References

  1. Aslam S., Kumar V., Sharma A. On \(\lambda\)-statistical and \(V_{\lambda}\)-statistical summability in neutrosophic 2-normed spaces. Neutrosophic Sets Syst. 2024, 63, 188–202. doi:10.5281/zenodo.10531797
  2. Aslam S., Sharma A. Kumar V. On \(S_{\theta}\)-summability in neutrosophic 2-normed spaces. Neutrosophic Sets Syst. 2024, 63, 153–168. doi:10.5281/zenodo.10531785
  3. Agnew R.P. On deferred Cesàro mean. Ann. of Math. (2) 1932, 33 (3), 413–421. doi:10.2307/1968524
  4. Atanassov K. Intuitionistic fuzzy sets. Fuzzy Sets and Systems 1986, 20 (1), 87–96. doi:10.1016/S0165-0114(86)80034-3
  5. Dağadur I., Sezgek Ş. Deferred Cesàro mean and deferred statistical convergence of double sequences. J. Inequal. Spec. Funct. 2016, 7 (4), 118–136.
  6. Fast H. Sur la convergence statistique. Colloq. Math. 1951, 2 (3-4), 241–244.
  7. George A., Veeramani P. On some results in fuzzy metric spaces. Fuzzy Sets and Systems 1994, 64 (3), 395–399. doi:10.1016/0165-0114(94)90162-7
  8. Gürdal M., Huban M.B. On \(I\)-convergence of double sequences in the topology induced by random \(2\)-norms. Mat. Vesnik 2014, 66 (1), 73–83.
  9. Gürdal M., Şahiner A., Açık I. Approximation theory in \(2\)-Banach spaces. Nonlinear Anal. 2009, 71 (5-6), 1654–1661. doi:10.1016/j.na.2009.01.030
  10. Hossain N., Esi A. Deferred statistical convergence in neutrosophic 2-normed spaces. J. Class. Anal. 2025, 25 (1), 43–61. doi:10.7153/jca-2024-25-03
  11. Kaleva O., Seikkala S. On fuzzy metric spaces. Fuzzy Sets and Systems 1984, 12 (3), 215–229. doi:10.1016/0165-0114(84)90069-1
  12. Katsaras A.K. Fuzzy topological vector spaces II. Fuzzy Sets and Systems 1984, 12 (2), 143–154. doi:10.1016/0165-0114(84)90034-4
  13. Kirişci M., Şimşek N. Neutrosophic normed spaces and statistical convergence. J. Anal. 2020, 28 (4), 1059–1073. doi:10.1007/s41478-020-00234-0
  14. Kişi Ö., Choudhury C. Deferred statistical convergence of double sequences in neutrosophic normed spaces. J. Anal. 2024, 32 (2), 1057–1078. doi:10.1007/s41478-023-00650-y
  15. Kumar V., Sharma A., Murtaza S. On neutrosophic \(n\)-normed linear spaces. Neutrosophic Sets Syst. 2023, 61, 275–288.
  16. Mursaleen M., Edely H.H.E. Statistical convergence of double sequences. J. Math. Anal. Appl. 2003, 288 (1), 223–231. doi:10.1016/j.jmaa.2003.08.004
  17. Murtaza S., Sharma A., Kumar V. Neutrosophic 2-normed spaces and generalized summability. Neutrosophic Sets Syst. 2023, 55 (1), 415–426.
  18. Nabiev A.A., Savaş E., Gürdal M. Statistically localized sequences in metric spaces. 2019, 9 (2), 739–746. doi:10.11948/2156-907X.20180157
  19. Park J.H. Intuitionistic fuzzy metric spaces. Chaos, Solitons & Fractals 2004, 22 (5), 1039–1046. doi:10.1016/j.chaos.2004.02.051
  20. Şahiner A., Gürdal M., Yigit T. Ideal convergence characterization of the completion of linear \(n\)-normed spaces, Comput. Math. Appl. 2011, 61 (3), 683–689. doi:10.1016/j.camwa.2010.12.015
  21. Savaş E., Gürdal M. \(I\)-Statistical convergence in probabilistic normed spaces. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2015, 77 (4), 195–204.
  22. Smarandache F. Neutrosophy: Neutrosophic Probability, Set, and Logic: analytic synthesis & synthetic analysis. Rehoboth, NM: American Research Press, Michigan, 1998.
  23. Smarandache F. Neutrosophic set, a generalisation of the intuitionistic fuzzy sets. Int. J. Pure Appl. Math. 2005, 24 (3), 287–297.
  24. Zadeh L.A. Fuzzy sets. Inform. Control 1965, 8 (3), 338–353. doi:10.1016/S0019-9958(65)90241-X