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Inverse initial problem for a time-fractional
diffusion-wave equation

Boyko P.1, Lopushansky A.2, Lopushanska H.3, Pukach P.1,

We find sufficient conditions for a unique classical solvability of the inverse problem of restora-

tion of two functions in initial conditions of the Cauchy problem for a time-fractional diffusion-wave

equation with the Caputo-Djrbashian-Nersesian derivative and the right-hand side with values in

Schwartz-type spaces of smooth functions rapidly decreasing to zero at infinity.

We use two time-integral overdetermination conditions

1

T

∫ T

0
u(x, t)η1(t)dt = Φ1(x),

1

T

∫ T

0
u(x, t)η2(t)dt = Φ2(x), x ∈ R

n,

where u is the solution of the Cauchy problem for such equation, Φ1, Φ2 are given functions from

the Schwartz-type space, η1, η2 are given functions from C2[0, T].

We use the method of the Green’s vector-function. The initial data sought are expressed through

the solution of a certain linear Fredholm integral equation of the second kind in the space of contin-

uous functions with values in Schwartz-type spaces.

Key words and phrases: Schwartz-type functional space, fractional derivative, Cauchy problem,

inverse problem, Green’s vector-function.

1 Lviv Polytechnic National University, 12 Bandera str., 79013, Lviv, Ukraine
2 University of Rzeszow, 1 Pigonia str., 35-310, Rzeszow, Poland
3 Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, Ukraine

Corresponding author

E-mail: boyko.petro@gmail.com (Boyko P.), alopushanskyj@gmail.com (Lopushansky A.),

lhp@ukr.net (Lopushanska H.), petro.y.pukach@lpnu.ua (Pukach P.)

Introduction

Equations with fractional derivatives and inverse problems for them are arising in various

applications with memory, in nano-technology, signal and image processing, control theory,

biology, geology, geophysics, medicine, economy (see, for example, [2, 7, 9, 10, 13, 23, 26, 27, 29]

and references therein). It was shown in some works (see [2], for example) that equations

with fractional derivatives are more effective in describing of frequency-dependent behavior

of viscoelastic polymers.

Solvability of the Cauchy and boundary-value problems for diffusion and diffusion-wave

equations with fractional derivatives has been the subject of research in [1,3–5,17,24,25,28,31]

and other works. In anomalous diffusion different aspects attract attention. The most works

on inverse problems for such equations and differential equations with partial derivatives of

entire orders are devoted to problems with unknown right-hand sides of equations, for exam-

ple, [11, 16, 19, 28, 32–34].
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In this paper, we study the inverse problem of identifying initial data of the solution for a

time-fractional diffusion-wave equation with a source from Schwartz-type spaces of smooth

functions decreasing to zero at infinity.

In [21, 30, 35, 36], the inverse boundary-value problems of identifying initial values were

obtained by a final time data. Unique solvability of the inverse problem of restoring one un-

known function (for example, the source in [19], the equation’s minor coefficient in [12], the

solution’s initial data in [18,20]) were obtained by using a time integral overdetermination con-

dition, and in [11, 16] and some other papers, integral conditions over spatial variables were

used as additional ones. Two integral conditions were used to find two unknown functions

in [14, 15] and [22], in [14, 15] with unknowns of different arguments.

We use two time integral overdetermination conditions to find two unknown functions

from Schwartz-type spaces in initial conditions. Such problems have not yet been studied.

1 Definitions and auxiliary results

We use the following: x = (x1, . . . , xn) ∈ R
n, α = (α1, . . . , αn), αj ∈ Z+, j ∈ {1, . . . , n},

|α| = α1 + · · ·+ αn, xα = xα1
1 · · · · · xαn

n , Dαv(x, t) = ∂|α|v(x,t)

∂x
α1
1 ...∂xαn

n
, f∗g is the convolution of f and g,

fλ(t) =





θ(t)tλ−1

Γ(λ)
, λ > 0,

f ′1+λ(t), λ ≤ 0,

where Γ(λ) is the Gamma-function, θ(t) is the Heaviside function. Note that fλ ∗ fµ = fλ+µ.

The Riemann-Liouville derivative v(β)(t) of order β > 0 is defined by the formula

v(β)(t) = f−β(t) ∗ v(t), the Caputo (Caputo-Djrbashian-Nersesian or regularized) fractional

derivative is defined by Dβv(t) = 1
Γ(m−β)

∫ t
0 (t− τ)m−β−1 dm

dτm v(τ)dτ for m− 1 < β < m, m ∈ N,

and therefore,

Dβv(t) = v(β)(t)−
m−1

∑
j=0

fj+1−β(t)v
(j)(0).

Let Q = R
n × (0, T], C2,β(Q) = {v ∈ C(Q) : ∆v, D

β
t v ∈ C(Q)}, C2,β(Q̄) = C2,β(Q) ∩ C(Q̄),

S(Rn) be the space of infinitely differentiable functions v in R
n such that xγDαv are bounded

in R
n for all multi-indexes α, γ (the Schwartz space of smooth rapidly decreasing functions),

Sγ(Rn), γ > 0, be the space of type S(Rn) (see [8, p. 201]):

Sγ(R
n) =

{
v ∈ S(Rn) : |Dαv(x)| ≤ Cαe−a|x|

1
γ

, x ∈ R
n, ∀ α

}

with some positive constants Cα = Cα(v) and a = a(v). The sequence vm(x) converges to zero

as m → +∞ in the space Sγ(Rn) if the sequence Dαvm(x) converges to zero uniformly on an

arbitrary compact |x| ≤ C < +∞ for each multi-index α and the estimates

|Dαvm(x)| ≤ Cαe−a|x|
1
γ

, x ∈ R
n, ∀ α and m ∈ N,

hold with some a > 0. It is known (see [8, p. 211]) that Sγ(Rn) = ∪a>0Sγ,(a)(R
n) where

Sγ,(a)(R
n) = {v ∈ S(Rn) : |Dαv(x)| ≤ Cα,ǫ(v)e

−(a−ǫ)|x|
1
γ

, x ∈ R
n, ∀ α, ∀ ǫ > 0}

= {v ∈ C∞(Rn) : ‖v‖k,(a) = sup
|α|≤k, x∈Rn

ea(1− 1
k )|x|

1
γ
|Dαv(x)| < +∞ ∀k ∈ N, k 6= 1}.
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The sequence vm(x) converges to zero as m → +∞ in the space Sγ,(a)(R
n) if the sequence

Dαvm(x) converges to zero uniformly on an arbitrary compact |x| ≤ C < +∞ for each multi-

index α and the norms ‖vm‖k,(a) are limited for all m, k ∈ N, k 6= 1.

We say that v ∈ Sγ,(a)(Q̄) if v(·, t) ∈ Sγ,(a)(R
n) for all t ∈ [0, T], and the norm is defined by

‖v‖Sγ,(a)(Q̄) = max
t∈[0,T]

‖v(·, t)‖Sγ,(a)(R
n).

For β ∈ (1, 2) we study the inverse problem

D
β
t u − ∆u = F0(x, t), (x, t) ∈ Q, (1)

u(x, 0) = F1(x),
∂

∂t
u(x, 0) = F2(x), x ∈ R

n, (2)

1

T

∫ T

0
u(x, t)η1(t) dt = Φ1(x),

1

T

∫ T

0
u(x, t)η2(t) dt = Φ2(x), x ∈ R

n (3)

of determining the triple (u, F1, F2), where Φ1, Φ2 are given functions from Sγ,(a)(R
n),

F0 ∈ Sγ,(a)(Q̄), η1, η2 are given functions from C2[0, T].

Definition 1. The triple (u, F1, F2) ∈ Sγ,(a)(Q̄)× Sγ,(a)(R
n)× Sγ,(a)(R

n) is called a solution of

the problem (1)–(3) if it satisfies equation (1) in Q and conditions (2), (3).

Definition 2. The vector-function (G0(x, t), G1(x, t), G2(x, t)) is called a Green’s vector-func-

tion of the Cauchy problem (1), (2) if under rather regular F0, F1, F2 the function

u(x, t) =
∫ t

0
dτ

∫

Rn
G0(x − y, t − τ)F0(y, τ) dy + ∑

j=1,2

∫

Rn
Gj(x − y, t)Fj(y) dy, (x, t) ∈ Q̄, (4)

is a classical (from C2,β(Q̄)) solution of this problem.

Such Green’s vector-function exists (see, for example, [4, 17, 25, 31], namely

Gj(x, t) =
∫ t

0
fj−β(τ)G0(x, t − τ) dτ, (x, t) ∈ Q, j = 1, 2.

Moreover, Gj(·, t) ∈ L1(R
n) for each t > 0, j = 0, 1, 2, and the following bounds hold [17]

|G0(x, t)| ≤ Ct−β n
2 e−c(|x|t−

β
2 )

2
2−β

Ψn(|x|t
−

β
2 ),

where

Ψn(z) =





1, n = 1,

|ln|z‖, n = 2,

|z|2−n, n ≥ 3

for |z| < 1, Ψn(z) = Ψn(1) for |z| > 1, c < (2 − β)
(

ββ

4

) 1
2−β

.

The expressions for components of the Green’s vector-function through the H-function of

Fox [6] are written in [4, 17, 31].

Remark. The following results spread to the case of replacing the Laplace operator with an

elliptic differential operator of the second order with constant coefficients or some coefficients

dependent on spatial variables, multiplication by which functions from Sγ,(a)(R
n) belong to

Sγ,(a)(R
n). The existence and properties of the Green’s vector-function for such equations is

obtained in [17].
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We denote

(Gj ϕ)(x, t) =
∫

Rn
Gj(x − y, t)ϕ(y) dy, (x, t) ∈ Q, j = 0, 1, 2.

Lemma 1. If γ ≥ 1 − β
2 , 0 < aT

β
2γ < c, ϕ ∈ Sγ,(a)(R

n), then there exist positive numbers C, a′

(a′ = cγa with cγ = 1 if γ ≥ 1) such that for all k ∈ N, k 6= 1, the following bounds hold

‖(G0 ϕ)(·, t)‖k,(a′) ≤ Ctβ−1‖ϕ‖k,(a), ‖(Gj ϕ)(·, t)‖k,(a′) ≤ Ctj−1‖ϕ‖k,(a), j = 1, 2.

Proof. Lemma can be proved by the scheme of [15, Lemma 1].

Theorem 1. Assume that γ ≥ 1, 0 < aT
β

2γ ≤ c, F0 ∈ Sγ,(a)(Q̄), F1, F2 ∈ Sγ,(a)(R
n). Then there

exists the unique solution u ∈ Sγ,(a)(Q̄) of the Cauchy problem (1), (2). It is defined by (4).

Proof. It follows from [17, 28, 31] the existence of a unique classical (from C2,β(Q̄)) solution u

of the Cauchy problem for F1, F2 bounded and from L1(R
n), F0(x, t) continuous, bounded and

locally Hölder with respect to spatial variables x ∈ R
n for every t ∈ (0, T]. The representation

of the solution in the form (4) was obtained.

Then under conditions of Theorem 1, defined by (4) function u belongs to Sγ,(a)(Q̄). Indeed,

for each k ∈ N, k ≥ 2, t ∈ [0, T], by Lemma 1 we get∥∥∥∥
∫ t

0
dτ

∫

Rn
G0(· − y, t − τ)F0(y, τ) dy

∥∥∥∥
k,(a)

≤ C
∫ t

0
(t − τ)β−1‖F0(·, τ)‖k,(a) dτ ≤

Ctβ

β
max

τ∈[0,T]
‖F0(·, τ)‖k,(a),

∥∥∥∥
∫

Rn
Gj(· − y, t)Fj(y) dy

∥∥∥∥
k,(a)

≤ Ctj−1‖Fj‖k,(a), j = 1, 2.

2 Solutions of the inverse problem

We study the problem (1)–(3) under the assumptions

γ ≥ 1, 0 < aT
β

2γ ≤ c, F0 ∈ Sγ,(a)(Q̄),

Φj ∈ Sγ,(a)(R
n), ηj ∈ C2[0, T], ηj(T) = 0, j = 1, 2.

(A)

Let u be a solution of the problem (1), (2). By using (3) and (2), we get
∫ T

0
∆u(x, t)ηj(t) dt = ∆

∫ T

0
u(x, t)ηj(t) dt = T∆Φj(x),

∫ T

0
D

β
t u(x, t)ηj(t) dt =

∫ T

0
[ f2−β(t) ∗ utt(x, t)]ηj(t) dt =

∫ T

0

( ∫ t

0
f2−β(t − s)uss(x, s) ds

)
ηj(t) dt

=
∫ T

0
uss(x, s)

( ∫ T

s
f2−β(t − s)ηj(t) dt

)
ds

=
∫ T

0
uss(x, s)

( ∫ T−s

0
f2−β(τ)ηj(τ + s) dτ

)
ds

= −F2(x)
∫ T

0
f2−β(t)ηj(t) dt −

∫ T

0
us(x, s)

( ∫ T−s

0
f2−β(τ)η

′
j(τ + s) dτ

)
ds

= −F2(x)
∫ T

0
f2−β(t)ηj(t) dt + F1(x)

( ∫ T

0
f2−β(τ)η

′
j(τ) dτ

)

+
∫ T

0
u(x, t)

[
( f2−β ∗̂η

′′

j )(t)− f2−β(T − t)η′
j(T)

]
dt, j = 1, 2.
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Here

( f2−β ∗̂η
′′

j )(t) =
∫ T

t
f2−β(s − t)η

′′

j (s) ds =
∫ T−t

0
f2−β(τ)η

′′

j (t + τ) dτ, j = 1, 2.

Then from equation (1) we obtain the system

F1(x)
∫ T

0
f2−β(τ)η

′
1(τ) dτ − F2(x)

∫ T

0
f2−β(t)η1(t) dt

= T∆Φ1(x)−
∫ T

0
u(x, t)

[
( f2−β ∗̂η

′′

1 )(t)− f2−β(T − t)η′
1(T)

]
dt +

∫ T

0
F0(x, t)η1(t) dt,

F1(x)
∫ T

0
f2−β(τ)η

′
2(τ) dτ − F2(x)

∫ T

0
f2−β(t)η2(t) dt

= T∆Φ2(x)−
∫ T

0
u(x, t)

[
( f2−β ∗̂η

′′

2 )(t)− f2−β(T − t)η′
2(T)

]
dt +

∫ T

0
F0(x, t)η2(t) dt.

From here, denoting

( f , η) =
∫ T

0
f (t)η(t)dt,

under the assumption

d(T) := ( f2−β, η′
2) ( f2−β, η1)− ( f2−β, η′

1) ( f2−β, η2) 6= 0 (5)

we find

d(T)F1(x) =−

{
T∆Φ1(x)−

∫ T

0
u(x, t)

[
( f2−β ∗̂η

′′

1 )(t)− f2−β(T − t)η′
1(T)

]
dt

+
∫ T

0
F0(x, t)η1(t) dt

}
( f2−β, η2)

+

{
T∆Φ2(x)−

∫ T

0
u(x, t)

[
( f2−β ∗̂η

′′

2 )(t)− f2−β(T − t)η′
2(T)

]
dt

+
∫ T

0
F0(x, t)η2(t) dt

}
( f2−β, η1),

d(T)F2(x) =

{
T∆Φ2(x)−

∫ T

0
u(x, t)

[
( f2−β ∗̂η

′′

2 )(t)− f2−β(T − t)η′
2(T)

]
dt

+
∫ T

0
F0(x, t)η2(t) dt

}
( f2−β, η′

1)

−

{
T∆Φ1(x)−

∫ T

0
u(x, t)

[
( f2−β∗̂η

′′

1 )(t)− f2−β(T − t)η′
1(T)

]
dt

+
∫ T

0
F0(x, t)η1(t) dt

}
( f2−β, η′

2),

that is,

F1(x) =
1

d(T)

∫ T

0
u(x, t)w1(t, η1, η2) dt + v1(x),

F2(x) =
1

d(T)

∫ T

0
u(x, t)w2(t, η1, η2) dt + v2(x), x ∈ R

n,

(6)



Inverse initial problem for a time-fractional diffusion-wave equation 609

where

w1(t, η1, η2) := ( f2−β, η2)
[
( f2−β ∗̂η

′′

1 )(t)− f2−β(T − t)η′
1(T)

]

− ( f2−β, η1)
[
( f2−β ∗̂η

′′

2 )(t)− f2−β(T − t)η′
2(T)

]
,

w2(t, η1, η2) := ( f2−β, η′
2)
[
( f2−β ∗̂η

′′

1 )(t)− f2−β(T − t)η′
1(T)

]

− ( f2−β, η′
1)
[
( f2−β ∗̂η

′′

2 )(t)− f2−β(T − t)η′
2(T)

]
,

v1(x) =
1

d(T)

∫ T

0

{
F0(x, t)

[
η2(t)( f2−β , η1)− η1(t)( f2−β , η2)

]

+ T
[
∆Φ2(x)( f2−β , η1)− ∆Φ1(x)( f2−β , η2)

]}
dt,

v2(x) =
1

d(T)

∫ T

0

{
F0(x, t)

[
η2(t)( f2−β, η′

1)− η1(t)( f2−β, η′
2)
]

+ T
[
∆Φ2(x) ( f2−β, η′

1)− ∆Φ1(x) ( f2−β, η′
2)
]}

dt, x ∈ R
n.

Note that the condition (5) is performed, in particular, if the functions η1(t), η2(t) are posi-

tive and η′
1(t)η

′
2(t) ≤ 0, t ∈ [0, T].

In assumptions (A), wj(·, η1, η2) ∈ C[0, T] and for u ∈ Sγ,(a)(Q̄) we have vj, Fj ∈ Sγ,(a)(R
n)

for j = 1, 2.

Substituting the expressions (6) in (4), we get

u(x, t) =
1

d(T)

∫ T

0
ds

∫

Rn

{
G1(x − y, t)u(y, s)w1(s, η1, η2)

+ G2(x − y, t)u(y, s)w2(s, η1, η2)
}

dy + u0(x, t), (x, t) ∈ Q̄,

(7)

where

u0(x, t) =
∫ t

0
dτ

∫

Rn
G0(x − y, t − τ)F0(y, τ) dy

+
∫

Rn

[
G1(x − y, t)v1(y) + G2(x − y, t)v2(y)

]
dy, (x, t) ∈ Q̄.

(8)

In view of Lemma 1 and preliminary assessments, we obtain u0 ∈ Sγ,(a)(Q̄) and

‖u0(·, t)‖k,(a) ≤ C0(T)
[

Tβ max
τ∈[0,T]

‖F0(·, τ)‖k,(a) + ‖∆Φ1‖k,(a) + ‖∆Φ2‖k,(a)

]
, t ∈ [0, T]. (9)

Lemma 2. In assumptions (A) and (5) the triple (u, F1, F2) ∈ Sγ,(a)(Q̄)×Sγ,(a)(R
n)×Sγ,(a)(R

n)

is the solution of the problem (1) – (3) if and only if u is the solution of the equation (7) in the

space Sγ,(a)(Q̄), F1, F2 are defined by (6).

Proof. It was shown that the solution u ∈ Sγ,(a)(Q̄) of the problem (1) – (3) satisfies the equation

(7) and F1, F2 are defined by (6). Vice versa, let u ∈ Sγ,(a)(Q̄) be the solution of the equation (7).

Because (7) is the same as (4) if one substitute the expressions (6) in (4) instead of F1(x) and

F2(x), then by Theorem 1 the function u satisfies the problem (1), (2). We will show that u

satisfies the conditions (3) if F1, F2 are defined by (6).
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Suppose this is not the case, and let

1

T

∫ T

0
u(x, t)ηj(t)dt = Φ∗

j (x), x ∈ R
n, j = 1, 2.

We introduce the notations

Hj(x) =
1

d(T)

∫ T

0
u(x, s)wj(s, η1, η2) ds,

H∗
j (x) =

1

d(T)

∫ T

0
u∗(x, s)wj(s, η1, η2) ds, j = 1, 2,

where u∗ is the solution of the equation (7) in which the expressions for v1, v2 in (8) has Φ∗
j

instead of Φj, j = 1, 2. Then (6) implies

B1(x) := H1(x)− H∗
1 (x) +

T

d(T)

∫ T

0

{[
∆Φ2(x)− ∆Φ∗

2(x)
]
( f2−β, η1)

−
[
∆Φ1(x)− ∆Φ∗

1(x)
]
( f2−β, η2)

}
dt = 0,

B2(x) := H2(x)− H∗
2 (x) +

T

d(T)

∫ T

0

{[
∆Φ2(x)− ∆Φ∗

2(x)
]
( f2−β, η′

1)

−
[
∆Φ1(x)− ∆Φ∗

1(x)
]
( f2−β, η′

2)
}

dt = 0, x ∈ R
n.

(10)

It follows from (7) and (8) that

u(x, t)− u∗(x, t) = −
1

d(T)

∫

Rn

{
G1(x − y, t)B1(y) + G2(x − y, t)B2(y)

}
dy.

On the basis of (10) we obtain u(x, t) − u∗(x, t) = 0, (x, t) ∈ Q̄. Then, by definition,

Φj(x)− Φ∗
j (x) = 0, x ∈ R

n, j = 1, 2. Lemma brought.

Theorem 2. Assume that (A), (5) hold and

Ĉ(T) :=
1

|d(T)|

∫ T

0

[
|w1(s, η1, η2)|+ T|w2(s, η1, η2)|

]
ds

is a monotonically increasing function.

(B)

Then there exists the unique solution (u, F1, F2) ∈ Sγ,(a)(Q̄)× Sγ,(a)(R
n)× Sγ,(a)(R

n) of the

problem (1) – (3).

Proof. By Lemma 2 it is sufficient to prove (at least, local in time) solvability of the linear inte-

gral equation (7) and the uniqueness of the inverse problem. In fact, to find the functions F1

and F2 we solve the equation (7) at least with a fixed sufficiently small time value T > 0. Then

by Theorem 1, we may find the solution of the Cauchy problem (1), (2) in Sγ,(a)(Q̄) with every

finite T > 0 such that

aT
β

2γ < c = (2 − β)

(
ββ

4

) 1
2−β

,

using formula (4).
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We define

(Kv)(x, t) =
1

d(T)

∫ T

0
ds

∫

Rn

{
G1(x − y, t)v(y, s)w1(s, η1, η2)

+ G2(x − y, t)v(y, s)w2(s, η1, η2)
}

dy + u0(x, t), (x, t) ∈ Q, v ∈ Sγ,(a)(Q̄).

It was shown (see (9)), that u0 ∈ Sk,(a)(Q̄) for all k ∈ N, k 6= 1 and ‖u0‖k,(a) < +∞. By

Lemma 1, for all v ∈ Sγ,(a)(Q̄), we have

‖Kv‖k,(a) ≤
∫ T

0

{∥∥∥∥
∫

Rn
G1(x − y, t)v(y, s) dy

∥∥∥∥
k,(a)

∣∣∣w1(s, η1, η2)

d(T)

∣∣∣

+

∥∥∥∥
∫

Rn
G2(x − y, t)v(y, s) dy

∥∥∥∥
k,(a)

∣∣∣w2(s, η1, η2)

d(T)

∣∣∣
}

ds

≤ Ĉ(T)‖v‖k,(a) + ‖u0‖k,(a).

By assumption (B), choosing R > 2‖u0‖k,(a), we find T0 such that Ĉ(T0) <
1
2 and obtain

‖Kv‖k,(a) <
1

2
‖v‖k,(a) + ‖u0‖k,(a) ≤

R

2
+

R

2
= R, ∀v ∈ Sγ,(a)(Q̄).

Similarly, we get

‖Kv1 − Kv2‖k,(a) <
1

2
‖v1 − v2‖k,(a), ∀v1, v2 ∈ Sγ,(a)(Q̄).

So, K is a contraction for some T0 > 0 and we obtain the existence of the solution of the

linear integral equation (7) in Sγ,(a)(Q̄) with T = T0, and by Lemma 2 the existence of the

solution of the inverse problem (1) – (3).

Let us show the uniqueness of the solution of this problem. If (u1, F11, F21), (u2, F12, F22) are

two solutions of the problem (1) – (3), u = u1 − u2, F1 = F11 − F12, F2 = F21 − F22, then the

triple (u, F1, F2) satisfies the problem

D
β
t u − ∆u = 0, (x, t) ∈ Q,

u(x, 0) = F1(x),
∂

∂t
u(x, 0) = F2(x), x ∈ R

n,
∫ T

0
u(x, t)η1(t)dt = 0,

∫ T

0
u(x, t)η2(t)dt = 0, x ∈ R

n.

By Lemma 2, every solution u(x, t) of this problem is a solution of the equation (7) with

u0(x, t) = 0, (x, t) ∈ Q̄,

F1(x) =
1

d(T)

∫ T

0
u(x, t)w1(t, η1, η2) dt,

F2(x) =
1

d(T)

∫ T

0
u(x, t)w2(t, η1, η2) dt, x ∈ R

n.

(11)

According to the above, there exists T0 > 0 such that the function u(x, t) = 0, x ∈ R
n,

t ∈ [0, T0], is the unique solution of the obtained equation. Then (11) implies Fj = 0 in

Sγ,(a)(R
n), j = 1, 2.
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The obtained in Theorem 2 result can be strengthened.

We define the weighted norms ‖v‖k,(a),σ = sup
t∈(0,T]

e−σt ‖v(·, t)‖k,(a) in Sγ,(a)(Q̄). We have

the equivalence of norms ‖v‖k,(a),σ and ‖v‖k,(a), namely

e−σT‖v‖k,(a) ≤ ‖v‖k,(a),σ ≤ ‖v‖k,(a).

Lemma 3. If γ ≥ 1, 0 < aT
β

2γ < c, σ > 0, ϕ ∈ Sγ,(a)(Q̄), b ∈ C[0, T], then there exist positive

numbers Cσ, Cσ,1, Cσ,2 such that for all k ∈ N, k 6= 1, t ∈ (0, T] the following bounds
∥∥∥∥
∫ t

0
(G0 ϕ)(·, t − τ) dτ

∥∥∥∥
k,(a),σ

= sup
t∈(0,T]

e−σt

∥∥∥∥
∫ t

0
(G0 ϕ)(·, t − τ) dτ

∥∥∥∥
k,(a)

≤ Cσ‖ϕ‖k,(a),σ,

∥∥∥∥
∫ T

0
(Gj ϕ)(x, t, s)b(s) ds

∥∥∥∥
k,(a),σ

= sup
t∈(0,T]

e−σt

∥∥∥∥
∫ T

0

( ∫

Rn
Gj(x − y, t)ϕ(y, s) dy

)
b(s) ds

∥∥∥∥
k,(a)

≤ Cσ,jT
j−1 ‖ϕ‖k,(a),σ, j = 1, 2,

hold and Cσ → 0 as σ → +∞.

Proof. By using Lemma 1, we get

sup
t∈(0,T]

e−σt

∥∥∥∥
∫ t

0
(G0 ϕ)(·, t − τ) dτ

∥∥∥∥
k,(a)

= sup
t∈(0,T]

∥∥∥∥
∫ t

0
e−σ(t−τ)

( ∫

Rn
G0(x − y, t − τ)e−στ ϕ(y, τ) dy

)
dτ

∥∥∥∥
k,(a)

≤ C sup
t∈(0,T]

∫ t

0
(t − τ)β−1e−σ(t−τ) dτ sup

τ∈(0,T]

e−στ‖ϕ(·, τ)‖k,(a)

= C sup
t∈(0,T]

∫ t

0
(t − τ)β−1e−σ(t−τ) dτ‖ϕ‖k,(a),σ

= C sup
t∈(0,T]

∫ t

0
τβ−1e−στ dτ‖ϕ‖k,(a),σ = Cσ‖ϕ‖k,(a),σ,

∥∥∥∥
∫ T

0
(Gj ϕ) (x, t, s)b(s) ds

∥∥∥∥
k,(a),σ

= sup
t∈(0,T]

∥∥∥∥
∫ T

0
e−σ(t−s)

( ∫

Rn
Gj(x − y, t)b(s)e−σs ϕ(y, s) dy

)
ds

∥∥∥∥
k,(a)

≤ C sup
t∈(0,T]

[
tj−1

∫ T

0
e−σ(t−s)|b(s)| ds

]
sup

s∈(0,T]

[
e−σs‖ϕ(·, s)‖k,(a)

]

= C sup
t∈(0,T]

[
tj−1e−σt

] ∫ T

0
eσs|b(s)| ds‖ϕ‖k,(a),σ

≤ CT j−1
∫ T

0
eσs|b(s)| ds‖ϕ‖k,(a),σ = Cσ,j‖ϕ‖k,(a),σ, j = 1, 2.

Here

Cσ = C
∫ T

0
τβ−1e−στ dτ, Cσ,j = CT j−1

∫ T

0
eστ|b(τ)| dτ, j = 1, 2.
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Corollary. Assume that (A), (5) hold. As in the proof of Theorem 2, but using Lemma 3, we

obtain

‖Kv‖k,(a),σ ≤
C

|d(T)|
‖v‖k,(a),σ

∫ T

0
eσs

{
|w1(s, η1, η2)|+ T|w2(s, η1, η2)|

}
ds + ‖u0‖k,(a),σ

≤ Ĉ(T)eσT‖v‖k,(a),σ + ‖u0‖k,(a),σ.

If the condition (B) is not fulfilled, but the function Ĉ(T) is bounded by a constant inde-

pendent of T, or if the function Ĉ(T)eσT , at least for sufficiently large σ = σ0, is monotoni-

cally increasing, then, according to proof of Theorem 2, there exist T0 ∈ (0, T] such that for all

T ∈ (0, T0] there exists a unique solution of the linear integral equation (7). Consequently, there

exists a unique solution (u, F1, F2) ∈ Sγ,(a)(Q̄)× Sγ,(a)(R
n)× Sγ,(a)(R

n) of the problem (1) – (3).

Conclusions. Sufficient conditions for the unique classical solvability of the inverse prob-

lem of determining the initial values (from Schwartz-type spaces of functions rapidly decreas-

ing to zero at infinity) of the solution for a time-fractional diffusion-wave equation are found.

The solving of the problem is reduced to solving the linear Fredholm integral equation of the

second kind with integrable kernel.
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Знайдено достатнi умови однозначної класичної розв’язностi оберненої задачi вiдновлення

двох функцiй у початкових умовах задачi Кошi для дифузiйно-хвильового рiвняння з дробо-

вою похiдною Капуто-Джрбашяна-Нерсесiана та правою частиною зi значеннями в просторах

гладких функцiй типу Шварца, що швидко спадають до нуля на нескiнченностi.

Ми використовуємо двi iнтегральнi за часом умови перевизначення

1

T

∫ T

0
u(x, t)η1(t)dt = Φ1(x),

1

T

∫ T

0
u(x, t)η2(t)dt = Φ2(x), x ∈ R

n,

де u — розв’язок задачi Кошi для такого рiвняння, Φ1, Φ2 — заданi функцiї з простору типу

Шварца, η1, η2 — заданi функцiї з C2[0, T].

Використовуємо метод вектор-функцiї Грiна. Шуканi початковi данi виражаються через

розв’язок деякого лiнiйного iнтегрального рiвняння Фредгольма другого роду в просторi не-

перервних функцiй зi значеннями в просторах типу Шварца.

Ключовi слова i фрази: функцiональний простiр типу Шварца, дробова похiдна, задача Ко-

шi, обернена задача, вектор-функцiя Грiна.


