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Inverse initial problem for a time-fractional
diffusion-wave equation

Boyko P, Lopushansky A2, Lopushanska H.3, Pukach PV&

We find sufficient conditions for a unique classical solvability of the inverse problem of restora-
tion of two functions in initial conditions of the Cauchy problem for a time-fractional diffusion-wave
equation with the Caputo-Djrbashian-Nersesian derivative and the right-hand side with values in
Schwartz-type spaces of smooth functions rapidly decreasing to zero at infinity.

We use two time-integral overdetermination conditions

%/()T”(x/f)ﬁl(f)df = dy(x), %/()Tu(x,t)nz(t)dt =®d,(x), xeR",

where u is the solution of the Cauchy problem for such equation, ®;, ®, are given functions from
the Schwartz-type space, 771, 77, are given functions from C2[0, T].

We use the method of the Green’s vector-function. The initial data sought are expressed through
the solution of a certain linear Fredholm integral equation of the second kind in the space of contin-
uous functions with values in Schwartz-type spaces.

Key words and phrases: Schwartz-type functional space, fractional derivative, Cauchy problem,
inverse problem, Green’s vector-function.
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Introduction

Equations with fractional derivatives and inverse problems for them are arising in various
applications with memory, in nano-technology, signal and image processing, control theory,
biology, geology, geophysics, medicine, economy (see, for example, [2,7,9,10, 13,23, 26,27,29]
and references therein). It was shown in some works (see [2], for example) that equations
with fractional derivatives are more effective in describing of frequency-dependent behavior
of viscoelastic polymers.

Solvability of the Cauchy and boundary-value problems for diffusion and diffusion-wave
equations with fractional derivatives has been the subject of research in [1,3-5,17,24,25,28,31]
and other works. In anomalous diffusion different aspects attract attention. The most works
on inverse problems for such equations and differential equations with partial derivatives of
entire orders are devoted to problems with unknown right-hand sides of equations, for exam-
ple, [11,16,19,28,32-34].
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In this paper, we study the inverse problem of identifying initial data of the solution for a
time-fractional diffusion-wave equation with a source from Schwartz-type spaces of smooth
functions decreasing to zero at infinity.

In [21, 30, 35, 36], the inverse boundary-value problems of identifying initial values were
obtained by a final time data. Unique solvability of the inverse problem of restoring one un-
known function (for example, the source in [19], the equation’s minor coefficient in [12], the
solution’s initial data in [18,20]) were obtained by using a time integral overdetermination con-
dition, and in [11, 16] and some other papers, integral conditions over spatial variables were
used as additional ones. Two integral conditions were used to find two unknown functions
in [14,15] and [22], in [14,15] with unknowns of different arguments.

We use two time integral overdetermination conditions to find two unknown functions
from Schwartz-type spaces in initial conditions. Such problems have not yet been studied.

1 Definitions and auxiliary results

We use the following: x = (x1,...,x,) € R", & = (a1,...,an), &j € Z4,j € {1,...,n},
o] = a4+, x =x]t xy', D% (x,t) = aa‘allvigtan,f*g is the convolution off and g,
1

0L )
A =4 T ’
firalt), A0,
where I'(A) is the Gamma-function, 6(t) is the Heaviside function. Note that f) * f; = fi, -
The Riemann-Liouville derivative v(f)(t) of order § > 0 is defined by the formula
Bt = f_ p(t) x v(t), the Caputo (Caputo Djrbashian-Nersesian or regularized) fractional
derivative is defined by Dﬁv fo (t—1)"" P 1;:7, (T)dtform—1< p<m,meN,
and therefore,

m—1
DFo(t) = o'P)(t) - ZO fir1-p(H)0"(0).
j=

Let Q = R" x (0, T}, G 5(Q) = {v € C(Q) : v, Dfv € C(Q)}, Cap(Q) = C25(Q) NC(Q),
S(IR™) be the space of infinitely differentiable functions v in R" such that x? D*v are bounded
in R" for all multi-indexes «, 7y (the Schwartz space of smooth rapidly decreasing functions),
S+(R™), v > 0, be the space of type S(R") (see [8, p. 201]):

1
S,(R") = {v € S(R") : |D*0(x)| < Cue ™", x € R", Va}

with some positive constants C, = C,(v) and a = a(v). The sequence v,,(x) converges to zero
as m — +oo in the space S, (R") if the sequence D*v,,,(x) converges to zero uniformly on an
arbitrary compact |x| < C < 4o for each multi-index & and the estimates

1
|D%0 (x)| < Cue™ 7, x € R", Yaand m € N,
hold with some a > 0. It is known (see [8, p. 211]) that S, (R") = U,;~0S,, (4)(R") where
1
S, )(R") = {0 € S(R") : |ID*0(x)| < Cye(v)e """, xeR", Va, Ve>0}

1
={v e C(R") : |vlly) = sup e/ DI7 DYy (x)| < +o00 Vk €N, k # 11,
|a| <k, xeR"
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The sequence vy, (x) converges to zero as m — +o0 in the space S, ,)(R") if the sequence
D*v,,(x) converges to zero uniformly on an arbitrary compact |x| < C < +oo for each multi-
index a and the norms |[vy ||y (,) are limited for all m, k € N, k # 1.

We say thatv € S, (,)(Q) if (-, t) € S, (;(R") for all € [0, T], and the norm is defined by
lolls, @ = max 1o Dls, )

For B € (1,2) we study the inverse problem

Dfu — Au = Fy(x,t), (x,t)€Q, (1)
u(x,0) = F(x), %u(x 0) =FK(x), xeR" (2)
T/ (3, ) () dt = Dy () T/ (x,)a(t) dt = Da(x), x € R" ©

of determining the triple (u, F;, F,), where ®1, ®, are given functions from S%(H)(]R”),
Fo € S,,4)(Q), 111, 172 are given functions from C2[0, T).

Definition 1. The triple (u, Fi, F2) € S, (2)(Q) X S, ()(R") x S, (5y(IR") is called a solution of
the problem (1)—3) if it satisfies equation (1) in Q and conditions (2), (3).

Definition 2. The vector-function (Go(x,t), G1(x,t), Ga(x,t)) is called a Green’s vector-func-
tion of the Cauchy problem (1), (2) if under rather regular Fy, F;, F, the function

u(x,t) /dr/ Go(x —y,t—1)F(y, T)dy + Z/ x—y, (y)dy, (x,t) € Q, (4)
=12
is a classical (from Czlﬁ(Q_) ) solution of this problem.

Such Green'’s vector-function exists (see, for example, [4,17,25,31], namely

cj(x,t):/Otfj_ﬁ(r)co(x,t—r)dr, (x,1)eQ, j=12

Moreover, G;(+,t) € L1(IR") for each t > 0, j = 0,1,2, and the following bounds hold [17]

2

1Go(x, )| < CtPie=c(XIE D> Py (4=,

where
1, n=1,
Yu(z) =< |In|z]|, n=2,
z|>7", n>3

.m|~ Vol

g
for |z| <1, ¥u(z) =¥u(1) for|z|] >1,c < (2— 5)(5 )
The expressions for components of the Green’s vector-function through the H-function of
Fox [6] are written in [4,17,31].

Remark. The following results spread to the case of replacing the Laplace operator with an
elliptic differential operator of the second order with constant coefficients or some coefficients
dependent on spatial variables, multiplication by which functions from S, (,)(R") belong to
S,,a)(R"). The existence and properties of the Green’s vector-function for such equations is
obtained in [17].
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We denote
Go)xt) = [ Glx=yDeW)dy, () eQ j=012

B
Lemmal. If y > 1— g, 0<alT?> <c, € S%(a)(lR”), then there exist positive numbers C, a’
(@' = cya with ¢, = 1if v > 1) such that for allk € N, k # 1, the following bounds hold

1(Gog) (-, O)llkay < CP U@l 1Gi@) ) k@) < CE M Illk @y, =12
Proof. Lemma can be proved by the scheme of [15, Lemma 1]. O

B -
Theorem 1. Assume thaty > 1, 0 <aT? <, F €S, ,(Q), 1, F2 € S, (5)(R"). Then there
exists the unique solutionu € S, ;) (Q) of the Cauchy problem (1), (2). It is defined by (4).

Proof. 1t follows from [17, 28, 31] the existence of a unique classical (from Cz,ﬁ(Q_)) solution u
of the Cauchy problem for F;, F, bounded and from L (IR"), Fy(x, t) continuous, bounded and
locally Holder with respect to spatial variables x € R" for every t € (0, T]. The representation
of the solution in the form (4) was obtained.

Then under conditions of Theorem 1, defined by (4) function u belongs to S, (,)(Q). Indeed,
foreachk € N, k > 2,t € [0, T|, by Lemma 1 we get

t
d/G-—,t—F,d
| @t [ Gol- —v.t=DFo(w,7) dy

k,(a)

< C/t(t—’r)ﬁ_lﬂlj (Ol dT < C—tﬁ max ||[Fo(-, 7)||
> 0 (VAN k,(a) > 5 e[0,1] (AN k,(a)s

< CHYFllg@, j=12
k,(a) O

i

2 Solutions of the inverse problem

.Gt~ v OF () dy

We study the problem (1)—(3) under the assumptions
B _
v>1, 0<aT?» <c, FeS, Q)
®; €S, (R"), n7;€C0,T], u(T)=0, j=12.
Let u be a solution of the problem (1), (2). By using (3) and (2), we get

[ st ey dr = a [t (6t = Ta@ (),

[ Dfute ot = [ ap(o) s uatx, 0yt = [ [ faplo = sty oy
— [Futes) ([ gt = ooy ar) as
- Tuss(x,s)< / st +s) dr) s
=B [ s [ ueo( [
=B [ g0t + B ([ sl i)

(A)

T—s
fop(T)i(T +5) dr) ds

b [ w0 [Ga g2 )0~ o p(T— (T, j=1,2.



608 Boyko P, Lopushansky A., Lopushanska H., Pukach P.

Here

T—t
(fz_lg*ﬂ] / foo 5 (s—1t) 17] s)ds = / fo_ ﬁ 17] (t—i—r)d j=12.

Then from equation (1) we obtain the system

@) [ o g B [ o pimin d
T
= TAD; (x / [fz p%1) () — fop(T —f)ﬂi(T)]dfﬂL/O Fo(x, t)m (t) dt,
/ foe /3 ’72 T)dt — F(x) / fo- /3 ) (t
= Ta@y(0) — [ (e[ P 0) ~ o p(T — () ]t + [ Folx () .

From here, denoting
T
(Fm) = [ fema

d(T) := (fo—p, 12) (fo—p, ) — (fo—p, 1) (fa—p,112) #0 (5)

under the assumption

we find
T "
A(T)F (x) = - {Tml(x) — [ e ) [(a-p#) (1) = forp (T = 1 (T)
T
+ [ R omodt b (s
T "
+ {180200) = [ o) p0)(0) — orp(T = 05 (T)]
T
+ [ R Dm0t o),
d(T)Fy(x) = {TAq)z(x) -/ ") (a0 — foop(T — ATt
T
+ [ R (0t b (o)
—{mqa(x) -/ ) (g () = Fap(T = D0t (T)]
T
+ [ R ()t (o),

that is,

Fi(x) = ﬁ /()Tu(x,t)wl(t,m,iyz)dt +v1(x),

T
ﬁ /0 u(x, t)wy(t,n1,m2) dt + v2(x), x € R”,

(6)
R(x) =
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where

)
—(fz—/sﬂh)[(fz ﬁ*n’2’><> fz_ﬁ<T—t>n5<T>},
)
(

AO(x) (fop i) = ADL() (fopp)] fdt, xR

Note that the condition (5) is performed, in particular, if the functions #; (t), 772 () are posi-
tive and 1 (t)n75(t) <0,t € [0, T].

In assumptions (A), w;(-, 111, 772) € C[0, T] and for u € S, (;(Q) we have v, F; € S, (;)(R")
forj=1,2.

Substituting the expressions (6) in (4), we get

) =75 [ [, {616 = w0t (s

+ Galx =y, uly,s) wals,m, ) fdy + uo(x 1), (x,8) € Q,

(7)

where

t
O(x,t):/odr Golx —y,t = T)Fo(y, ) dy

(8)
+ [ G =y 0010) + Galr —y 2] dy, (x,8) € Q.

In view of Lemma 1 and preliminary assessments, we obtain g € S, (,(Q) and

J0(- Dllay < ColT) [P max I1FoC )l + 8@ o) + APl ], € 0T ©)

Lemma 2. In assumptions (A) and (5) the triple (u, Fi, F2) € S, (2)(Q) X S, (4)(R") X S, () (IR")
is the solution of the problem (1) —(3) if and only if u is the solution of the equation (7) in the
space S., (,1(Q), F1, F, are defined by (6).

Proof. It was shown that the solutionu € S, ;) (Q) of the problem (1) - (3) satisfies the equation
(7) and Fy, F, are defined by (6). Vice versa, letu € S, (Q) be the solution of the equation (7).
Because (7) is the same as (4) if one substitute the expressions (6) in (4) instead of F;(x) and
F>(x), then by Theorem 1 the function u satisfies the problem (1), (2). We will show that u
satisfies the conditions (3) if F;, F, are defined by (6).
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Suppose this is not the case, and let

1 /T
. /0 u(x, by (f)dt = @ (x), x€R", j=1,2.
We introduce the notations

(x,8)wj(s,n1,12) ds,

1
i
1 .
_—T/ wj(s,n1,m2)ds, j=12,
where u* is the solution of the equation (7) in which the expressions for vy, v, in (8) has CD;‘
instead of ®;, j = 1,2. Then (6) implies

Ba(x) = Hh(x) — Hi () + s [ {[8@a(3) = 2030)] (fompo)
[A(Dl A(Dl } fz 5 172 } dt = 0,
(10)
Ba(x) = Ha(x) — H3 (x { s (x) = AD3(x)] (fo-p,111)
x)] (f

9 5,172}dt:0, x € R".

[AD,(x
—[A®; (x) ACI>1

It follows from (7) and (8) that

u(x, t) —u*(x,t) = —ﬁ/n {Gl(x —y,H)B1(y) + Ga(x —y,t)Bz(y)} dy.

On the basis of (10) we obtain u(x,t) — u*(x,t) = 0, (x,t) € Q. Then, by definition,
D;(x) — CID;‘(x) =0,x € R",j =1,2. Lemma brought. O

Theorem 2. Assume that (A), (5) hold and

~

1 T
CT) = ey | Tl (s,m,m2) |+ Tloa(s, 1, 72)] s

is a monotonically increasing function.

(B)

Then there exists the unique solution (u, Fi, F2) € S, (2)(Q) X S, (2)(R") X S, (5)(IR") of the
problem (1) —(3).

Proof. By Lemma 2 it is sufficient to prove (at least, local in time) solvability of the linear inte-
gral equation (7) and the uniqueness of the inverse problem. In fact, to find the functions F
and F, we solve the equation (7) at least with a fixed sufficiently small time value T > 0. Then
by Theorem 1, we may find the solution of the Cauchy problem (1), (2) in S,, (,(Q) with every

finite T > 0 such that )

it <emoop(2)

using formula (4).
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We define
1 T
(Ko)(x.t) = oy | s [ {Gie =y 0005 wa(smm)
+ Ga(x =y, t)o(y,s) wa(s, 771,772)} dy +uo(x,t), (x,t)€Q, veS, 4(Q).

It was shown (see (9)), that ug € Sy (,)(Q) forallk € N, k # 1 and [ug||,) < +oo. By
Lemma 1, forallv € S, (,)(Q), we have

T SI 7
K| (a) S/O {‘ /R Gi(x —y,t)o(y,s)dy o 7wl(d(’7]})’72))
wa (s, N1, 12) }
+ Ga(x—y,t)o(y,s)d W25, 1, 12) |\ 4
”énz( v t)oly )ykMJ AT ‘

< C(T)[1ollk,(a) + l1uollk,(a)-
By assumption (B), choosing R > 2||uol|,(,), we find T such that C(Ty) < 1 and obtain

R
2

SIS

1 _
1Kl (0) < 5l10llk @) + [0l < 5 +5 =R Vo & S,,)(Q).

Similarly, we get

1 -
[Ko1 — Koall o) < 501 = 2lligey, V01,02 € S, 0)(Q)

So, K is a contraction for some Ty > 0 and we obtain the existence of the solution of the
linear integral equation (7) in S, (,(Q) with T = Tp, and by Lemma 2 the existence of the
solution of the inverse problem (1)-(3).

Let us show the uniqueness of the solution of this problem. If (11, F11, F21), (u2, Fio, F22) are
two solutions of the problem (1)-(3), u = u; —up, F; = Fi1 — Fio, £, = F>1 — Fx, then the
triple (u, F1, F,) satisfies the problem

Dfu—Au:O, (x,t) € Q,

u(x,0) = Fi(x), %u(x,O) =F(x), xeR",
T T
/ u(x, ) (H)dt = 0, / u(x, ) (Hdt =0, x e R™
0 0

By Lemma 2, every solution u(x,t) of this problem is a solution of the equation (7) with
up(x,t) =0, (x,t) € Q,

Ri() = o0 [ ut o m,m)d
1X) = 577 u xrt w1 trnlrnz t/
d(T) Jo (11)

T
F(x) = m/o u(x, t)wy(t,n1,m2)dt, xe€R"

According to the above, there exists Tp > 0 such that the function u(x,t) = 0, x € R”",

t € [0,To], is the unique solution of the obtained equation. Then (11) implies F; = 0 in
Sy, (R"), j=1,2. O
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The obtained in Theorem 2 result can be strengthened.
We define the weighted norms ||v|| ;) = sup e~ [[o(-, )]l q) in S,,(2)(Q). We have
te(0,T]
the equivalence of norms [|v||y (,) - and [|o]|y (5), namely

e Mol ) < 0l a),e < 112l a)-

B _
Lemma3. If y > 1,0 <aT> <¢,0>0,¢ € S%(a)(Q), b € C[0, T), then there exist positive
numbers C,, C, 1, Cy 5 such that forallk € N, k # 1,t € (0, T] the following bounds
t t
WACTIOE T [ (Gop) (ot~ e

= sup e 7'

k,(a),c  te(0,T]

< CUHq)Hk,(a),m

k,(a)
= sup e 7t

T
/ (/ Gi(x =y, t)o(y,s) dy) b(s) ds
k,(a)c  te(0,T] 0
< Co T @l @)er =12

H /0T<Gf(/’><xr t,5)b(s) ds

k,(a)

hold and C, — 0 aso — +oo.

Proof. By using Lemma 1, we get

t
sup e 7! /(Go(p>(-,t—"f>d’l'
te(0,T) 0 k,(a)
t
= sup | [ ([ Golx it = mie oty )y ) e
te(o,T) I /O R" k,(a)

t
<Csup [ (t=1)f e " Ddr sup e 7| (,T)lg )
te(0,1) /0 T€(0,T]
t
=C sup (t - T)ﬁileia(tiﬂ dT”(P”k,(u),U
te(0,1) /0

t
=C sup thle=0T dTHq)Hk,(a),U = CUHq)Hk,(a),m
te(0,1) /0

H /oT<Gf<”> (x,t,5)b(s) ds

k,(a),o
T
= sup / eg(ts)< / Gj(x =y, t)b(s)e” " p(y,s) dy) ds
te(o,1) Il /0 k,(a)
_ T
< C sup [tfl/ e”(ts)]b(s)]ds] sup [e” %[l (-, )|k (a)]
te(0,T) 0 s€(0,T)

. T
= C sup [117e™] [ e b(s)] sl gl o)
te(0,T] 0

. T
<t [ e 1b(s)| dsllg oy = Cogll9lliaror 1= 1,2

Here

T , T
Co = C/ Pl g, Coj = CT]_l/ e’t|b(t)|dT, j=1,2.
0 0



Inverse initial problem for a time-fractional diffusion-wave equation 613

Corollary. Assume that (A), (5) hold. As in the proof of Theorem 2, but using Lemma 3, we
obtain

C T
Kol (2),0 < ] v k,(a),o/o e"s{!wl(s,m,ﬂz)! +T!wz(s,171,172)\}ds+ [t40]lx, (a),0
< C(T)eUTHv k,(a),0+ ”uO k,(a),o*

If the condition (B) is not fulfilled, but the function C (T) is bounded by a constant inde-
pendent of T, or if the function C(T)e”, at least for sufficiently large ¢ = 0y, is monotoni-
cally increasing, then, according to proof of Theorem 2, there exist Ty € (0, T] such that for all
T € (0, To] there exists a unique solution of the linear integral equation (7). Consequently, there
exists a unique solution (1, Fi, F2) € S, (2)(Q) X S, (5)(R") X S, (;)(R") of the problem (1) - (3).

Conclusions. Sufficient conditions for the unique classical solvability of the inverse prob-
lem of determining the initial values (from Schwartz-type spaces of functions rapidly decreas-
ing to zero at infinity) of the solution for a time-fractional diffusion-wave equation are found.
The solving of the problem is reduced to solving the linear Fredholm integral equation of the
second kind with integrable kernel.
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3HaliAeHO AOCTaTHi yMOBYM OAHO3HAUHOI KAACIHOI PO3B’SI3HOCTI 06epHEHOI 3aAadi BiAHOBAEHHS
ABOX (PYHKIIIM Y TIOYaTKOBMX yMoBax 3apadi Korrti Arst Avdpy3iliHO-XBUABOBOTO PiBHSIHHS 3 APO60-
Boto TToxiaHOR0 KamyTo-AxpbamsiHa-Hepceciana Ta paBoro 9acTHMHOIO 3i 3HaAUeHHSIMM B IIPOCTOPaX
raaakmx cpyskuivt Tumy IlBapia, 110 MIBMAKO CIIAAAIOTh AO HyAsI Ha HeCKiHUEHHOCTI.

Mu BUKOPHMCTOBYEMO ABi iHTETpaAbHi 32 YaCOM YMOBM ITepeBU3HAYCHHST

%/()T”(x/f)ﬁl(f)df = dy(x), %/()Tu(x,t)nz(t)dt =®d,(x), xeR",

Ae u — po3B’sa30k 3apaui Ko aas takoro pisasHHS, $1, Pp — 3aaaHi dyHKIIT 3 mpocTopy THUITy
IIsapua, 171, 17, — 3aaani dynxuii 3 C2[0, T).

BuxopucroByeMo mMeTop BekTop-pyHKuil I'pina. lykaHi mouaTKoBi AaHi BUpaXkaloTbCs Uepes
PO3B’SI30K AESIKOTO AIHIVHOTO iHTerpaAbHOro piBHHHS DpeAroabMa ApyToro poAy B IpOCTOpi He-
TlepepBHIUX (PYHKIIIN 31 3HaUeHHSIMM B IIpocTopax Tvy IBapira.

Kntouoei cnosa i ¢ppasu: dpyHKIioHaABHMI IpocTip Tumy [IIBapiia, Apo6osa moxiaHa, 3apada Ko-
111, obepHeHa 3apava, BeKTop-dyHKis 'pina.



