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Differential systems in Sobolev spaces with generic
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The paper contains a review of results on linear systems of ordinary differential equations of an

arbitrary order on a finite interval with the most general inhomogeneous boundary conditions in

Sobolev spaces. The character of the solvability of such problems is investigated, their Fredholm

properties are established, and their indexes and the dimensions of their kernels and co-kernels

are found. In addition, necessary and sufficient conditions of continuity in the parameter of the

solutions of the introduced classes of boundary-value problems in Sobolev spaces of an arbitrary

order are obtained.
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1 Introduction

The study of systems of ordinary differential equations is an important part of many inves-

tigations in modern analysis and its applications (see, e.g., [8] and references therein). Unlike

the Cauchy problem, the solutions of inhomogeneous boundary-value problems for differen-

tial equations/systems may not exist and/or may not be unique. Therefore, the question of

the character of the solvability of such problems is fundamental for the theory of differential

equations. Thus, I.T. Kiguradze [20,21] and M. Ashordia [1] investigated systems of first-order

differential equations with general inhomogeneous boundary conditions of the form

y′(t) + A(t)y(t) = f (t), t ∈ (a, b), By = c. (1)

Here, the (m × m)-matrix-valued function A(·) is Lebesgue integrable over the finite interval

(a, b); the vector-valued function f (·) belongs to Lebesgue space L((a, b); R
m); B is an arbi-

trary linear continuous operator from the Banach space C([a, b]; Rm) to Rm and c ∈ Rm with

arbitrary m ∈ N. The boundary condition in (1) covers the main types of classical bound-

ary conditions, namely: Cauchy problems, two-point and multipoint problems, integral and

mixed problems. The Fredholm property with zero index was established for problems of the

form (1). Moreover, the conditions for the problems to be well posed were obtained. The limit
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theorem for the sequence of their solutions in the space of continuous vector-valued functions

on [a, b] is proved.

These results were further developed in a series of articles by V.A. Mikhailets and his dis-

ciples [10, 17, 25, 26, 32–34]. Specifically, they studied the systems of differential equations

of an arbitrary order r ∈ N. In this case, the operator B specifying the inhomogeneous

boundary condition is an arbitrary linear continuous operator from the complex Banach space

Cr−1 ([a, b]; Cm) to Crm. They obtained conditions for the boundary-value problems to be well

posed and proved limit theorems for the sequences of solutions of such problems in the space

Cr−1 ([a, b]; C
m). These results significantly generalize Kiguradze’s theorems even in the r = 1

case. Moreover, limit theorems for Green’s matrices of such boundary-value problems were

established for the first time [25, 32]. These results have already found application to the anal-

ysis of multipoint boundary-value problems [2], as well as to the spectral theory of differential

operators with distributions in coefficients [11–14].

Note that boundary-value problems with inhomogeneous boundary conditions containing

derivatives of the unknown vector-valued function of integer and/or fractional orders that

can be equal to or greater than the order of the differential equation naturally arise in some

mathematical models [22, 27, 28, 36]. The theory of such problems has not been developed yet

and contains few results even for the case of ordinary differential equations. The study of such

problems requires new approaches and methods of the analysis [17, 33].

The aim of this article is to give a brief survey of this theory for linear systems of ordinary

differential equations of an arbitrary order with the most general (generic) inhomogeneous

boundary conditions in Sobolev spaces.

Let a finite interval (a, b) ⊂ R and parameters {m, n + 1, r, l} ⊂ N, 1 ≤ p ≤ ∞, be given.

Let

Wn+r
p

(
[a, b]; C) :=

{
y ∈ Cn+r−1([a, b]; C) : y(n+r−1) ∈ AC[a, b], y(n+r) ∈ Lp[a, b]

}

denote the corresponding complex Sobolev space; set W0
p := Lp. This space is Banach with

respect to the norm

‖y‖n+r,p =
n+r

∑
k=0

‖y(k)‖p,

with ‖ · ‖p standing for the norm in the Lebesgue space Lp
(
[a, b]; C

)
. Similarly, we let

(Wn+r
p )m := Wn+r

p

(
[a, b]; C

m
)

and (Wn+r
p )m×m := Wn+r

p

(
[a, b]; C

m×m
)

denote the Sobolev spaces of vector-valued functions and matrix-valued functions, respec-

tively, whose elements belong to the function space Wn+r
p .

We consider the following linear boundary-value problem

(Ly)(t) := y(r)(t) +
r

∑
j=1

Ar−j(t)y
(r−j)(t) = f (t), t ∈ (a, b), (2)

By = c, (3)

where the matrix-valued functions Ar−j(·) ∈ (Wn
p )

m×m, vector c ∈ C
l , vector-valued function

f (·) ∈ (Wn
p )

m, and linear continuous operator

B : (Wn+r
p )m → C

l (4)
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are arbitrarily chosen; whereas the vector-valued function y(·) ∈ (Wn+r
p )m is unknown. If

l < rm, then the boundary conditions are underdetermined. If l > rm, then the boundary

conditions are overdetermined.

The boundary condition (3) consists of l scalar conditions for the system of m differen-

tial equations of the r order. We represent vectors and vector-valued functions in the form of

columns. The solution to the boundary-value problem (2), (3) is understood as a vector-valued

function y(·) ∈ (Wn+r
p )m satisfying equation (2) (for n ≥ 1 everywhere, and for n = 0 almost

everywhere) on (a, b), and equality (3). If the parameter n increases, so does the class of lin-

ear operators (4). When n = 0, this class contains all the operators that specify the general

boundary conditions.

The solutions of equation (2) fill the space (Wn+r
p )m if its right-hand side f (·) runs through

the space (Wn
p )

m. Therefore, boundary condition (3) with continuous operator (4) is the most

general condition for this equation.

It is known [19] that, if 1 ≤ p < ∞, then every operator (4) admits the unique analytic

representation

By =
n+r−1

∑
i=0

αiy
(i)(a) +

∫ b

a
Φ(t)y(n+r)(t)dt, y(·) ∈ (Wn+r

p )m, (5)

for certain number matrices αs ∈ Crl×m and a matrix-valued function

Φ(·) ∈ Lp′([a, b]; C
rl×m);

as usual, 1/p + 1/p′ = 1. If p = ∞, this formula also defines a bounded operator

B : (Wn+r
∞ )m → C

rl .

However, there exist other operators of this class generated by integrals over finitely additive

measures. Hence, unlike p < ∞ [5, 17, 26], the case of p = ∞ contains additional analytical

difficulties.

The article is structured as follows. Section 2 discusses the analysis of the solvability of

the inhomogeneous boundary-value problem in the corresponding Sobolev spaces. Section 3

gives examples that apply to the results of Section 2 and demonstrate the constructive charac-

ter of these results. Section 4 contains a limit theorem for the sequence of characteristic matri-

ces of the considered boundary-value problems and some related results. Section 5 contains

definitions, necessary and sufficient conditions for the continuity of solutions to the boundary-

value problems in a number parameter included in the coefficients of differential systems and

boundary conditions. Section 6 contains limit theorems for solutions of inhomogeneous mul-

tipoint boundary-value problems in separable and nonseparable Sobolev spaces.

2 Solvability and characteristic matrix

We rewrite the inhomogeneous boundary-value problem (2), (3) in the form of a linear

operator equation

(L, B)y = ( f , c).

The mapping u 7→ (Lu, Bu), where u ∈ (Wn+r
p )m, is a bounded linear operator on the pair of

Banach spaces

(L, B) : (Wn+r
p )m → (Wn

p )
m × C

l . (6)
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Let E1 and E2 be Banach spaces. A linear bounded operator T : E1 → E2 is called a Fred-

holm one if its kernel and co-kernel are finite-dimensional. If T is a Fredholm operator, then

its range T(E1) is closed in E2, and its index

ind T := dim ker T − dim
(
E2/T(E1)

)
∈ Z

is finite (see, e.g., [18, Lemma 19.1.1]).

Theorem 1. The bounded linear operator (6) is a Fredholm one with index rm − l.

The proof of Theorem 1 uses the well-known theorem on the stability of the index of a

linear operator with respect to compact additive perturbations [4].

Theorem 1 naturally raises the question of finding d-characteristics of the operator (L, B),

i.e. dim ker(L, B) and dim coker(L, B). This is a quite difficult task because d-characteristics

may vary even with arbitrarily small one-dimensional additive perturbations.

To formulate the following result, let us introduce some notation and definitions.

For each number i ∈ {1, . . . , r}, we consider the family of matrix Cauchy problems

Y
(r)
i (t) +

r

∑
j=1

Ar−j(t)Y
(r−j)
i (t) = Om, t ∈ (a, b), (7)

with the initial conditions

Y
(j−1)
i (a) = δi,j Im, j ∈ {1, . . . , r}, (8)

where Yi(·) is an unknown (m × m)-matrix-valued function. As usual, Om stands for the zero

(m × m)-matrix, Im denotes the identity (m × m)-matrix, and δi,j is the Kronecker delta. Each

Cauchy problem (7), (8) has a unique solution Yi ∈ (Wn+r
p )m×m due to [31, Lemma 4.1]. Cer-

tainly, if r = 1, we use the designation Y(·) for Y1(·).
Let [BYi ] denote the number (l × m)-matrix whose jth column is the result of the action of

B on the jth column of the matrix-valued function Yi.

Definition 1. A block rectangular number matrix

M(L, B) := ([BY1], . . . , [BYr]) ∈ C
l×rm (9)

is called the characteristic matrix of the inhomogeneous boundary-value problem (2), (3). This

matrix consists of r rectangular block columns [BYk] ∈ Cm×l.

Here, mr is the number of scalar differential equations of the system (2), and l is the number

of scalar boundary conditions in (3).

Theorem 2. The dimensions of the kernel and co-kernel of the operator (6) are equal to the

dimensions of the kernel and co-kernel of the characteristic matrix (9), respectively, i.e.

dim ker(L, B) = dim ker M(L, B), dim coker(L, B) = dim coker M(L, B).

Corollary 1. The operator (6) is invertible if and only if l = rm and the square matrix M(L, B)

is nonsingular.

In the r = 1 case, Theorem 1 and Corollary 1 are proved in [4]. In the case where l = rm

and p < ∞, Corollary 1 is proved in [10]. Theorem 2 is also new for the systems of first order

differential equations.

In Sobolev-Slobodetskii spaces, similar results for systems of first order differential equa-

tions were obtained in [35].

The results concerning Theorems 1, 2, and Corollary 1 given in this section were obtained

in [31].
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3 Examples

If all coefficients of the differential expression L are constant, then the characteristic ma-

trix of the corresponding boundary-value problem can be explicitly found in many instances

(see, e.g., [9]). In this case, the characteristic matrix is an analytic function of a certain square

number matrix and coincides hence with some polynomial of this matrix.

Example 1. Consider the linear one-point boundary-value problem for first order constant-

coefficient differential equation

(Ly)(t) := y′(t) + Ay(t) = f (t), t ∈ (a, b), (10)

By =
n−1

∑
k=0

αky(k)(a) = c, (11)

where A is a constant (m × m)-matrix; the vector-valued function f (·) belongs to the space

(Wn−1
p )m; the matrices αk belong to the space Cl×m; c ∈ Cl ; the operators

B : (Wn
p )

m → C
l and (L, B) : (Wn

p )
m → (Wn−1

p )m × C
l

act continuously, and y(·) ∈ (Wn
p )

m.

Let Y(·) ∈ (Wn
p )

m×m denote a unique solution of the linear homogeneous matrix equation

of the form (10) with the initial condition at the point a, namely

Y′(t) + AY(t) = Om, t ∈ (a, b), Y(a) = Im.

Put

M(L, B) = [BY] :=


B




y1,1(·)
...

ym,1(·)


 , . . . , B




y1,m(·)
...

ym,m(·)





 ∈ C

m×l.

Then the fundamental matrix of system (10) and its kth derivative have the following form

Y(t) = exp(−A(t − a)), Y(a) = Im;

Y(k)(t) = (−A)k exp(−A(t − a)), Y(k)(a) = (−A)k, k ∈ N.

Substituting these values into the equality (11), we get

M(L, B) =
n−1

∑
k=0

αk(−A)k.

Theorem 1 implies that

ind (L, B) = ind (M(L, B)) = m − l.

Therefore, by Theorem 2, we obtain

dim ker(L, B) = dim ker

( n−1

∑
k=0

αk(−A)k

)
= m − rank

( n−1

∑
k=0

αk(−A)k

)
,

dim coker(L, B) = −m + l + dim coker

( n−1

∑
k=0

αk(−A)k

)
= l − rank

( n−1

∑
k=0

αk(−A)k

)
.

From these formulas it follows that the d-characteristics of the problem do not depend on

the length of the interval (a, b).
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Example 2. Let us consider a multipoint boundary-value problem for the system of differential

equations (10) with A(t) ≡ Om. The boundary conditions at the points {tk}N
k=0 ⊂ [a, b] contain

derivatives of integer and/or fractional orders (in the sense of Caputo [22]). They have the

next form

By =
N

∑
k=0

s

∑
j=0

αkjy
(βkj)(tk) = c.

Here, αkj ∈ C
l×m are the number matrices. The nonnegative numbers βkj are such that βk,0 = 0

for all k ∈ {1, 2, . . . , N}.

Theorem 1 implies that the index of the operator (L, B) is equal to m − l.

Let us find the dimensions of its kernel and co-kernel. In this case, Y(·) = Im. Therefore,

the characteristic matrix has the form

M(L, B) = [BY] =
N

∑
k=0

s

∑
j=0

αkj I
(βkj)
m =

N

∑
k=0

αk,0,

since (CD
βk,j

a+ Im) = 0 if βkj > 0. Hence, according to Theorem 2, we get

dim ker(L, B) = dim ker

( N

∑
k=0

αk,0

)
= m − rank

( N

∑
k=0

αk,0

)
,

dim coker(L, B) = −m + l + dim coker

( N

∑
k=0

αk,0

)
= l − rank

( N

∑
k=0

αk,0

)
.

It follows from these formulas that the d-characteristics of the problem do not depend on

the choice of the interval (a, b), points {tk}N
k=0 ⊂ [a, b], and matrices αkj with j ≥ 1.

Example 3. Consider a two-point boundary-value problem for a system of second-order dif-

ferential equations generated by the expression

Ly(t) := y′′(t) + Ay′(t), t ∈ (a, b),

where A is a constant matrix, with the boundary operator

By =
n+1

∑
k=0

(
αky(k)(a) + βky(k)(b)

)
.

Here, αk, βk are some rectangular number matrices. Then we have the continuous operator

(L, B) : (Wn+2
p )m → (Wn

p )
m × C

l

and characteristic matrix M(L, B) ∈ C
2m×l .

It is easy to verify in this case that Y1(t) ≡ Im, Y2(t) = ϕ(A, t), where, for each fixed

t ∈ [a, b], the function ϕ(λ, t) := 1 − exp(−λ(t − a))λ−1 is an entire analytic function of the

variable λ ∈ C.

Then

[BY1] =
n+1

∑
k=0

(αk I
(k)
m (a) + βk I

(k)
m (b)) = (α0 + β0)Im,

[BY2] =
n+1

∑
k=0

(αk ϕ(k)(A, a) + βk ϕ(k)(A, b)).
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But

Y
(k)
2 (t) = (−1)k Ak exp(−A(t − a)), k ∈ {0, . . . , n + 1}.

Hence, we have

[BY2] =
n+1

∑
k=0

(
αk Im + βk exp(−A(b − a))

)
(−A)k .

Therefore, the characteristic block matrix becomes

M(L, B) =

(
α0 + β0;

n+1

∑
k=0

(
αk + βk exp(−A(b − a))

)
(−A)k

)
.

According to Theorem 2, the dimensions of the kernel and co-kernel of the inhomogeneous

boundary-value problem are equal, respectively, to the dimensions of the kernel and co-kernel

of the matrix M(L, B).

In particular, if βk ≡ 0 and the problem is one-point, then the block characteristic matrix

takes the form

M(L, B) =

(
α0;

n+1

∑
k=0

αk(−A)k

)
.

Therefore, in this case, the d-characteristics of the boundary-value problem do not depend

on the length of the interval (a, b).

Note that the matrix exp(−A(b − a)) can be found in an explicit form since every entire

analytic function of the number matrix A ∈ Cm×m is a polynomial of A. This polynomial is

expressed via the matrix A by the Lagrange-Sylvester Interpolation Formula (see, e.g., [9]). Its

degree is no greater than m − 1.

Example 4. Consider a two-point boundary-value problem for another system of second-order

differential equations

(Ly)(t) := y′′(t) + Ay(t), t ∈ (a, b),

where A ∈ Cm×m. The boundary conditions induced by the same operator as that in Exam-

ple 3, namely

By =
n+1

∑
k=0

(
αky(k)(a) + βky(k)(b)

)
.

It is easy to check in this case that, for each fixed t ∈ [a, b], the fundamental matrix-valued

functions Y1(t) and Y2(t) are entire functions of the number matrix A given by some conver-

gent power series. Then

[BY1] =
n+1

∑
k=1

k is odd

βk(−1)k Ak +
n+1

∑
k=0

k is even

αk(−1)k(
√

A)2k−1 sin(
√

A(b − a))

+
n+1

∑
k=1

k is odd

βk(−1)k Ak cos(
√

A(b − a))

and

[BY2] =
n+1

∑
k=1

k is even

αk(−1)k Ak +
n+1

∑
k=0

k is even

αk(−1)k Ak cos(
√

A(b − a))

+
n+1

∑
k=1

k is odd

βk(−1)k(
√

A)2k−1 sin(
√

A(b − a))
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with the block characteristic matrix M(L, B) = [BY1; BY2].

Specifically, if βk ≡ 0 (the case of the one-point boundary-value problem), then

M(L, B) =

[
n+1

∑
k=0

k is even

αk(−1)k(
√

A)2k−1 sin(
√

A(b − a));

n+1

∑
k=1

k is even

αk(−1)k Ak +
n+1

∑
k=0

k is even

αk(−1)k Ak cos(
√

A(b − a))

]
.

Unlike Example 3, this matrix depends in general on the length of the interval (a, b).

If αk ≡ 0, k is even, βk ≡ 0, and k is odd, then the characteristic matrix M(L, B) = O2m×l.

Therefore, its d-characteristics take the largest possible values.

As in Example 3, the matrices sin(
√

A(b − a)) and cos(
√

A(b − a)) can be exactly found as

Lagrange-Sylvester interpolation polynomials.

Example 5. Consider the following linear boundary-value problem for a system of m first-

order differential equations

Ly(t) := y′(t) = f (t), t ∈ (a, b), By = c, (12)

where f (·) ∈ (Wn
p )

m, and c ∈ Cl , and B is an arbitrary linear continuous operator from

(Wn+1
p )m to Cl . We suppose that 1 ≤ p < ∞.

Note that Y(·) = Im is the unique solution of the linear homogeneous matrix equation of

the form (12) with the initial Cauchy condition

Y′(t) = 0, t ∈ (a, b), Y(a) = Im.

According to (5), we have

M(L, B) = [BY] =
n

∑
i=0

αiY
(i)(a) +

∫ b

a
Φ(t)Y(n+1)(t)dt = α0.

Therefore,

dim ker(M(L, B)) = dim ker(α0), dim coker(M(L, B)) = dim coker(α0).

Hence, the boundary-value problem (12) is well posed if and only if the number matrix α0 is

square and nonsingular.

The results given in this section were obtained in [6, 31]. In Sobolev-Slobodetskii spaces,

Example 1 and a special case of Example 2 (two-point problem) are given in [30].

4 Convergence of the characteristic matrices

Together with the problem (2), (3), we consider the sequence of boundary-value problems

L(k)y(t, k) := y(r)(t, k) +
r

∑
j=1

Ar−j(t, k)y(r−j)(t, k) = f (t, k), (13)

B(k)y(·, k) = c(k), t ∈ (a, b), k ∈ N, (14)
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where the matrix-valued functions Ar−j(·, k), the vector-valued functions f (·, k), the vectors

c(k), and the linear continuous operators B(k) satisfy the above conditions imposed on the

problem (2), (3). In the sequel, we assume that k ∈ N and that all asymptotic relations are

considered for k → ∞. The boundary-value problem (13), (14) is also the most general (generic)

with respect to the Sobolev space Wn+r
p .

We associate the sequence of linear continuous operators

(L(k), B(k)) : (Wn+r
p )m → (Wn

p )
m × C

l

and the sequence of characteristic matrices

M(L(k), B(k)) := ([B(k)Y1(k)], . . . , [B(k)Yr(k)]) ⊂ C
l×rm

with the boundary-value problems (13), (14).

As usual,

(L(k), B(k))
s−→ (L, B) (15)

denotes the strong convergence of the sequence of operators (L(k), B(k)) to the operator (L, B).

The next theorem provides a sufficient condition for the convergence of the sequence of

characteristic matrices M(L(k), B(k)) to the matrix M(L, B).

Theorem 3. If the sequence of operators (L(k), B(k)) converges strongly to the operator (L, B),

then the sequence of characteristic matrices M
(

L(k), B(k)
)

converges to the matrix M
(

L, B
)
,

i.e.

(L(k), B(k))
s−→ (L, B) =⇒ M(L(k), B(k)) → M(L, B).

Theorem 3 implies the next result.

Theorem 4. If condition (15) is satisfied, then the following inequalities

dim ker(L(k), B(k)) ≤ dim ker(L, B), dim coker(L(k), B(k)) ≤ dim coker(L, B)

hold true for all sufficiently large k.

Let us consider three significant direct consequences of Theorem 4. Suppose that condition

(15) is satisfied.

Corollary 2. If the operator (L, B) is invertible, then so are the operators (L(k), B(k)) for all

sufficiently large k.

Corollary 3. If the boundary-value problem (2), (3) has a solution for arbitrarily chosen right-

hand sides, then so do the boundary-value problems (13), (14) for all sufficiently large k.

Corollary 4. If the homogeneous boundary-value problem (2), (3) has only a trivial solution,

then so do the homogeneous problems (13), (14) for all sufficiently large k.

Note that the conclusion of Theorem 4 and its consequences cease to be valid for arbitrary

bounded linear operators between infinite-dimensional Banach spaces.

The results presented in this section were obtained in [31].
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5 Continuity of solutions in a parameter

Let us consider the linear boundary-value problem

L(ε)y(t, ε) := y(r)(t, ε) +
r

∑
j=1

Ar−j(t, ε)y(r−j)(t, ε) = f (t, ε), (16)

B(ε)y(·; ε) = c(ε), t ∈ (a, b), (17)

parameterized by number ε ∈ [0, ε0), ε0 > 0. Here, for every fixed ε, the matrix-valued func-

tions Ar−j(·; ε) ∈ (Wn
p )

m×m, vector-valued function f (·; ε) ∈ (Wn
p )

m, vector c(ε) ∈ Crm, and the

linear continuous operator

B(ε) : (Wn+r
p )m → C

rm

are given, whereas the vector-valued function y(·; ε) ∈ (Wn+r
p )m is unknown.

It follows from Theorem 1 that the boundary-value problem (16), (17) is a Fredholm one

with index zero.

Definition 2. The solution to the boundary-value problem (16), (17) depends continuously on

the parameter ε at ε = 0 if the following two conditions are satisfied:

• there exists a positive number ε1 < ε0 such that, for any ε ∈ [0, ε1) and an arbitrary

chosen right-hand sides f (·; ε) ∈ (Wn
p )

m and c(ε) ∈ Crm, this problem has a unique

solution y(·; ε) that belongs to the space (Wn+r
p )m;

• the convergence of the right-hand sides f (·; ε) → f (·; 0) in (Wn
p )

m and c(ε) → c(0) in Crm

implies the convergence of the solutions y(·; ε) → y(·; 0) in (Wn+r
p )m.

Here and below, the limits are considered as ε → 0+.

Definition 2 is equivalent to the following two conditions:

• the operator (L(ε), B(ε)) is invertible for all sufficiently small ε > 0;

•
(

L(ε), B(ε)
)−1 s−→ (L(0), B(0))−1.

Consider the following assumptions:

(0) the homogeneous boundary-value problem has only the trivial solution

L(0)y(t, 0) = 0, t ∈ (a, b), B(0)y(·, 0) = 0;

(I) Ar−j(·; ε) → Ar−j(·; 0) in the space (Wn
p )

m×m for each number j ∈ {1, . . . , r};

(II) B(ε)y → B(0)y in the space Crm for every y ∈ (Wn+r
p )m.

Theorem 5. The solution to the boundary-value problem (16), (17) depends continuously on

the parameter ε at ε = 0 if and only if this problem satisfies conditions (0), (I) and (II).

This theorem implies that, if the operator
(

L(0), B(0)
)

is invertible, then

(L(ε), B(ε))
s−→ (L(0), B(0)) ⇐⇒ (L(ε), B(ε))−1 s−→ (L(0), B(0))−1.
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Note that the conclusion of Theorem 5 and its consequences cease to be valid for arbitrary

bounded linear operators between infinite-dimensional Banach spaces. Note that the set of all

irreversible operators is everywhere dense in the strong operator topology.

We supplement our result with a two-sided estimate of the error ‖y(·; 0) − y(·; ε)‖n+r,p of

the solution y(·; ε) via its discrepancy

d̃n,p(ε) := ‖L(ε)y(·; 0) − f (·; ε)‖n,p + ‖B(ε)y(·; 0) − c(ε)‖Crm .

Here, we interpret y(·; ε) as an approximate solution to the problem (16), (17) with ε = 0.

Theorem 6. Suppose that the boundary-value problem (16), (17) satisfies conditions (0), (I)

and (II). Then there exist positive numbers ε2 < ε1 and γ1, γ2 such that, for any ε ∈ (0, ε2), the

following two-sided estimate

γ1 d̃n,p(ε) ≤ ‖y(·; 0)− y(·; ε)‖n+r,p ≤ γ2 d̃n,p(ε)

is true, where the numbers ε2, γ1, and γ2 do not depend on y(·; ε) and y(·; 0).

Thus, the error and discrepancy of the solution y(·; ε) to the boundary-value problem (16),

(17) are of the same degree of smallness.

The results presented in this section were obtained in [6]. Unlike the method used in [17],

our approach is more general and allows studying the solutions of boundary-value problems

not only in Sobolev spaces, but also in other function spaces (see, e.g., [33]). The case of first

order equations (with r = 1) in Sobolev spaces is considered in [5], and in the case of Sobolev-

Slobodetskii spaces in [16]. For the most general class of inhomogeneous boundary-value

problems for systems of differential equations of an arbitrary order whose solutions belong

to the Sobolev space with 1 ≤ p < ∞ similar results were obtained in [10]; the case where the

solutions range over an appropriate Sobolev-Slobodetskii space was studied in [29].

6 Multipoint problems

The results of this section are the principle of averaging for solutions of problems with

multipoint boundary conditions.

We consider the most general class of multipoint linear boundary-value problems for sys-

tems of ordinary differential equations of any order whose solutions belong to the Sobolev

space Wn+r
p . We consider the case where the points of the closed interval [a, b] appearing in

boundary conditions are not fixed and depend on a number parameter and the number of

these points may change. The case p = ∞ is special and has not been studied earlier.

We arbitrarily choose N different points {t1, . . . , tN} ⊂ [a, b] and consider a multipoint

boundary-value problem of the form

Ly(t) ≡ y(r)(t) +
r

∑
j=1

Ar−j(t)y
(r−j)(t) = f (t), t ∈ (a, b), (18)

By ≡
n+r−1

∑
l=0

N

∑
j=1

β
(l)
j y(l)(tj) = q, (19)

where y ∈ (Wn+r
p )m is an unknown vector-valued function, Ar−j ∈ (Wn

p )
m×m are arbitrary

matrix functions, f ∈ (Wn
p )

m is arbitrary vector function, β
(l)
j ∈ C

rm×m are arbitrary matrices,

and q ∈ C
rm.
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In view of the continuous embedding (Wn+r
p )m →֒ (Cn+r−1)m, the left-hand side of the

boundary condition (19) makes sense, and the mapping y 7→ By, where y ∈ (Wn+r
p )m, is a

continuous operator from the space (Wn+r
p )m to Crm. Note that the boundary condition (19) is

not classical because it contains the derivatives y(l) of integral orders l, where 0 < l ≤ n+ r− 1.

Problem (18), (19) is regarded as the limit boundary-value problem, as ε → 0+, for the

following multipoint boundary-values problem

L(ε)y(t, ε) := y(r)(t, ε) +
r

∑
j=1

Ar−j(t, ε)y(r−j)(t, ε) = f (t, ε), t ∈ (a, b), (20)

B(ε)y(·, ε) =
N

∑
j=0

ωj(ε)

∑
k=1

n+r−1

∑
l=0

β
(l)
j,k (ε)y

(l)(tj,k(ε), ε) = q(ε) (21)

depending on the parameter ε ∈ (0, ε0).

Here, for any fixed value of the parameter ε, the vector-valued function y(·, ε) ∈ (Wn+r
p )m

is unknown and the matrix-valued functions Ar−j(·, ε) ∈ (Wn
p )

m×m, vector-valued function

f (·, ε) ∈ (Wn
p )

m, vectors q(ε) ∈ Crm, and matrices β
(l)
j,k (ε) ∈ Cm×m are given. For ε > 0, we

take at least N points tj,k(ε) of the segment gathered into N + 1 series as follows: for any fixed

j ∈ {1, . . . , N}, all points tj,k(ε) must have the same limit tj as ε → 0+. This requirement is not

imposed on the points t0,k(ε). Note that the series with j = 0 may be absent.

We represent vectors and vector-valued functions in the form of columns. The solu-

tion of the boundary-value problem (20), (21) is defined to be a vector-valued function

y(·, ε) ∈ (Wn+r
p )m satisfying both equation (20) everywhere (for n ≥ 1) and almost every-

where (for n = 0) on (a, b) and equality (21) specifying rm scalar boundary conditions. The

presence of the repeated sum over the indices j and k in the boundary condition (21) is ex-

plained by the subsequent assumptions concerning the behavior of the points tj,k(ε) as ε → 0+

depending on j.

In the limit case of ε = 0, we consider a boundary-value problem

L(0)y(t, 0) = f (t, 0), t ∈ (a, b), (22)

B(0)y(·, 0) =
N

∑
j=1

n+r−1

∑
l=0

β
(l)
j y(l)(tj, 0) = q(0), (23)

where the matrices β
(l)
j ∈ Cm×m, the points tj ∈ [a, b], and the vector q(0) ∈ Crm are arbitrary.

For any ε ∈ [0, ε0), B(ε) is a continuous linear operator

B(ε) : (Wn+r
p )m → C

rm.

For every ε ∈ [0, ε0), the boundary-value problem (20), (21) induces the linear operator

(L(ε), B(ε)) : (Wn+r
p )m → (Wn

p )
m × C

rm. (24)

According to Theorem 1, (24) is a bounded Fredholm operator with zero index.

Let us establish explicit sufficient conditions for the solution y = y(·, ε) of the multipoint

boundary-value problem (20), (21) to be continuous with respect to the parameter ε in the

Sobolev space Wn+r
p with 1 ≤ p ≤ ∞, i.e. the conditions for the solution y(·, ε) to exist, be

unique, and satisfy the limit relation

‖y(·, ε)− y(·, 0)‖n+r,p → 0 as ε → 0 + . (25)

In order that this task make sense, we assume the following.
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Condition (0). The homogeneous limit boundary-value problem of the form (22), (23) has only

the trivial solution, i.e. is not degenerate.

This implies that, for ε = 0, the Fredholm operator (24) is an isomorphism, i.e.
(

L(0), B(0)
)

: (Wn+r
p )m ↔ (Wn

p )
m × C

rm.

Hence, the boundary-value problem (22), (23) has a unique solution y(t, 0) ∈ (Wn+r
p )m for

any right-hand sides f (t, 0) ∈ (Wn
p )

m and q(0) ∈ Crm.

We consider the following assumptions as ε → 0+:

(α) tj,k(ε) → tj for all j ∈ {1, . . . , N} and k ∈ {1, . . . , ωj(ε)};

(β) ∑
ωj(ε)

k=1 β
(l)
j,k (ε) → β

(l)
j for all j ∈ {1, . . . , N} and l ∈ {0, . . . , n + r − 1};

(γ) ∑
ωj(ε)

k=1 ‖β
(l)
j,k (ε)‖ |tj,k(ε) − tj| → 0 for all j ∈ {1, . . . , N}, k ∈ {1, . . . , ωj(ε)} and

l ∈ {0, . . . , n + r − 1};

(δ) ∑
ω0(ε)
k=1 ‖β

(l)
0,k(ε)‖ → 0 for all k ∈ {1, . . . , ω0(ε)} and l ∈ {0, . . . , n + r − 1}.

Note that, for the boundary-value problem (20), (21), we do not suppose that the coefficients

Ar−j(·, ε) and β
(l)
j,k (ε) or the points tj,k(ε) are characterized by a certain regularity with respect

to the parameter ε > 0. Assume that, for any fixed j ∈ {1, . . . , N}, all points tj,k(ε) have the

same limit as ε → 0+. At the same time, this requirement is not imposed on the points of the

zero series t0,k(ε).

In the conditions (γ) and (δ), the expression ‖ · ‖ denotes a norm of a complex number

matrix; this norm is equal to the sum of absolute values of all elements of the matrix. In view

of assumptions (β) and (γ), the norms of the coefficients ‖β
(l)
j,k (ε)‖ may infinitely (but not very

rapidly) increase as ε → 0+. It follows from condition (δ) that, unlike condition (α), it is not

necessary to demand the convergence of the points t0,j(ε) as ε → 0+.

Let us formulate limit theorems for the solutions to the multipoint boundary-value problem

(20), (21) in the p = ∞ case.

Theorem 7. Suppose that the boundary-value problem (20), (21) with p = ∞ satisfies the

assumptions (α), (β), (γ), and (δ). Then it satisfies the limit condition (II). Moreover, if condi-

tions (0) and (I) are satisfied, then, for sufficiently small ε, the solution to this problem exists,

is unique, and satisfies the limit relation (25).

Focusing now on the case 1 ≤ p < ∞, we consider the following assumptions as ε → 0+:

(γp) ∑
ωj(ε)

k=1 ‖β
(n+r−1)
j,k (ε)‖|tj,k(ε)− tj|1/p′ = O(1) for all j ∈ {1, . . . , N} and k ∈ {1, . . . , ωj(ε)},

where 1/p + 1/p′ = 1;

(γ′) ∑
ωj(ε)

k=1 ‖β
(l)
j,k (ε)‖ |tj,k(ε) − tj| → 0 for all j ∈ {1, . . . , N}, k ∈ {1, . . . , ωj(ε)} and l ∈

{0, . . . , n + r − 2}.

Note that the systems of conditions (α), (β), (γ), (δ) and (α), (β), (γp), (γ′), (δ) do not

guarantee the uniform convergence of continuous operators B(ε) : (Wn+r
p )m → Crm to B(0) as

ε → 0+. For this reason, Theorem 7 does not follow from the general facts of the theory of

linear operators.
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Theorem 8. Let 1 ≤ p < ∞, and suppose that the boundary-value problem (20), (21) satisfies

assumptions (α), (β), (γp), (γ′), and (δ). Then this problem satisfies the limit condition (II).

Moreover, if conditions (0) and (I) are satisfied, then, for sufficiently small ε, the solution of the

problem exists, is unique, and satisfies the limit relation (25).

Papers [2,3] give sufficient conditions for the continuity of solutions to multipoint bounda-

ry-value problems with respect to the parameter in Sobolev spaces.

Note that, for first order differential equations (r = 1), Theorems 7 and 8 were proved in [2].

In the general case, for differential equations of any order, the proofs of Theorems 7 and 8 are

based on the criterion of continuity of the most general boundary-value problems [7].

Note that papers [23, 24] investigated multipoint boundary-value problems for systems of

first order ordinary differential equations in the Sobolev spaces Wn
p , where 1 ≤ p < ∞. How-

ever, in these papers, the points of the segment [a, b] appearing in the limit condition are fixed

and independent of the parameter. Paper [15] studied nonclassical multipoint boundary-value

problems for systems of ordinary differential equations of arbitrary order in the Sobolev spaces

Wn+r
p , where 1 ≤ p < ∞. However, in this paper, the number of points in each series is inde-

pendent of the parameter ε.
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Робота мiстить огляд результатiв стосовно лiнiйних систем звичайних диференцiальних

рiвнянь довiльного порядку на скiнченному iнтервалi з найбiльш загальними неоднорiдними

крайовими умовами у просторах Соболєва. Дослiджено характер розв’язностi таких задач,

встановлено їх фредгольмовiсть, знайдено їх iндекси, вимiри їх ядер та коядер. Крiм того,

отримано необхiднi i достатнi умови неперервностi за параметром розв’язкiв введених класiв

крайових задач у просторах Соболєва довiльного порядку.

Ключовi слова i фрази: неоднорiдна крайова задача, простiр Соболєва, оператор Фредголь-

ма, iндекс оператора, неперервнiсть за параметром, гранична теорема.


