond the reach of traditional crisp set theory. Since then, fuzzy sets have become essential

in fields like artificial intelligence, robotics, control engineering, and decision-making. Despite

their impact, fuzzy sets have sometimes fallen short, driving ongoing research to overcome

these limitations.

To address these challenges, K. Atanassov [4] introduced intuitionistic fuzzy sets as a more

nuanced approach. Recognizing that decision-making often involves more than binary

choices, F. Smarandache [23] introduced the neutrosophic set (NS) in 2005, expanding on

fuzzy sets (FSs) and intuitionistic fuzzy sets (IFSs). An NS considers all possible outcomes,

characterizing each element by a triplet: truth-membership (T), indeterminacy-membership

(I), and falsity-membership (F). The concept of neutrosophy first entered academic literature

in 1998 [22].

O. Kaleva and S. Seikkala [11] extended fuzzy set theory by introducing fuzzy metric spaces

(FMS), where the distance between two points is a non-negative fuzzy number. Building on

this, J.H. Park [19] generalized FMS by defining intuitionistic fuzzy metric spaces (IFMS) us-

ing t-norms and t-conorms, as initially applied to FMS by A. George and P. Veeramani [7].

A.K. Katsaras [12] recognized the difficulty in determining exact vector norms in some cases,

proposing fuzzy norms as a better alternative.

H. Fast [6] conducted the earliest research on statistical convergence. Later on, in an effort

to improve knowledge of summability theory, M. Mursaleen and H.H.E. Edely [16] expanded

this idea to double sequences.
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Recently, M. Kirişci and N. Şimşek [13] introduced a broader concept of fuzzy normed

spaces known as neutrosophic normed linear spaces (NNLS) and investigated statistical con-

vergence in these spaces. Following their pioneering work, numerous studies have been pub-

lished on NNLS and their connections to summability theory. V. Kumar et al. [15] defined

N-n-NLS, explored Cauchy sequences, and studied completeness within N-n-NLS. They also

established the relationships between these concepts.

In [3], R.P. Agnew introduced the deferred Cesàro mean, enhancing existing systems.

I. Dağadur and Ş. Sezgek [5] further expanded on this concept in the context of double se-

quences, thereby making a significant contribution to the field. For more details on deferred

statistical convergence and its extensions, see [8–10, 14, 18, 20, 21].

This study examines deferred statistical convergence and the deferred Cesàro mean for

double sequences in N-n-NLS, deepening our understanding of these concepts. By introduc-

ing deferred statistical Cauchy sequences and proving their equivalence to deferred statistical

convergence, we offer key insights into sequence behavior within this framework. Our findings

enhance the understanding of N-n-NLS and contribute to the broader field of mathematical

analysis.

2 Definitions and Preliminaries

In this section, we provide an overview of basic definitions and terminology which will be

useful to describe our main results. Throughout the paper, N and R represent the set of all

natural numbers and the set of all real numbers, respectively.

Definition 1. A binary operation ⊗ : J × J → J, where J = [0, 1], is named to be a continuous

t-norm if for each ν1, ν2, ν3, ν4 ∈ J, the below conditions hold:

(a) ⊗ is associative and commutative;

(b) ⊗ is continuous;

(c) ν1 ⊗ 1 = ν1 for all ν1 ∈ J;

(d) ν1 ⊗ ν2 ≤ ν3 ⊗ ν4 whenever ν1 ≤ ν3 and ν2 ≤ ν4.

Definition 2. A binary operation ⊛ : J × J → J, where J = [0, 1] is named to be a continuous

t-conorm if for each ν1, ν2, ν3, ν4 ∈ J, supplies the following requirements:

(a) ⊛ is associative and commutative;

(b) ⊛ is continuous;

(c) ν1 ⊛ 0 = ν1 for all ν1 ∈ J;

(d) ν1 ⊛ ν2 ≤ ν3 ⊛ ν4 whenever ν1 ≤ ν3 and ν2 ≤ ν4.

Lastly, we review the idea of the n-norm as follows.

Definition 3. Let W be a real space of dimension m ≥ n (m is finite and infinite, n ∈ N).

The real valued function ‖ · ‖n on Wn := W × · · · × W is called n-norm on W if and only if it

satisfies the axioms listed below:

(a) ‖τ1, . . . , τn‖n = 0 if and only if τ1, . . . , τn ∈ W are linearly dependent;

(b) ‖τ1, . . . , τn‖n remains invariant for 1 ≤ i ≤ n;

(c) ‖τ1, . . . , ατn‖n = |α| ‖τ1, . . . , τn‖n for any α ∈ R;

(d) ‖τ1, . . . , τn−1, u + v‖n ≤ ‖τ1, . . . , τn−1, u‖n + ‖τ1, . . . , τn−1, v‖n.

The pair (W, ‖ · ‖n) is known as n-normed linear space.
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Definition 4. Let W be a linear space over F and ⊗, ⊛ denote t-norm and t-conorm, respec-

tively. Let I,R,℘ be functions from Wn × (0, ∞) to [0, 1]. A six tuple (W, I,R,℘,⊗,⊛) is called

a neutrosophic n-normed linear space (N-n-NLS for short), if the below properties are satisfied

for any (τ1, . . . , τn; ζ) ∈ Wn × (0, ∞):

(1) I (τ1, . . . , τn; ζ) +R (τ1, . . . , τn; ζ) + ℘ (τ1, . . . , τn; ζ) ≤ 3;

(2) I (τ1, . . . , τn; ζ) > 0;

(3) I (τ1, . . . , τn; ζ) = 1 if and only if τi are linearly dependent for 1 ≤ i ≤ n;

(4) I (τ1, . . . , τn; ζ) remains invariant for 1 ≤ i ≤ n;

(5) I (τ1, . . . , τn−1, ατn; ζ) = I

(

τ1, . . . , τn−1, τn; ζ
|α|

)

for α 6= 0, α ∈ F;

(6) I(τ1, . . . , τn−1, τn; ζ1)⊗ I(τ1, . . . , τn−1, τ′
n; ζ2) ≥ I(τ1, . . . , τn−1, τn + τ′

n; ζ1 + ζ2);

(7) I (τ1, . . . , τn; ζ) is non-decreasing continuous in ζ;

(8) lim
ζ→∞

I (τ1, . . . , τn; ζ) = 1 and lim
ζ→0

I (τ1, . . . , τn; ζ) = 0;

(9) R (τ1, . . . , τn; ζ) > 0;

(10) R (τ1, . . . , τn; ζ) = 1 if and only if τi are linearly dependent for 1 ≤ i ≤ n;

(11) R (τ1, . . . , τn; ζ) remains invariant for 1 ≤ i ≤ n;

(12) R (τ1, . . . , τn−1, ατn; ζ) = R

(

τ1, . . . , τn−1, τn; ζ
|α|

)

for α 6= 0, α ∈ F;

(13) R(τ1, . . . , τn−1, τn; ζ1)⊛R(τ1, . . . , τn−1, τ′
n; ζ2) ≥ R(τ1, . . . , τn−1, τn + τ′

n; ζ1 + ζ2);

(14) R (τ1, . . . , τn; ζ) is non-decreasing continuous in ζ;

(15) lim
ζ→∞

R (τ1, τ2, . . . , τn−1, τn; ζ) = 0 and lim
ζ→0

R (τ1, τ2, . . . , τn−1, τn; ζ) = 1;

(16) ℘ (τ1, . . . , τn; ζ) > 0;

(17) ℘ (τ1, . . . , τn; ζ) = 1 if and only if τi are linearly dependent for 1 ≤ i ≤ n;

(18) ℘ (τ1, . . . , τn; ζ) remains invariant for 1 ≤ i ≤ n;

(19) ℘ (τ1, . . . , τn−1, ατn; ζ) = ℘

(

τ1, . . . , τn−1, τn; ζ
|α|

)

for α 6= 0, α ∈ F;

(20) ℘(τ1, . . . , τn−1, τn; ζ1)⊛ ℘(τ1, . . . , τn−1, τ′
n; ζ2) ≥ ℘(τ1, . . . , τn−1, τn + τ′

n; ζ1 + ζ2);

(21) ℘ (τ1, . . . , τn; ζ) is non-decreasing continuous in ζ;

(22) lim
ζ→∞

℘ (τ1, τ2, . . . , τn−1, τn; ζ) = 0 and lim
ζ→0

℘ (τ1, τ2, . . . , τn−1, τn; ζ) = 1.

To keep things simple, we will refer to the neutrosophic n-norm as Nn := Nn (I,R,℘).

Definition 5. Let {qu} be a sequence in an N-n-NLS. Let us choose ρ ∈ (0, 1), ζ > 0 and

τ1, . . . , τn−1 ∈ W. Then {qu} is said to be convergent if there exists a u0 ∈ N, q ∈ W such that

I(qu − q, τ1, . . . , τn−1; ζ) > 1 − ρ,

R(qu − q, τ1, . . . , τn−1; ζ) < ρ, ℘(qu − q, τ1, . . . , τn−1; ζ) < ρ

for all u ≥ u0.

Here, we will write Nn- lim qu = q or qu
Nn→ q and q is called Nn-limit of {qu}.

Definition 6. Let K ⊂ N. Given the existence of the limit, the natural density of K, represented

by δ(K), is defined as

δ(K) = lim
n→∞

1

n

∣

∣{k ≤ n : k ∈ K}
∣

∣,

where the vertical bars represent the cardinality of the contained set.
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Definition 7. Let {qu} be a sequence in an N-n-NLS. Choose any ρ ∈ (0, 1), ζ > 0 and

τ1, . . . , τn−1 ∈ W. Then {qu} is identified as statistically convergent to q ∈ W with regard

to Nn if for every τ1, . . . , τn−1 ∈ W we have

δ
({

u ∈ N : I (qu − q, τ1, . . . , τn−1; ζ) ≤ 1 − ρ or

R (qu − q, τ1, τ2, . . . , τn−1; ζ) ≥ ρ and ℘ (qu − q, τ1, τ2, . . . , τn−1; ζ) ≥ ρ
})

= 0.

Here, we will write S (Nn) - lim qu = q.

Deferred Cesàro mean D
q
p was introduced by R.P. Agnew [3] in 1932 as a compelling gen-

eralization of Cesàro mean of real (complex) valued sequence t = {tu} by

(

D
q
pt
)

n
=

1

q(n)− p(n)

q(n)

∑
u=p(n)+1

tu, n = 1, 2, 3, . . . ,

where q = q(n) and p = p(n) are the sequences of non-negative integers satisfying

p(n) < q(n) and q(n) → ∞ as n → ∞.

A sequence t = {tu} is named to be D
q
p-convergent to t if lim

n→∞

(

D
q
pt
)

n
= t0. The sequence

t = {tu} is named to be strong D
q
p-convergent to q if

lim
n→∞

1

q(n)− p(n)

q(n)

∑
u=p(n)+1

|tu − t0| = 0.

3 Deferred statistical convergence in N-n-NLS

In this section, we define and study deferred statistical convergence of sequences with

regard to Nn and we prove some interesting results.

Definition 8. Let (W, I,R,℘,⊗,⊛) be an N-n-NLS. A sequence {quv} in W is called to be

strong deferred summable or Dp,q,r,s-summable to q0 ∈ W with respect to neutrosophic

n-norm Nn if for every ρ ∈ (0, 1), ζ > 0 and τ1, . . . , τn−1 ∈ W there exists a u0 ∈ N such

that

1

ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1

I (quv − q0, τ1, . . . , τn−1; ζ) > 1 − ρ,

1

ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1

R (quv − q0, τ1, . . . , τn−1; ζ) < ρ

and

1

ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1

℘ (quv − q0, τ1, . . . , τn−1; ζ) < ρ

hold for all α, β ≥ u0, where ϑ(α) = q(α)− p(α) and ̺(β) = s(β)− r(β).

In this case, we write

Dp,q,r,s
[

(I,R,℘)n] - lim quv = q0 or quv

Dp,q,r,s[(I,R,℘)n]−→ q0.
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Definition 9. Let {quv} be a sequence in an N-n-NLS. Then {quv} is called to be deferred

statistically convergent to q0 ∈ W with respect to Nn (in short Dp,q,r,s [S (Nn)]-convergent) if

for every ρ ∈ (0, 1), ζ > 0 and τ1, . . . , τn−1 ∈ W we have

δp,q,r,s
({

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I (quv − q0, τ1, . . . , τn−1; ζ) ≤ 1 − ρ

or R (quv − q0, τ1, . . . , τn−1; ζ) ≥ ρ,℘ (quv − q0, τ1, . . . , τn−1; ζ) ≥ ρ
})

= 0.

This can also be rephrased as

lim
α,β→∞

1

ϑ(α)̺(β)

∣

∣

{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) :

I (quv − q0, τ1, . . . , τn−1; ζ) ≤ 1 − ρ or

R (quv − q0, τ1, . . . , τn−1; ζ) ≥ ρ, ℘ (quv − q0, τ1, . . . , τn−1; ζ) ≥ ρ
}∣

∣ = 0.

It is denoted as Dp,q,r,s [S (Nn)] - lim quv = q0 or quv
Dp,q,r,s[S(Nn)]−→ q0 and q0 is identified as the

Dϑ
α [S (Nn)] limit of {quv}.

Remark 1. (1) By taking p(α) = 0, q(α) = α, r(β) = 0, s(β) = β and n = 2, Definition 9

coincides with the description of statistical convergence of double sequences in N2 [17].

(2) By taking p(α) = 0, q(α) = λα, r(β) = 0, s(β) = λβ and n = 2, Definition 9 coincides

with the idea of λ-statistical convergence of double sequences with respect to N2 [1].

(3) By taking p(α) = kα−1, q(α) = kα, r(β) = lβ−1, s(β) = lβ and n = 2, Definition 9

coincides with the concept of lacunary statistical convergence of double sequences with respect

to N2 [2].

Example 1. Let (W, R
n) be an n-normed space. For v1, v2 ∈ [0, 1], define t-norm, t-conorm by

ν1 ⊗ ν2 = ν1ν2 and ν1 ⊛ ν2 = min (ν1 + ν2, 1) and fuzzy sets I,R,℘ on R
n × (0, ∞) by

I(τ1, . . . , τn; ζ) =
ζ

ζ + ‖τ1, . . . , τn‖n
,

R(τ1, . . . , τn; ζ) =
‖τ1, . . . , τn‖n

ζ + ‖τ1, . . . , τn‖n
,

℘(τ1, . . . , τn; ζ) =
‖τ1, . . . , τn‖n

ζ
.

Then W becomes an N-n-NLS.

We define a sequence {quv} ∈ W as

quv =















(u2v2, 0, . . . , 0) ∈ R
n,

[|
√

q(α)|]− u0 < u ≤ [|
√

q(α)|],
[|
√

s(β)|]− v0 < v ≤ [|
√

s(β)|], α, β = 1, 2, . . . ,

(0, . . . , 0) ∈ R
n, otherwise,

where q(α), s(β) are monotonic increasing sequences with 0 < p(α) ≤ [|
√

q(α)|] − u0 and

0 < r(β) ≤ [|
√

s(β)|]− v0 and u0, v0 ∈ N are fixed.
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Then for each ρ ∈ (0, 1), ζ > 0 and τ1, . . . , τn−1 ∈ W, we have

Kp,q,r,s(ρ, ζ)=
{

p(α) +1 ≤ u ≤ q(α), r(β) +1 ≤ v ≤ s(β) : I(quv− 0, τ1, . . . , τn−1; ζ) ≤ 1 − ρ or

R(quv − 0, τ1, . . . , τn−1; ζ) ≥ ρ and ℘(quv − 0, τ1, . . . , τn−1; ζ) ≥ ρ
}

=
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) :
ζ

ζ + ‖quv, τ1, . . . , τn‖n
≤ 1 − ρ or

‖τ1, . . . , τn‖n

ζ + ‖quv, τ1, . . . , τn‖n
≥ ρ and

‖quv, τ1, . . . , τn‖n

ζ
≥ ρ

}

=
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) :

‖quv, τ1, . . . , τn‖n >
ζρ

1 − ρ
> 0 and ‖quv, τ1, . . . , τn‖n ≥ ζρ

}

⊂
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : quv =
(

u2v2, 0, . . . , 0
)

}

=
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : [|
√

q(α)|]− u0 < u ≤ [|
√

q(α)|],

[|
√

s(β)|]− v0 < v ≤ [|
√

s(β)|], α, β = 1, 2, . . .
}

.

This gives δp,q,r,s
(

Kp,q,r,s (ρ, ζ)
)

= limα,β→∞
|Kp,q,r,s(ρ,ζ)|

ϑ(α)̺(β)
≤ limα,β→∞

u0v0
ϑ(α)̺(β)

= 0. Hence,

Dp,q,r,s [S (Nn)] - lim quv = 0. But it is clear that the sequence {quv} is not convergent in

(W, I,R,℘,⊗,⊛) with respect to N-n-norm Nn.

From Definition 9, we can easily prove the following assertion.

Lemma 1. Let {quv} be a sequence in an N-n-NLS. Then for every ρ ∈ (0, 1), ζ > 0 and

τ1, . . . , τn−1 ∈ W the following properties hold:

(1) Dp,q,r,s
[

S (Nn)
]

- lim quv = q0;

(2) deferred density of each of

{p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I(quv − q0, τ1, . . . , τn−1; ζ) ≤ 1 − ρ},

{p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : R(quv − q0, τ1, . . . , τn−1; ζ) ≥ ρ} and

{p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : ℘(quv − q0, τ1, . . . , τn−1; ζ) ≥ ρ}
is zero;

(3)

δp,q,r,s
({

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I (quv − q0, τ1, . . . , τn−1; ζ) > 1 − ρ

or R (quv − q0, τ1, . . . , τn−1; ζ) < ρ, ℘ (quv − q0, τ1, . . . , τn−1; ζ) < ρ
})

= 1;

(4) deferred density of each of

{p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I(quv − q0, τ1, . . . , τn−1; ζ) > 1 − ρ},

{p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : R(quv − q0, τ1, . . . , τn−1; ζ) < ρ} and

{p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : ℘(quv − q0, τ1, . . . , τn−1; ζ) < ρ}
is one;

(5)

Dp,q,r,s [S (Nn)] - limI (quv − q0, τ1, . . . , τn−1; ζ) = 1,

Dp,q,r,s [S (Nn)] - limR (quv − q0, τ1, . . . , τn−1; ζ) = 0,

Dp,q,r,s [S (Nn)] - lim℘ (quv − q0, τ1, . . . , τn−1; ζ) = 0.
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Theorem 1. Let {quv} be a sequence in an N-n-NLS. If {wk} is Dp,q,r,s
[

S
(

Nn
)]

-convergent,

then the Dp,q,r,s
[

S
(

Nn

)]

-limit of {quv} is unique.

Proof. Let Dp,q,r,s [S (Nn)] - lim quv = q1 and Dp,q,r,s [S (Nn)] - lim quv = q2 where q1 6= q2. For

a given ρ ∈ (0, 1), choose ̟ ∈ (0, 1) such that (1 − ̟) ⊗ (1 − ̟) > 1 − ρ and ̟ ⊛ ̟ < ρ.

Then, using Lemma 1, for any ζ > 0 and τ1, τ2, . . . , τn−1 ∈ W deferred density of each of the

following

PI,1(̟, ζ)=
{

p(α)+1 ≤ u ≤ q(α), r(β)+1 ≤ v ≤ s(β) : I
(

quv − q1, τ1, . . . , τn−1; ζ
2

)

≤ 1−̟
}

,

QI,2(̟, ζ)=
{

p(α)+1 ≤ u ≤ q(α), r(β)+1 ≤ v ≤ s(β) : I
(

quv − q2, τ1, . . . , τn−1; ζ
2

)

≤ 1−̟
}

,

PR,1(̟, ζ)=
{

p(α)+1 ≤ u ≤ q(α), r(β)+1 ≤ v ≤ s(β) : R
(

quv − q1, τ1, . . . , τn−1; ζ
2

)

≥ ̟
}

,

QR,2(̟, ζ)=
{

p(α)+1 ≤ u ≤ q(α), r(β)+1 ≤ v ≤ s(β) : R
(

quv − q2, τ1, . . . , τn−1; ζ
2

)

≥ ̟
}

,

P℘,1(̟, ζ)=
{

p(α)+1 ≤ u ≤ q(α), r(β)+1 ≤ v ≤ s(β) : ℘
(

quv − q1, τ1, . . . , τn−1; ζ
2

)

≥ ̟
}

,

Q℘,2(̟, ζ)=
{

p(α)+1 ≤ u ≤ q(α), r(β)+1 ≤ v ≤ s(β) : ℘
(

quv − q2, τ1, . . . , τn−1; ζ
2

)

≥ ̟
}

is zero. Let

A(I,R,℘)(ρ, ζ) =
{

PI,1(̟, ζ) ∪ QI,2(̟, ζ)
}

∩
{

PR,1(̟, ζ) ∪ QR,2(̟, ζ)
}

∩
{

P℘,1(̟, ζ) ∪ Q℘,2(̟, ζ)
}

.

Then we get δp,q,r,s
(

A(I,R,℘)(ρ, ζ)
)

= 0. Obviously, δp,q,r,s
(

N
2 \ A(I,R,℘)(ρ, ζ)

)

= 1. So, let

(u, v) ∈ N
2 \ A(I,R,℘)(ρ, ζ). This leads to three cases:

(i) (u, v) ∈ N
2 \

(

PI,1(̟, ζ) ∪ QI,2(̟, ζ)
)

;

(ii) (u, v) ∈ N
2 \

(

PR,1(̟, ζ) ∪ QR,2(̟, ζ)
)

;

(iii) (u, v) ∈ N
2 \

(

P℘,1(̟, ζ) ∪ Q℘,2(̟, ζ)
)

.

Consider the first case. If (u, v) ∈ N
2 \ (PI,1(̟, ζ) ∪ QI,2(̟, ζ)), then

I (̺1 − ̺2, τ1, . . . , τn−1; ζ) ≥ I
(

quv − q1, τ1, . . . , τn−1; ζ
2

)

⊗ I
(

quv − q2, τ1, . . . , τn−1; ζ
2

)

≥ (1 − ̟)⊗ (1 − ̟) > 1 − ρ.

Since ρ ∈ (0, 1) is arbitrary, I (̺1 − ̺2, τ1, . . . , τn−1; ζ) = 1, which yields ̺1 = ̺2.

In the second case, if (u, v) ∈ N
2 \ (PR,1(̟, ζ) ∪ QR,2(̟, ζ)), then

R (̺1 − ̺2, τ1, . . . , τn−1; ζ) ≤ R
(

quv − q1, τ1, . . . , τn−1; ζ
2

)

⊛R
(

quv − q2, τ1, . . . , τn−1; ζ
2

)

< ̟ ⊛ ̟ < ρ.

Since ρ ∈ (0, 1) is arbitrary, R (̺1 − ̺2, τ1, . . . , τn−1; ζ) = 0, which yields ̺1 = ̺2.

Using the similar technique, for the third case we can prove the same. Hence the

Dp,q,r,s [S (Nn)]-limit of {quv} is unique.
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Theorem 2. Let {quv} be a sequence in an N-n-NLS. If Nn- lim quv = q, then

Dp,q,r,s [S (Nn)] - lim quv = q.

Proof. Suppose that Nn- lim quv = q. Then for every ρ ∈ (0, 1), ζ > 0 and τ1, . . . , τn−1 ∈ W

there exists k0 ∈ N such that I (quv − q, τ1, . . . , τn−1; ζ) > 1 − ρ, R (quv − q, τ1, . . . , τn−1; ζ) < ρ

and ℘ (quv − q, τ1, τ2, . . . , τn−1; ζ) < ρ for all u, v ≥ k0. Then it is obvious that the set

A =
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I (quv − q, τ1, . . . , τn−1; ζ) ≤ 1 − ρ

or R (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ and ℘ (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ
}

contains at most finite number of terms. Namely, A ⊆ {(1, 1) , (2, 2) , . . . , (k0 − 1, k0 − 1)}. So,

δp,q,r,s(A) = 0. Hence Dp,q,r,s [S (Nn)] - lim quv = q.

However, as the following examples show, the converse of Theorem 2 does not hold in

general.

Example 2. Let (W, R
n) be an n-normed space. For v1, v2 ∈ [0, 1], define t-norm, t-conorm

by ν1 ⊗ ν2 = ν1ν2 and ν1 ⊛ ν2 = min (ν1 + ν2, 1). We take N-n-NLS as defined in Example 1.

Define a sequence {quv} ∈ W by

quv =

{

(1, 0, . . . , 0) ∈ R
n, if u = i2, v = j2, i, j = 1, 2, . . . ,

(0, 0, . . . , 0) = 0, otherwise.

Then, for each ρ ∈ (0, 1), ζ > 0 and τ1, . . . , τn−1 ∈ W, we get

Kp,q,r,s(ρ, ζ) =
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I (quv − 0, τ1, . . . , τn−1; ζ) ≤ 1 − ρ

or R (quv − 0, τ1, . . . , τn−1; ζ) ≥ ρ and ℘ (quv − 0, τ1, . . . , τn−1; ζ) ≥ ρ
}

=
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) :
ζ

ζ + ‖quv, τ1, . . . , τn‖n
≤ 1 − ρ

or
‖quv, τ1, . . . , τn‖n

ζ + ‖quv, τ1, . . . , τn‖n
≥ ρ and

‖quv, τ1, . . . , τn‖n

ζ
≥ ρ

}

=
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) :

‖quv, τ1, . . . , τn‖n >
ζρ

1 − ρ
> 0 and ‖quv, τ1, . . . , τn‖n ≥ ζρ

}

⊂
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : quv = (1, 0)
}

=
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : u = i2, v = j2
}

.

This gives δp,q,r,s
(

Kp,q,r,s (ρ, ζ)
)

≤ lim
α,β→∞

√
ϑ(α)

√
̺(β)

ϑ(α)̺(β)
= 0. So, Dp,q,r,s [S (Nn)] - lim quv = 0.

But, {quv} is not convergent to 0 with regard to Nn.

Theorem 3. Let {quv} and {wuv} be two sequences in an N-n-NLS. Then the below statements

hold true:

(1) If Dp,q,r,s [S (Nn)] - lim quv = q and Dp,q,r,s [S (Nn)] - lim wuv = w, then

Dp,q,r,s [S (Nn)] - lim(quv + wuv) = q + w.

(2) If Dp,q,r,s [S (Nn)] - lim quv = q, then

Dp,q,r,s [S (Nn)] - lim κquv = κq, κ 6= 0.
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Proof. Suppose that Dp,q,r,s [S (Nn)] - lim quv = q and Dp,q,r,s [S (Nn)] - lim wuv = w. For a given

ρ ∈ (0, 1), choose ̟ ∈ (0, 1) such that (1 − ̟) ⊗ (1 − ̟) > 1 − ρ and ̟ ⊛ ̟ < ρ. Then for

every ζ > 0 and τ1, . . . , τn−1 ∈ W the sets

A(̟, ζ) =
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I
(

quv − q, τ1, . . . , τn−1; ζ
2

)

≤ 1 − ̟

or R
(

quv − q, τ1, . . . , τn−1; ζ
2

)

≥ ̟ and ℘
(

quv − q, τ1, . . . , τn−1; ζ
2

)

≥ ̟
}

and

B(̟, ζ) =
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I
(

wuv − w, τ1, . . . , τn−1; ζ
2

)

≤ 1 − ̟

or R
(

wuv − w, τ1, . . . , τn−1;
ζ

2

)

≥ ̟ and ℘
(

wuv − w, τ1, . . . , τn−1; ζ
2

)

≥ ̟
}

have deferred density zero. Consider the set

C(ρ, ζ) =
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) :

I
(

(quv + wuv)− (q + w), τ1, . . . , τn−1; ζ
2

)

≤ 1 − ρ

or R
(

(quv + wuv)− (q + w), τ1, . . . , τn−1; ζ
2

)

≥ ρ

and ℘
(

(quv + wuv)− (q + w), τ1, . . . , τn−1; ζ
2

)

≥ ρ
}

.

Then deferred density of Ac(̟, ζ) and Bc(̟, ζ) is 1. So, let (u, v) ∈ Ac(̟, ζ) ∩ Bc(̟, ζ). Then

we have

I

(

(quv + wuv)− (q + w), τ1, . . . , τn−1; ζ
2

)

≥ I

(

quv − q, τ1, . . . , τn−1; ζ
2

)

⊗ I

(

wuv − w, τ1, . . . , τn−1; ζ
2

)

> (1 − ̟)⊗ (1 − ̟) > 1 − ρ

and

R

(

(quv + wuv)− (q + w), τ1, . . . , τn−1; ζ
2

)

≤ R

(

quv − q, τ1, . . . , τn−1; ζ
2

)

⊛R

(

wuv − w, τ1, . . . , τn−1; ζ
2

)

< ̟ ⊛ ̟ < ρ.

Similarly, we get

℘

(

(quv + wuv)− (q + w), τ1, . . . , τn−1; ζ
2

)

< ρ.

Therefore, Ac(̟, ζ) ∩ Bc(̟, ζ) ⊂ Cc(ρ, ζ), i.e. C(ρ, ζ) ⊂ A(̟, ζ) ∪ B(̟, ζ).

Hence δp,q,r,s(C(ρ, ζ)) = 0, i.e. Dp,q,r,s [S (Nn)] - lim(quv + wuv) = q + w.

Let us prove the second statement. Suppose that Dp,q,r,s [S (Nn)] - lim quv = q. Then for

every ρ ∈ (0, 1), ζ > 0 and τ1, . . . , τn−1 ∈ W we get

δp,q,r,s

({

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I
(

quv − q, τ1, . . . , τn−1; ζ
|κ|

)

≤ 1 − ρ

or R

(

quv − q, τ1, . . . , τn−1; ζ
|κ|

)

≥ ρ,℘
(

quv − q, τ1, . . . , τn−1; ζ
|κ|

)

≥ ρ
})

= 0.

Since
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I
(

κquv − κq, τ1, . . . , τn−1; ζ
)

≤ 1 − ρ

or R
(

κquv − κq, τ1, . . . , τn−1; ζ
)

≥ ρ and ℘
(

κquv − κq, τ1, . . . , τn−1; ζ
)

≥ ρ
}

=
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I
(

quv − q, τ1, . . . , τn−1; ζ
|κ|

)

≤ 1 − ρ

or R

(

κquv − q, τ1, . . . , τn−1; ζ
|κ|

)

≥ ρ and ℘

(

quv − q, τ1, . . . , τn−1; ζ
|κ|

)

≥ ρ
}

.

Hence Dp,q,r,s [S (Nn)] - lim κquv = κq, κ 6= 0.
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Theorem 4. If {quv} is a sequence in an N-n-NLS, then Dp,q,r,s [S (Nn)] - lim quv = q if and only

if there exists a set

K =
{

u1 < u2 < · · · < up < · · · ; v1 < v2 < · · · < vs < · · ·
}

⊂ N
2

such that δp,q,r,s(K) = 1 and Nn- lim qupvs = q.

Proof. First suppose that Dp,q,r,s [S (Nn)] - lim quv = q. Then for any j ∈ N, ζ > 0 and for each

τ1, . . . , τn−1 ∈ W the sets

A(j, ζ) =
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I
(

quv − q, τ1, . . . , τn−1; ζ
)

> 1 − 1
j

and R
(

quv − q, τ1, . . . , τn−1; ζ
)

< 1
j and ℘

(

quv − q, τ1, . . . , τn−1; ζ
)

< 1
j

}

,

and

B(j, ζ) =
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I
(

quv − q, τ1, . . . , τn−1; ζ
)

≤ 1 − 1
j

or R
(

quv − q, τ1, . . . , τn−1; ζ
)

≥ 1
j and ℘

(

quv − q, τ1, . . . , τn−1; ζ
)

≥ 1
j

}

have the deferred density one and zero, respectively. It is obvious that A(j + 1, ζ) ⊂ A(j, ζ).

We can express A(j, ζ) as
{

u1 < · · · < up < · · · ; v1 < · · · < vs < · · ·
}

. It is sufficient to prove

the necessary part that for
(

up, vs

)

∈ A(j, ζ) we have Nn- lim qupvs = q. If possible, let the

subsequence
{

qupvs

}

is not convergent to q with regard to Nn. Then for some ρ ∈ (0, 1) we get

I
(

qupvs − q, τ1, . . . , τn−1; ζ
)

≤ 1 − ρ or R
(

qupvs − q, τ1, . . . , τn−1; ζ
)

≥ ρ,

and ℘
(

qupvs − q, τ1, . . . , τn−1; ζ
)

≥ ρ

except for finite number of terms up, vs. Consider the set

C(ρ, ζ) =
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I
(

qupvs − q, τ1, . . . , τn−1; ζ
)

> 1 − ρ

and R
(

qupvs − q, τ1, . . . , τn−1; ζ
)

< ρ and ℘
(

qupvs − q, τ1, . . . , τn−1; ζ
)

< ρ
}

,

where ρ > 1
j . Then δp,q,r,s(C(ρ, ζ)) = 0. As ρ > 1

j , we obtain A(j, ζ) ⊂ C(ρ, ζ). This gives

δp,q,r,s(A(j, ζ)) = 0, which is a contradiction. Therefore Nn- lim qupvs = q.

On the other hand, let us assume that there is a set

K =
{

u1 < · · · < up < · · · ; v1 < · · · < vs < · · ·
}

⊂ N
2

such that δp,q,r,s(K) = 1 and Nn- lim qupvs = q. Then for every ρ ∈ (0, 1), ζ > 0, τ1, . . . , τn−1 ∈ W

there exists p0 ∈ N such that

I
(

qupvs − q, τ1, . . . , τn−1; ζ
)

> 1 − ρ and R
(

qupvs − q, τ1, . . . , τn−1; ζ
)

< ρ,

℘
(

qupvs − q, τ1, . . . , τn−1; ζ
)

< ρ

for all p, s ≥ p0. Thus,
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I
(

qupvs − q, τ1, . . . , τn−1; ζ
)

≤ 1 − ρ

or R
(

qupvs − q, τ1, . . . , τn−1; ζ
)

≥ ρ and ℘
(

qupvs − q, τ1, . . . , τn−1; ζ
)

≥ ρ
}

⊂ N
2 −

{(

up0+1, vp0+1

)

,
(

up0+2, vp0+2

)

, . . .
}

.

Therefore,

δp,q,r,s
({

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I (quv − q, τ1, . . . , τn−1; ζ) ≤ 1 − ρ

or R (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ,℘ (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ
})

= 0,

i.e. Dp,q,r,s [S (Nn)] - lim quv = q. The evidence is now complete.
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Corollary 1. Let {quv} be a sequence in an N-n-NLS. Then Dp,q,r,s [S (Nn)] - lim quv = q if and

only if there exists a sequence {wuv} ∈ W such that Nn- lim wuv = q and

δp,q,r,s ({p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : quv = wuv}) = 1.

Theorem 5. Let {quv} be a sequence in an N-n-NLS. Also, let
{

p(α)
ϑ(α)

}

and
{

r(β)
̺(β)

}

be bounded

sequences. If S (Nn) - lim quv = q, then Dp,q,r,s [S (Nn)] - lim quv = q.

Proof. Suppose S (Nn) - lim quv = q. Then for every ρ ∈ (0, 1), ζ > 0, τ1, . . . , τn−1 ∈ W we get

lim
α,m→∞

1

αβ

∣

∣

∣

{

u ≤ α, v ≤ β : I (quv − q, τ1, . . . , τn−1; ζ) ≤ 1 − ρ or

R (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ and ℘ (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ
}

∣

∣

∣
= 0.

Since q(α) → ∞ and s(β) → ∞ as α, β → ∞, we get

lim
n,m→∞

1

q(α)s(β)

∣

∣

∣

{

u ≤ q(α), v ≤ s(β) : I (quv − q, τ1, . . . , τn−1; ζ) ≤ 1 − ρ or

R (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ and ℘ (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ
}

∣

∣

∣
= 0.

Now, since the following inclusion
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I (quv − q, τ1, . . . , τn−1; ζ) ≤ 1 − ρ

or R (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ and ℘ (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ
}

⊂
{

u ≤ q(α), v ≤ s(β) : I (quv − q, τ1, . . . , τn−1; ζ) ≤ 1 − ρ or

R (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ and ℘ (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ
}

holds, we have

1

ϑ(α)̺(m)

∣

∣

∣

{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I (quv − q, τ1, . . . , τn−1; ζ) ≤ 1 − ρ

or R (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ and ℘ (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ
}

∣

∣

∣

≤ q(α)s(β)

ϑ(α)̺(β)

1

q(α)s(β)

∣

∣

∣

{

u ≤ q(α), v ≤ s(β) : I (quv − q, τ1, . . . , τn−1; ζ) ≤ 1 − ρ or

R (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ and ℘ (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ
}

∣

∣

∣

=

(

1 +
p(α)

ϑ(α)

)(

1 +
r(β)

̺(β)

)

1

q(α)s(β)

∣

∣

∣

{

u ≤ q(α), v ≤ s(β) : I (quv − q, τ1, . . . , τn−1; ζ) ≤ 1 − ρ

or (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ and ℘ (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ
}

∣

∣

∣
.

Given that
{

p(α)
ϑ(α)

}

and
{

r(β)
̺(β)

}

are bounded in the inequality above, we should obtain the

intended outcome. We can easily demonstrate this.

Since q(α) ≤ α, s(β) ≤ β for all α, β ∈ N the following inclusion
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I (quv − q, τ1, . . . , τn−1; ζ) ≤ 1 − ρ or

R (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ and ℘ (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ
}

⊆
{

1 ≤ u ≤ α, 1 ≤ v ≤ β : I (quv − q, τ1, . . . , τn−1; ζ) ≤ 1 − ρ or

R (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ and ℘ (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ
}
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and the inequality

∣

∣

∣

{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I (quv − q, τ1, . . . , τn−1; ζ) ≤ 1 − ρ or

R (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ and ℘ (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ
}

∣

∣

∣

≤
∣

∣

∣

{

1 ≤ u ≤ α, 1 ≤ v ≤ β : I (quv − q, τ1, . . . , τn−1; ζ) ≤ 1 − ρ or

R (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ and ℘ (quv − q, τ1, . . . , τn−1; ζ) ≥ ρ
}

∣

∣

∣

hold. If we take limit as α, β → ∞, we get Dp,q,r,s [S (Nn)] - lim quv = q.

Throughout the proofs of following Theorem 6 and Theorem 7, for simplicity we denote

1 − I (quv − q0, τ1, . . . , τn−1; ζ) = I (quv − q0, τ1, . . . , τn−1; ζ) .

If I (quv − q0, τ1, . . . , τn−1; ζ) > 1 − ρ, then we restate it as I (quv − q0, τ1, . . . , τn−1; ζ) < ρ.

Theorem 6. Let (W, I,R,℘,⊗,⊛) be an N-n-NLS and (quv) be a sequence in W.

Then Dp,q,r,s
[

(I,R,℘)n] - lim quv = q0 implies Dp,q,r,s [S (Nn)] - lim quv = q0.

Proof. Let Dp,q,r,s
[

(I,R,℘)n] - lim quv = q0. Then for every ρ ∈ (0, 1), ζ > 0, τ1, . . . , τn−1 ∈ W,

there exists a u0 ∈ N such that

1

ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1

I (quv − q0, τ1, . . . , τn−1; ζ) > 1 − ρ,

1

ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1

R (quv − q0, τ1, . . . , τn−1; ζ) < ρ

and

1

ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1

℘ (quv − q0, τ1, . . . , τn−1; ζ) < ρ

hold for all u, v ≥ u0, or equivalently,

1

ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1

I (quv − q0, τ1, . . . , τn−1; ζ) < ρ, (1)

1

ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1

R (quv − q0, τ1, . . . , τn−1; ζ) < ρ

and

1

ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1

℘ (quv − q0, τ1, . . . , τn−1; ζ) < ρ
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hold for all α, β ≥ u0. Now, we get

1
ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1

I (quv − q0, τ1, . . . , τn−1; ζ)

= 1
ϑ(α)̺(β)





















u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1 and
I(quv−q0,τ1,...,τn−1;ζ)≥ρ

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1 and
I(quv−q0,τ1,...,τn−1;ζ)<ρ











I (quv − q0, τ1, . . . , τn−1; ζ)











≥ 1
ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1 and
I(quv−q0,τ1,...,τn−1;ζ)≥ρ

I (quv − q0, τ1, . . . , τn−1; ζ)

≥ ρ
ϑ(α)̺(β)

∣

∣

{

p(α)+1 ≤ u≤ q(α), r(β)+1≤v ≤ s(β) : I (quv − q0, τ1, . . . , τn−1; ζ) ≥ ρ
}∣

∣.

(2)

Denote

Aαβ =
ρ

ϑ(α)̺(β)

∣

∣

{

p(α)+ 1 ≤u≤ q(α), r(β)+ 1 ≤ v ≤ s(β) : I (quv − q0, τ1, . . . , τn−1; ζ) ≥ ρ
}∣

∣.

Now, from (1) and (2) we obtain

ρ >
1

ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1

I (quv − q0, τ1, . . . , τn−1; ζ) ≥ Aαβ.

Since ρ > 0 is arbitrary, we get limα,β→∞ Aαβ = 0. This implies δp,q,r,s
(

Aαβ

)

= 0 as deferred

density cannot be negative.

By similar process we get

1

ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1

R (quv − q0, τ1, . . . , τn−1; ζ) ≥ Bαβ,

where

Bαβ =
ρ

ϑ(α)̺(β)

∣

∣

{

p(α) + 1 ≤u≤ q(α), r(β) + 1 ≤v≤ s(β) : R (quv − q0, τ1, . . . , τn−1; ζ) ≥ ρ
}∣

∣.

Also, by similar process δp,q,r,s
(

Bαβ

)

= 0. In addition

1

ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1

℘ (quv − q0, τ1, . . . , τn−1; ζ) ≥ Cαβ,

where

Cαβ =
ρ

ϑ(α)̺(β)

∣

∣

{

p(α) + 1 ≤u≤ q(α), r(β) + 1 ≤v≤ s(β) : ℘ (quv − q0, τ1, . . . , τn−1; ζ) ≥ ρ
}∣

∣.

Then, we have δp,q,r,s
(

Cαβ

)

= 0. Hence, Dp,q,r,s [S (Nn)] - lim quv = q0.

In general, the converse of Theorem 6 is not true. Take a look at the sample below for this.
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Example 3. Consider the N-n-NLS as in Example 1. Define a sequence

quv =











(

u2v2, 0, . . . , 0
)

∈ R
n,

[|
√

q(α)|]− u0 < u ≤ [|
√

q(α)|],
[|
√

s(β)|]− v0 < v ≤ [|
√

s(β)|], α, β = 1, 2, . . . ,

(0, . . . , 0) ∈ R
n, otherwise,

where q(α), s(β) are monotonic increasing sequences with 0 < p(α) ≤ [|
√

q(α)|] − u0 and

0 < r(β) ≤ [|
√

s(β)|] − v0, and u0, v0 ∈ N are fixed. We have shown in Example 1 that

Dp,q,r,s [S (Nn)] - lim quv = 0. However, the sequence is not Dp,q,r,s
[

(I,R,℘)n]-convergent to

zero as we have

1

ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1

R (quv − q0, τ1, . . . , τn−1; ζ)

=
1

ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1

‖τ1, . . . , τn‖n

ζ + ‖τ1, . . . , τn‖n

=
1

ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1

(

[|
√

q(α)|]− u0

)2

ζ +
(

[|
√

q(α)|]
)2

(

[|
√

s(β)|]− v0

)2

ζ +
(

[|
√

s(β)|]
)2

≥
(

[|
√

q(α)|]− u0

)2

(

[|
√

q(α)|]
)2

(

[|
√

s(β)|]− v0

)2

(

[|
√

s(β)|]
)2

→ 1 as α, β → ∞.

Theorem 7. Let (W, I,R,℘,⊗,⊛) be an N-n-NLS and (quv) be a bounded sequence in W.

Then Dp,q,r,s [S (Nn)] - lim quv = q0 implies Dp,q,r,s
[

(I,R,℘)n] - lim quv = q0.

Proof. Suppose (quv) is a bounded sequence in W and Dp,q,r,s [S (Nn)] - lim quv = q0. By the

assumption on (quv), there exists a positive real number M such that

I (quv − q0, τ1, . . . , τn−1; ζ) > 1 − M, R (quv − q0, τ1, . . . , τn−1; ζ) < M

and

℘ (quv − q0, τ1, . . . , τn−1; ζ) < M

hold for all u, v. Or equivalently,

I (quv − q0, τ1, . . . , τn−1; ζ) < M, R (quv − q0, τ1, . . . , τn−1; ζ) < M

and

℘ (quv − q0, τ1, . . . , τn−1; ζ) < M

hold for all u, v. Now, we have

1

ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1

I (quv − q0, τ1, . . . , τn−1; ζ)

=
1

ϑ(α)̺(β)

















u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1 and
I(quv−q0,τ1,...,τn−1;ζ)≥ρ

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1 and
I(quv−q0,τ1,...,τn−1;ζ)<ρ









I (quv − q0, τ1, . . . , τn−1; ζ)









.

(3)
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We rewrite (3) as follows

1

ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1

I (quv − q0, τ1, . . . , τn−1; ζ)

=
1

ϑ(α)̺(β)





















u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1 and
I(quv−q0,τ1,...,τn−1;ζ)≥ρ

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1 and
I(quv−q0,τ1,...,τn−1;ζ)<ρ











I (quv − q0, τ1, . . . , τn−1; ζ)











<
1

ϑ(α)̺(β)











M
u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1 and
I(quv−q0,τ1,...,τn−1;ζ)≥ρ

1 + ρ
u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1 and
I(quv−q0,τ1,...,τn−1;ζ)<ρ

1











<
M

ϑ(α)̺(β)

∣

∣

{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I (quv − q0, τ1, . . . , τn−1; ζ) ≥ ρ
}∣

∣

+ρ
∣

∣

{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I (quv − q0, τ1, . . . , τn−1; ζ) < ρ
}∣

∣.

Now, we take the limit by considering Dp,q,r,s [S (Nn)] - lim quv = q. Then we get

1

ϑ(n)̺(m)

u=q(n), v=s(m)

∑
u=p(n)+1, v=r(m)+1

I (quv − q0, τ1, . . . , τn−1; ζ) < M · 0 + ρ · 1,

so

1

ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1

I (quv − q0, τ1, . . . , τn−1; ζ) < ρ,

or equivalently

1

ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1

I (quv − q0, τ1, . . . , τn−1; ζ) > 1 − ρ.

By similar process as above we have

1

ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1

R (quv − q0, τ1, . . . , τn−1; ζ) < ρ

and

1

ϑ(α)̺(β)

u=q(α), v=s(β)

∑
u=p(α)+1, v=r(β)+1

℘ (quv − q0, τ1, . . . , τn−1; ζ) < ρ.

Therefore, Dp,q,r,s
[

(I,R,℘)n] - lim quv = q0.
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4 Deferred Statistical Completeness in N-n-NLS

In this section, we discuss deferred statistical Cauchy sequences and deferred statistical

completeness with regard to Nn.

Definition 10. Let {quv} be a sequence in an N-n-NLS. Then {quv} is said to be deferred

statistical Cauchy sequence with regard to Nn (in short Dp,q,r,s [S (Nn)]-Cauchy) if for every

ρ ∈ (0, 1), ζ > 0 and τ1, . . . , τn−1 ∈ W, there exists k0 = k0(ρ) ∈ N and l0 = l0(ρ) ∈ N such

that

δp,q,r,s
({

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I
(

quv − qk0l0 , τ1, . . . , τn−1; ζ
)

≤ 1 − ρ

or R
(

quv − qk0l0 , τ1, . . . , τn−1; ζ
)

≥ ρ, ℘
(

quv − qk0l0, τ1, . . . , τn−1; ζ
)

≥ ρ
})

= 0.

Theorem 8. Let {quv} be a sequence in an N-n-NLS. If {quv} is Dp,q,r,s [S (Nn)]-convergent, it

is Dp,q,r,s [S (Nn)]-Cauchy sequence.

Proof. Suppose that Dp,q,r,s [S (Nn)] - lim quv = q. For ρ ∈ (0, 1), choose ̟ ∈ (0, 1) such that

(1 − ̟)⊗ (1− ̟) > 1− ρ and ̟ ⊛̟ < ρ. Then for every ζ > 0 and τ1, . . . , τn−1 ∈ W deferred

density of the set

A(̟, ζ) =
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I
(

quv − q, τ1, . . . , τn−1; ζ
2

)

≤ 1 − ̟

or R

(

quv − q, τ1, . . . , τn−1; ζ
2

)

≥ ̟ and ℘

(

quv − q, τ1, . . . , τn−1; ζ
2

)

≥ ̟
}

is zero. Then δp,q,r,s (Ac(̟, ζ)) = 1. So, there exist elements k0, l0 ∈ Ac(̟, ζ). Therefore, we

have

I

(

qk0l0 − q, τ1, . . . , τn−1; ζ
2

)

> 1 − ̟, R

(

qk0l0 − q, τ1, . . . , τn−1; ζ
2

)

< ̟,

℘

(

qk0l0 − q, τ1, . . . , τn−1; ζ
2

)

< ̟.

Let

B(ρ, ζ) =
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I
(

quv − qk0l0 , τ1, . . . , τn−1; ζ
)

≤ 1 − ρ

or R

(

quv − qk0l0 , τ1, . . . , τn−1; ζ
2

)

≥ ρ and ℘

(

quv − qk0l0 , τ1, . . . , τn−1; ζ
2

)

≥ ρ
}

.

We assert that B(̟, ζ) ⊂ A(̟, ζ). If this inclusion does not hold, then there must exist

some (i, j) ∈ B(̟, ζ) \ A(̟, ζ), which immediately leads to

I

(

qij − qk0l0 , τ1, . . . , τn−1; ζ
)

≤ 1 − ρ, I

(

qij − q, τ1, . . . , τn−1; ζ
2

)

≥ 1 − ̟.

In particular, I
(

qk0l0 − q, τ1, . . . , τn−1; ζ
2

)

≥ 1 − ̟. Therefore, we get

1 − ρ ≥ I

(

qij − qk0l0 , τ1, . . . , τn−1; ζ
)

≥ I

(

qij − q, τ1, . . . , τn−1; ζ
2

)

⊗ I

(

qk0l0 − q, τ1, . . . , τn−1; ζ
2

)

> (1 − ̟)⊗ (1 − ̟) > 1 − ρ,

which is absurd.
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Again

ρ ≤ R

(

qij − qk0l0, τ1, . . . , τn−1; ζ
)

≤ R

(

qij − q, τ1, . . . , τn−1; ζ
2

)

⊕R

(

qk0l0 − q, τ1, . . . , τn−1; ζ
2

)

< ̟ ⊛ ̟ < ρ,

which is absurd.

Similarly we achieve the impossibility ρ ≤ ℘
(

qij − qk0l0, τ1, . . . , τn−1; ζ
)

< ρ. Hence,

B(ρ, ζ) ⊂ A(̟, ζ). This gives

δp,q,r,s(B(̟, ζ)) ≤ δp,q,r,s(A(̟, ζ)),

i.e. δp,q,r,s(B(ρ, ζ)) = 0, which shows that {quv} is Dp,q,r,s [S (Nn)]-Cauchy sequence.

Theorem 9. Let {quv} be a sequence in an N-n-NLS. If {quv} is Dp,q,r,s [S (Nn)]-Cauchy

sequence, it is Dp,q,r,s [S (Nn)]-convergent.

Proof. Let {quv} is Dp,q,r,s [S (Nn)]-Cauchy sequence, but not Dp,q,r,s [S (Nn)]-convergent. For a

given ρ ∈ (0, 1), choose ̟ ∈ (0, 1) such that (1 − ̟)⊗ (1 − ̟) > 1 − ρ and ̟ ⊛ ̟ < ρ. Then

for every ζ > 0 and τ1, . . . , τn−1 ∈ W there exist k0, l0 ∈ N such that δp,q,r,s(B(ρ, ζ)) = 0, where

B(ρ, ζ) =
{

p(α) + 1 ≤ u ≤ q(α), r(β) + 1 ≤ v ≤ s(β) : I
(

quv − qk0l0 , τ1, . . . , τn−1; ζ
)

≤ 1 − ρ

or R
(

wk − wk0
, v; ζ

)

≥ ρ and ℘
(

wk − wk0
, v; ζ

)

≥ ρ
}

.

Since {quv} is not Dp,q,r,s [S (Nn)]-convergent to q ∈ W, we have

I

(

quv − qk0l0 , τ1, . . . , τn−1; ζ
)

≥ I

(

quv − q, τ1, . . . , τn−1; ζ
2

)

⊗ I

(

qk0l0 − q, τ1, . . . , τn−1; ζ
2

)

> (1 − ̟)⊗ (1 − ̟) > 1 − ρ,

R

(

quv − qk0l0 , τ1, . . . , τn−1; ζ
)

≤ R

(

quv − q, τ1, . . . , τn−1; ζ
2

)

⊛R

(

qk0l0 − q, τ1, . . . , τn−1; ζ
2

)

< ̟ ⊛ ̟ < ρ,

and ℘
(

quv − qk0l0, τ1, . . . , τn−1; ζ
)

< ρ. Therefore, δp,q,r,s (Bc(ρ, ζ)) = 0, i.e. δp,q,r,s(B(ρ, ζ)) = 1,

a contradiction. Hence, the sequence is Dp,q,r,s [S (Nn)]-convergent to q.

Definition 11. An N-n-NLS is said to be deferred statistically complete with regard

to Nn (in short, Dp,q,r,s [S (Nn)]-complete) if every Dp,q,r,s [S (Nn)]-Cauchy sequence is

Dp,q,r,s [S (Nn)]-convergent.

Remark 2. In the light of Theorem 9, we conclude that every N-n-NLS is Nn-complete (in

short, Dp,q,r,s [S(Nn)]-complete).

On the basis of Theorems 4, 8 and 9, we state an equivalent result.

Theorem 10. Let {quv} be a sequence in an N-n-NLS. Then the below properties are equivalent:

(1) {quv} is Dp,q,r,s [S (Nn)]-convergent;

(2) {quv} is Dp,q,r,s [S (Nn)]-Cauchy sequence;

(3) there exists a set K =
{

u1 < · · · < up < · · · ; v1 < · · · < vs < · · ·
}

⊂ N
2 such that

δp,q,r,s(K) = 1 and the subsequence
{

qupvs

}

is Nn-Cauchy sequence.
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5 Conclusion

In this research paper, we have explored the convergence properties of Dp,q,r,s [S (Nn)]

and the concept of Dp,q,r,s [S (Nn)]-Cauchy sequences. Our findings demonstrate that every

N-n-NLS is Dp,q,r,s [S (Nn)]-complete. Building on this research, future work could focus on

generalizing these notions within the context of ideals and extending them to sequences of sets

of order α with regard to Nn. Additionally, the principles discussed in this study hold potential

for addressing convergence-related problems across various fields in science and engineering.

Future research aims to gain different features of the stated notion and produce its equivalent

in various sequence spaces.
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У цiй статтi проведено поглиблений аналiз сильної вiдкладеної пiдсумовностi та вiдкладе-

ної статистичної збiжностi, а також отримано основнi результати в контекстi нейтрософiчних

n-нормованих просторiв. Крiм того, детально дослiджено поняття вiдкладених статистичних

послiдовностей Кошi та показано, що кожний нейтрософiчний n-нормований простiр є вiд-

кладено статистично повним у межах цього пiдходу.

Ключовi слова i фрази: нейтрософiчний n-нормований простiр, вiдкладена статистична збi-

жнiсть, вiдкладена статистична послiдовнiсть Кошi, вiдкладена статистична повнота.


