References
- Aslam S., Kumar V., Sharma A. On \(\lambda\)-statistical and \(V_{\lambda}\)-statistical summability in
neutrosophic 2-normed spaces. Neutrosophic Sets Syst. 2024,
63, 188–202. doi:10.5281/zenodo.10531797
- Aslam S., Sharma A. Kumar V. On \(S_{\theta}\)-summability in neutrosophic
2-normed spaces. Neutrosophic Sets Syst. 2024, 63,
153–168. doi:10.5281/zenodo.10531785
- Agnew R.P. On deferred Cesàro mean. Ann. of Math. (2) 1932,
33 (3), 413–421. doi:10.2307/1968524
- Atanassov K. Intuitionistic fuzzy sets. Fuzzy Sets and
Systems 1986, 20 (1), 87–96.
doi:10.1016/S0165-0114(86)80034-3
- Dağadur I., Sezgek Ş. Deferred Cesàro mean and deferred
statistical convergence of double sequences. J. Inequal. Spec.
Funct. 2016, 7 (4), 118–136.
- Fast H. Sur la convergence statistique. Colloq. Math. 1951,
2 (3-4), 241–244.
- George A., Veeramani P. On some results in fuzzy metric
spaces. Fuzzy Sets and Systems 1994, 64 (3),
395–399. doi:10.1016/0165-0114(94)90162-7
- Gürdal M., Huban M.B. On \(I\)-convergence of double sequences in the
topology induced by random \(2\)-norms. Mat. Vesnik 2014,
66 (1), 73–83.
- Gürdal M., Şahiner A., Açık I. Approximation theory in \(2\)-Banach spaces. Nonlinear Anal.
2009, 71 (5-6), 1654–1661.
doi:10.1016/j.na.2009.01.030
- Hossain N., Esi A. Deferred statistical convergence in
neutrosophic 2-normed spaces. J. Class. Anal. 2025,
25 (1), 43–61. doi:10.7153/jca-2024-25-03
- Kaleva O., Seikkala S. On fuzzy metric spaces. Fuzzy Sets
and Systems 1984, 12 (3), 215–229.
doi:10.1016/0165-0114(84)90069-1
- Katsaras A.K. Fuzzy topological vector spaces II. Fuzzy Sets
and Systems 1984, 12 (2), 143–154.
doi:10.1016/0165-0114(84)90034-4
- Kirişci M., Şimşek N. Neutrosophic normed spaces and statistical
convergence. J. Anal. 2020, 28 (4), 1059–1073.
doi:10.1007/s41478-020-00234-0
- Kişi Ö., Choudhury C. Deferred statistical convergence of double
sequences in neutrosophic normed spaces. J. Anal. 2024,
32 (2), 1057–1078. doi:10.1007/s41478-023-00650-y
- Kumar V., Sharma A., Murtaza S. On neutrosophic \(n\)-normed linear spaces. Neutrosophic
Sets Syst. 2023, 61, 275–288.
- Mursaleen M., Edely H.H.E. Statistical convergence of double
sequences. J. Math. Anal. Appl. 2003, 288 (1),
223–231. doi:10.1016/j.jmaa.2003.08.004
- Murtaza S., Sharma A., Kumar V. Neutrosophic 2-normed spaces and
generalized summability. Neutrosophic Sets Syst. 2023,
55 (1), 415–426.
- Nabiev A.A., Savaş E., Gürdal M. Statistically localized
sequences in metric spaces. 2019, 9 (2), 739–746.
doi:10.11948/2156-907X.20180157
- Park J.H. Intuitionistic fuzzy metric spaces. Chaos,
Solitons & Fractals 2004, 22 (5), 1039–1046. doi:10.1016/j.chaos.2004.02.051
- Şahiner A., Gürdal M., Yigit T. Ideal convergence
characterization of the completion of linear \(n\)-normed spaces, Comput. Math. Appl.
2011, 61 (3), 683–689.
doi:10.1016/j.camwa.2010.12.015
- Savaş E., Gürdal M. \(I\)-Statistical convergence in
probabilistic normed spaces. Politehn. Univ. Bucharest Sci. Bull.
Ser. A Appl. Math. Phys. 2015, 77 (4), 195–204.
- Smarandache F. Neutrosophy: Neutrosophic Probability, Set, and Logic:
analytic synthesis & synthetic analysis. Rehoboth, NM: American
Research Press, Michigan, 1998.
- Smarandache F. Neutrosophic set, a generalisation of the
intuitionistic fuzzy sets. Int. J. Pure Appl. Math. 2005,
24 (3), 287–297.
- Zadeh L.A. Fuzzy sets. Inform. Control 1965,
8 (3), 338–353. doi:10.1016/S0019-9958(65)90241-X