References
- Alsaedi A., Kirane M., Lassoued R. Global existence and
asymptotic behavior for a time fractional reaction–diffusion
system. Comput. Math. Appl. 2017, 73
(6), 951–958. doi:10.1016/j.camwa.2016.05.006
- Bagley R.L., Torvik P.J. A theoretical basis for the application
of fractional calculus to viscoelasticity. J. Rheol. 1983,
27, 201–210. doi:10.1122/1.549724
- Djrbashian M.M., Nersesian A.B. Fractional derivatives and Cauchy
problem for differential equations of fractional order. Fract.
Calc. Appl. Anal. 2020, 23, 1810–1836.
doi:10.1515/fca-2020-0090
- Duan J.-S. Time- and space-fractional partial differential
equations. J. Math. Phys. 2005, 46,
013504. doi:10.1063/1.1819524
- Eidelman S.D., Ivasyshen S.D., Kochubei A.N. Analytic methods in the
theory of differential and pseudo-differential equations of parabolic
type. Basel-Boston-Berlin, Birkhauser Verlag, 2004.
- Fox C. The \(G\) and \(H\) functions as symmetrical Fourier
kernels. Trans. Amer. Math. Soc. 1961,
98 (3), 395–429.
doi:10.1090/S0002-9947-1961-0131578-3
- Fudjita Y. Integrodifferential equation which interpolates the
heat equation and the wave equation. Osaka J. Math. 1990,
27 (2), 309–321. doi:10.18910/4060
- Gelfand I.M., Shilov G.E. Generalized Functions, Vol. 2. Spaces of
Fundamental and Generalized Functions. AMS Chelsea Publ., 2016.
- Güner Ö., Bekir A. Exact solutions of some fractional
differential equations arising in mathematical biology. Int. J.
Biomath. 2015, 8 (1), 1550003.
doi:10.1142/S1793524515500035
- Hilfer R. Fractional time evolution. In: Hilfer R. (Ed.) Applications
of Fractional Calculus in Physics. World Sci., Singapore, 2020, 87–130.
doi:10.1142/9789812817747_0002
- Ismailov M.I., Çiçek M. Inverse source problem for a
time-fractional diffusion equation with nonlocal boundary
conditions. Appl. Math. Model. 2016,
40 (7–8), 4891–4899.
doi:10.1016/j.apm.2015.12.020
- Janno J., Kasemets K. Uniqueness for an inverse problem for a
semilinear time-fractional diffusion equation. Inverse Probl.
Imaging 2017, 11 (1), 125–149.
doi:10.3934/ipi.2017007
- Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications
of fractional differential equations. Elsevier, Amsterdam, 2006.
- Kirane M., Lopushansky A., Lopushanska H. Determination of two
unknown functions of different variables in a time-fractional
differential equation. Math. Meth. Appl. Sci. 2024,
48 (4), 4185–4194. doi:10.1002/mma.10539
- Kirane M., Lopushansky A., Lopushanska H. Inverse problem for a
time-fractional differential equation with a time- and space-integral
conditions. Math. Meth. Appl. Sci. 2023,
46 (15), 16381–16393.
doi:10.1002/mma.9453
- Kirane M., Samet B., Torebek B.T. Determination of an unknown
source term temperature distribution for the sub-diffusion equation at
the initial and final data. Electron. J. Diff. Equ. 2017,
2017 (257), 1–13.
- Kochubei A.N. Fractional-hyperbolic systems. Fract. Calc.
Appl. Anal. 2013, 16 (4), 860–873.
doi:10.2478/s13540-013-0053-4
- Lopushanska H., Lopushansky A. Inverse problems for a time
fractional diffusion equation in the Schwartz-type distributions.
Math. Methods Appl. Sci. 2021, 44 (3),
2381–2392. doi:10.1002/mma.5894
- Lopushanska H., Lopushansky A. Inverse problem with a
time-integral condition for a fractional diffusion equation. Math.
Meth. Appl. Sci. 2019, 42 (9), 3327–3340.
doi:10.1002/mma.5587
- Lopushanska H., Lopushansky A., Myaus O. Inverse problem in a
space of periodic spatial distributions for a time fractional diffusion
equation Electron. J. Differ. Equ. 2016,
2016 (14), 1–9.
- Lopushans’ka H.P., M’yaus O.M. Restoration of initial data in the
problem for a diffusion equation with fractional derivative with respect
to time. J. Math. Sci. 2018, 229 (2), 187–199.
doi:10.1007/s10958-018-3670-y
- Lopushansky A.O., Lopushanska H.P. Inverse problem for \(2b\)-order differential equation with a
time-fractional derivative. Carpathian Math. Publ. 2019,
11 (1), 107–118.
doi:10.15330/cmp.11.1.107-118
- Luchko Yu., Mainardi F. Cauchy and signaling problems for the
time-fractional diffusion-wave equation. J. Vib. Acoust. 2014,
136 (5), 050904. doi:10.1115/1.4026892
- Luchko Yu., Yamamoto M. Comperison principles for the linear and
semilinear time-fractional diffusion equations with the Robin boundary
condition. arXiv:2208.04606 [math.AP]
doi:10.48550/arXiv.2208.04606
- Mainardi F. The fundamental solutions for the fractional
diffusion-wave equation. Appl. Math. Lett. 1996,
9 (6), 23–28.
- Podlubny I. Fractional differential equations. San Diego, Acad.
Press, 1999.
- Povstenko Y. Linear fractional diffusion-wave equation for scientists
and engeneers. New-York, Birkhauser, 2015.
- Sakamoto K., Yamamoto M. Initial value/boundary value problems
for fractional diffusion-wave equations and applications to some inverse
problems. J. Math. Anal. Appl. 2011,
382 (1), 426–447.
doi:10.1016/j.jmaa.2011.04.058
- Sokolov I.M. and Klafter J. From diffusion to anomalous
diffusion: A century after Einstein’s Brownian motion. Chaos. 2005,
15 (2), 026103. doi:10.1063/1.1860472
- Trong D.D., Hai D.N.D. Backward problem for time-space fractional
diffusion equations in Hilbert scales. Comput. Math. Appl. 2021,
93 (1), 253–264.
doi:10.1016/j.camwa.2021.04.018
- Voroshylov A.A., Kilbas A.A. Conditions of the existence of
classical solution of the Cauchy problem for diffusion-wave equation
with Caputo partial derivative. Dokl. Ak. Nauk. 2007,
414 (4), 1–4.
- Wang J.-G., Ran Y.-H. An iterative method for an inverse source
problem of time-fractional diffusion equation. Inverse Probl. Sci.
Eng. 2018, 26 (10), 1509–1521.
doi:10.1080/17415977.2017.1417406
- Wei T., Jan X.B. Recovering a space-dependent source term in a
time-fractional diffusion-wave equation. J. Appl. Anal. Comput.
2019, 9 (5), 1801–1821.
doi:10.11948/20180318
- Wen J., Cheng J.-F. The method of fundamental solution for the
inverse source problem for the space-fractional diffusion equation.
Inverse Probl. Sci. Eng. 2018, 26 (7),
925–941. doi:10.1080/17415977.2017.1369537
- Xian J., Wei T. Determination of the initial data in a
time-fractional diffusion-wave problem by a final time data.
Comput. Math. Appl. 2019, 78 (8),
2525–2540. doi:10.1016/j.camwa.2019.03.056
- Yang F., Zhang Y., Li X.-X. Landweber iterative method for
identifying the initial value problem of the time-space fractional
diffusion-wave equation. Numer. Algorithms 2020,
83, 1509–1530. doi:10.1007/s11075-019-00734-6