Carpathian Math. Publ. 2025, 17 (1), 110-127 doi:10.15330/cmp.17.1.110-127

On semitopological simple inverse ω -semigroups with compact maximal subgroups

Gutik O.V.⊠, Maksymyk K.M.

We describe the structure of (0-)simple inverse Hausdorff semitopological ω -semigroups with compact maximal subgroups. In particular, we show that if S is a simple inverse Hausdorff semitopological ω -semigroup with compact maximal subgroups, then S is topologically isomorphic to the Bruck-Reilly extension $(\mathbf{BR}(T,\theta), \tau_{\mathbf{BR}}^{\oplus})$ of a finite semilattice $T = [E; G_{\alpha}, \varphi_{\alpha,\beta}]$ of compact groups G_{α} in the class of topological inverse semigroups, where $\tau_{\mathbf{B}\mathbf{R}}^{\oplus}$ is the sum direct topology on $\mathbf{B}\mathbf{R}(T,\theta)$. Also, we prove that every Hausdorff locally compact shift-continuous topology on a simple inverse Hausdorff semitopological ω -semigroup with compact maximal subgroups with adjoined zero is either compact or the zero is an isolated point.

Key words and phrases: bicyclic semigroup, simple inverse ω -semigroup, semitopological semigroup, locally compact, topological semigroup, compact maximal subgroup, adjoining zero, compact ideal.

Ivan Franko Lviv National University, 1 Universytetska str., 79000, Lviv, Ukraine

 $oxed{oxed}$ Corresponding author

E-mail: oleg.gutik@lnu.edu.ua(Gutik O.V.), kateryna.maksymyk@lnu.edu.ua(Maksymyk K.M.)

Introduction

We shall follow the terminology of [8, 10, 11, 14, 22, 31]. We denote by ω the set of all nonnegative integers, and by N the set of all positive integers. All topological spaces, considered in this paper, are Hausdorff, if the otherwise is not stated explicitly. If A is a subset of a topological space X, then by $\operatorname{cl}_X(A)$ and $\operatorname{int}_X(A)$ we denote the closure and interior of A in X, respectively.

Let $\mathfrak{h}: S \to T$ be a map of sets. Then for any $s \in S$ and $A \subseteq S$ by $(s)\mathfrak{h}$ and $(A)\mathfrak{h}$ we denote the images of *s* and *A*, respectively, under the map \mathfrak{h} . Also, for any $t \in T$ and $B \subseteq T$ we denote by $(t)\mathfrak{h}^{-1}$ and $(B)\mathfrak{h}^{-1}$ the full preimages of t and B, respectively, under the map \mathfrak{h} .

A semigroup S is called *inverse* if for any element $x \in S$ there exists a unique $x^{-1} \in S$ such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$. The element x^{-1} is called the *inverse of* $x \in S$. If S is an inverse semigroup, then the function inv: $S \to S$ which assigns to every element x of S its inverse element x^{-1} is called the *inversion*.

If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S). If S is an inverse semigroup, then E(S) is closed under multiplication and we shall refer to E(S) as a band (or the band of S). Then the semigroup operation on S determines the following partial order \leq on E(S): $e \leq f$ if and only if ef = fe = e. This order is called the *natural partial order* on E(S). A semilattice is a commutative semigroup of idempotents. A chain is a linearly ordered

УДК 512.536

2020 Mathematics Subject Classification: 20M18, 22A15, 54A10, 54D30, 54D40, 54D45, 54H11.

semilattice.

A semigroup S is said to be *simple* (0-*simple*) if S has no proper two-sided ideals (if S has the zero $\mathbf{0}$ and $\{\mathbf{0}\}$ is the unique proper two-sided ideal of S). A semigroup S is called an ω -semigroup if the band E(S) is order isomorphic to (ω, \geqslant) . Also, an inverse semigroup S is 0-simple ω -semigroup if S is 0-simple and the subset of non-zero idempotents $E(S) \setminus \{\mathbf{0}\}$ is order isomorphic to (ω, \geqslant) .

If *S* is an inverse semigroup, then the semigroup operation on *S* determines the following partial order \leq on *S*: $s \leq t$ if and only if there exists $e \in E(S)$ such that s = te. This order is called the *natural partial order* on *S* (see [36]).

The bicyclic monoid $\mathcal{C}(p,q)$ is the semigroup with the identity 1 generated by two elements p and q subjected only to the condition pq = 1. The semigroup operation on $\mathcal{C}(p,q)$ is determined as follows:

$$q^{k}p^{l} \cdot q^{m}p^{n} = q^{k+m-\min\{l,m\}}p^{l+n-\min\{l,m\}}.$$

It is well known that the bicyclic monoid $\mathscr{C}(p,q)$ is a bisimple (and hence, simple) combinatorial E-unitary inverse semigroup and every non-trivial congruence on $\mathscr{C}(p,q)$ is a group congruence (see [10]).

Using the construction of the bicyclic monoid, R.H. Bruck built the construction of isomorphic embedding of any (inverse) semigroup into a simple inverse monoid (see [7] and [11, Section 8.5]). Subsequently, N.R. Reilly [30] and R.J. Warne [37] generalized Bruck's construction to describe the structure of bisimple regular ω -semigroups in the following way.

Construction 1 ([30,37]). Let *S* be a monoid with the unit element 1_S and let $\theta: S \to H_{1_s}$ be a homomorphism from *S* into the group of units $H(1_s)$ of *S*. On the set $\mathbf{BR}(S, \theta) = \omega \times S \times \omega$ we define the semigroup operation by the formula

$$(i, s, j) \cdot (k.t, l) = (i + k - \min\{j, k\}, (s)\theta^{k - \min\{j, k\}}(t)\theta^{j - \min\{j, k\}}, j + l - \min\{j, k\}),$$

where $i, j, k, l \in \omega$, $s, t \in S$ and θ^0 is the identity map on S. Then **BR** (S, θ) with such defined semigroup operation is called the *Bruck-Reilly extension* of S.

In the sequel, we assume that *S* is a monoid.

For arbitrary $i, j \in \omega$ and a non-empty subset A of the semigroup S we define the subset $A_{i,j}$ of $\mathbf{BR}(S,\theta)$ by $A_{i,j} = \{(i,s,j) : s \in A\}$.

We observe that if S is a trivial monoid then $\mathbf{BR}(S,\theta)$ is isomorphic to the bicyclic semi-group $\mathscr{C}(p,q)$ and in case when θ is an annihilating homomorphism, i.e. $(s)\theta=1_S$, then $\mathbf{BR}(S)=\mathbf{BR}(S,\theta)$ is called the *Bruck semigroup over monoid* S (see [15]). Also N.R. Reilly and R.J. Warne proved that every bisimple regular ω -semigroup is isomorphic to the Bruck-Reilly extension of some group [30,37].

We need the following assertion, which is a simple generalization of [27, Lemma 1.2] and follows from [29, Theorem XI.1.1].

Proposition 1. Let S be an arbitrary monoid and $\theta: S \to H_S(1)$ be a homomorphism from S into the group of units $H_S(1)$ of S. Then a map $\eta: \mathbf{BR}(S,\theta) \to \mathscr{C}(p,q)$, defined by the formula $\eta(i,s,j) = q^i p^j$, is a homomorphism and hence the relation η^{\natural} on $\mathbf{BR}(S,\theta)$, defined in the following way

$$(i, s, j)\eta^{\dagger}(m, t, n)$$
 if and only if $i = m$ and $j = n$,

is a congruence.

We need the following well-known construction.

Construction 2 ([29]). Let *E* be a semilattice. To each $\alpha \in E$ associate a semigroup S_{α} and assume that $S_{\alpha} \cap S_{\beta} = \emptyset$ if $\alpha \neq \beta$. For each pair $\beta \preccurlyeq \alpha$, let $\varphi_{\alpha,\beta} \colon S_{\alpha} \to S_{\beta}$ be a homomorphism, and assume that the following conditions hold:

- (1) $\varphi_{\alpha,\alpha} \colon S_{\alpha} \to S_{\alpha}$ is the identity map of S_{α} for any $\alpha \in S_{\alpha}$;
- (2) if $\gamma \leq \beta \leq \alpha$ in E, then $\varphi_{\alpha,\beta}\varphi_{\beta,\gamma} = \varphi_{\alpha,\gamma}$.

On the set $S = \bigcup_{\alpha \in E} S_{\alpha}$ define a semigroup operation by the formula

$$a * b = ((a)\varphi_{\alpha,\alpha\beta})((b)\varphi_{\beta,\alpha\beta})$$

if $a \in S_{\alpha}$, $b \in S_{\beta}$, and denote $S = [E; S_{\alpha}, \varphi_{\alpha,\beta}]$. The semigroup $[E; S_{\alpha}, \varphi_{\alpha,\beta}]$ is called a (strong) semilattice of semigroups S_{α} .

Well-known Clifford's Theorem states that an inverse semigroup S is Clifford, i.e. E(S) is contained in the center of S, if and only if S is a semilattice of groups (see [29, Theorem II.2.6]).

In [21], B.P. Kochin showed that every simple inverse ω -semigroup is isomorphic to the Bruck-Reilly extension $\mathbf{BR}(S,\theta)$ of a finite chain of groups $S = [E; G_{\alpha}, \varphi_{\alpha,\beta}]$.

A continuous map $f: X \to Y$ from a topological space X into a topological space Y is called:

- *quotient* if the set $(U)f^{-1}$ is open in X if and only if U is open in Y (see [25] and [14, Section 2.4]);
- *hereditarily quotient* (or *pseudoopen*) if for every $B \subset Y$ the restriction $f|_B: (B)f^{-1} \to B$ of f is a quotient map (see [24] and [14, Section 2.4]);
- open if (U)f is open in Y for every open subset U in X;
- closed if (F)f is closed in Y for every closed subset F in X;
- *perfect* if *X* is Hausdorff, *f* is a closed map and all fibers $(y)f^{-1}$ are compact subsets of *X* (see [35]).

Every perfect map is closed, every closed map and every hereditarily quotient map are quotient [14]. Moreover, a continuous map $f: X \to Y$ from a topological space X onto a topological space Y is hereditarily quotient if and only if for every $y \in Y$ and every open subset U in X which contains $(y)f^{-1}$ we have

$$y \in \operatorname{int}_{Y}(f(U))$$

(see [14, 2.4.F]).

A (*semi*)topological semigroup is a topological space with a (separately) continuous semigroup operation. An inverse topological semigroup with continuous inversion is called a *topological inverse semigroup*.

A topology τ on a semigroup S is called:

- a *semigroup* topology if (S, τ) is a topological semigroup;
- an *inverse semigroup* topology if (S, τ) is a topological inverse semigroup;
- a *shift-continuous* topology if (S, τ) is a semitopological semigroup;
- an *inverse shift-continuous* topology if (S, τ) is a semitopological semigroup with continuous inversion.

We observe that if $S = [E; G_{\alpha}, \varphi_{\alpha,\beta}]$ is a semitopological Clifford semigroup, then all homomorphisms $\varphi_{\alpha,\beta}$ are continuous [5].

It is well-known [6, 13] that the bicyclic monoid $\mathcal{C}(p,q)$ admits only the discrete semi-group (shift-continuous) Hausdorff topology. Semigroup and shift-continuous T_1 -topologies on $\mathcal{C}(p,q)$ are studied in [9]. Topologizations of Bruck semigroups and Bruck–Reilly extensions, their topological properties and applications established in [15, 16, 18, 20, 28, 32–34].

In the paper [17], it is proved that every Hausdorff locally compact shift-continuous topology on the bicyclic monoid with adjoined zero is either compact or discrete. This result was extended by S. Bardyla onto a polycyclic monoid [2] and graph inverse semigroups [3], and by T. Mokrytskyi onto the monoid of order isomorphisms between principal filters of \mathbb{N}^n with adjoined zero [26]. In [4], S. Bardyla proved that a Hausdorff locally compact semitopological McAlister semigroup \mathcal{M}_1 is either compact or discrete. However, this dichotomy does not hold for the McAlister semigroup \mathcal{M}_2 . Moreover, \mathcal{M}_2 admits continuum many different Hausdorff locally compact inverse semigroup topologies [4]. Also, in [19], it is proved that the extended bicyclic semigroup $\mathscr{C}^0_{\mathbb{Z}}$ with adjoined zero admits distinct \mathfrak{c} -many shift-continuous topologies, however every Hausdorff locally compact semigroup topology on $\mathscr{C}^0_{\mathbb{Z}}$ is discrete. Algebraic properties on a group G, such that if the discrete group G has these properties, then every locally compact shift continuous topology on G with adjoined zero is either compact or discrete, are studied in [23].

In this paper, we describe the structure of (0-)simple inverse Hausdorff semitopological ω -semigroups with compact maximal subgroups. In particular, we show that if S is a simple inverse Hausdorff semitopological ω -semigroups with compact maximal subgroups, then S is topologically isomorphic to the Bruck-Reilly extension $(\mathbf{BR}(T,\theta),\tau_{\mathbf{BR}}^{\oplus})$ of a finite semilattice $T=[E;G_{\alpha},\varphi_{\alpha,\beta}]$ of compact groups G_{α} in the class of topological inverse semigroups, where $\tau_{\mathbf{BR}}^{\oplus}$ is the sum direct topology on $\mathbf{BR}(T,\theta)$. Also we prove that every Hausdorff locally compact shift-continuous topology on the simple inverse Hausdorff semitopological ω -semigroup with compact maximal subgroups with adjoined zero is either compact or the zero is an isolated point.

1 On simple inverse semitopological ω -semigroups with compact maximal subgroups

We need the following simple lemma.

Lemma 1. Let $S = [E; G_{\alpha}, \varphi_{\alpha,\beta}]$ be a semitopological semigroup which is a semilattice of groups G_{α} . If S is a topological sum of topological groups G_{α} , then S is a topological inverse semigroup.

Proof. Since G_{α} is a topological group for any $\alpha \in E$ and S is a Clifford inverse semigroup, the inversion is continuous in S.

Fix arbitrary $a, b \in S$ such that $a \in G_{\alpha}$ and $b \in G_{\beta}$ for some $\alpha, \beta \in E$. The assumptions of the lemma imply that G_{γ} is an open-and-closed subset of S for any $\gamma \in E$. Since $G_{\alpha\beta}$ is a topological group, for any open neighbourhood $U\left((a)\varphi_{\alpha,\alpha\beta}(b)\varphi_{\beta,\alpha\beta}\right) \subseteq G_{\alpha\beta}$ of the point $(a)\varphi_{\alpha,\alpha\beta}(b)\varphi_{\beta,\alpha\beta}$ in S there exist open neighbourhoods $V\left((a)\varphi_{\alpha,\alpha\beta}\right) \subseteq G_{\alpha\beta}$ and $V\left((b)\varphi_{\beta,\alpha\beta}\right) \subseteq G_{\alpha\beta}$ of the points $(a)\varphi_{\alpha,\alpha\beta}$ and $(b)\varphi_{\beta,\alpha\beta}$ in S, respectively, such that

$$V((a)\varphi_{\alpha,\alpha\beta})\cdot V((b)\varphi_{\beta,\alpha\beta})\subseteq U((a)\varphi_{\alpha,\alpha\beta}(b)\varphi_{\beta,\alpha\beta}).$$

Since homomorphisms $\varphi_{\alpha,\alpha\beta}\colon G_{\alpha}\to G_{\alpha\beta}$ and $\varphi_{\beta,\alpha\beta}\colon G_{\beta}\to G_{\alpha\beta}$ are continuous, and G_{γ} is an open-and-closed subset of S for any $\gamma\in E$, we have that there exist open neighbourhoods $W(a)\subseteq G_{\alpha}$ and $W(b)\subseteq G_{\beta}$ of the points a and b in S, respectively, such that

$$(W(a))\varphi_{\alpha,\alpha\beta}\subseteq V((a)\varphi_{\alpha,\alpha\beta})$$
 and $(W(b))\varphi_{\beta,\alpha\beta}\subseteq V((b)\varphi_{\beta,\alpha\beta})$.

The above inclusions imply that

$$W(a) * W(b) \subseteq V((a)\varphi_{\alpha,\alpha\beta}) \cdot V((b)\varphi_{\beta,\alpha\beta}) \subseteq U((a)\varphi_{\alpha,\alpha\beta}(b)\varphi_{\beta,\alpha\beta})$$
,

hence, the semigroup operation in *S* is continuous.

Proposition 2. Let $S = [E; G_{\alpha}, \varphi_{\alpha,\beta}]$ be a Hausdorff semitopological semigroup which is a finite semilattice of compact groups G_{α} . Then S is a compact topological inverse semigroup.

Proof. Since the semilattice E is finite, S is a compact as the union of finitely many compact subsets G_{α} . Also finiteness of E and Hausdorffness of S imply that G_{α} is open-and-closed subset of S. Next we apply Lemma 1.

Definition 1. Let \mathfrak{STS} be a some class of semitopological semigroups and $(S, \tau_S) \in \mathfrak{STS}$. If $\tau_{\mathbf{BR}}$ is a topology on $\mathbf{BR}(S,\theta)$ such that $(\mathbf{BR}(S,\theta),\tau_{\mathbf{BR}}) \in \mathfrak{STS}$ and for some $i \in \omega$ the subsemigroup $S_{i,i}$ with the topology restricted from $(\mathbf{BR}(S,\theta),\tau_{\mathbf{BR}})$ is topologically isomorphic to (S,τ_S) under the map $\xi_i \colon S_{i,i} \ni (i,s,i) \mapsto s \in S$, then $(\mathbf{BR}(S,\theta),\tau_{\mathbf{BR}})$ is called a topological Bruck-Reilly extension of (S,τ_S) in the class \mathfrak{STS} .

Proposition 3. Every Hausdorff semitopological simple inverse ω -semigroup S is topologically isomorphic to a topological Bruck-Reilly extension ($\mathbf{BR}(T,\theta)$, $\tau_{\mathbf{BR}}$) of a Hausdorff semitopological semigroup $T = [E; G_{\alpha}, \varphi_{\alpha,\beta}]$ which is a finite semilattice of semitopological groups G_{α} in the class of semitopological semigroups. Moreover, if S is locally compact, then T is a locally compact semitopological semigroup.

Proof. By Kochin's Theorem (see [21]) every simple inverse ω-semigroup S is (algebraically) isomorphic to the Bruck-Reilly extension of semigroup $T = [E; G_\alpha, \varphi_{\alpha,\beta}]$ which is a finite semilattice of groups G_α . Then $T_{1,1}$ is a submonoid of $\mathbf{BR}(T,\theta)$. Let τ_1 be the topology induced from $(\mathbf{BR}(T,\theta), \tau_{\mathbf{BR}})$ onto $T_{1,1}$. By Definition 1 the semitopological semigroup $(\mathbf{BR}(T,\theta), \tau_{\mathbf{BR}})$ is a topological Bruck-Reilly extension of the semitopological semigroup $(T_{1,1}, \tau_1)$. Moreover, by [18, Proposition 2.4] for any $i, j \in \omega$ the subsemigroups $T_{i,i}$ and $T_{j,j}$ with the induced from $(\mathbf{BR}(T,\theta), \tau_{\mathbf{BR}})$ topologies are topologically isomorphic by the mapping $f_{j,j}^{i,i} \colon T_{i,i} \to T_{j,j}$, defined as follows $x \mapsto (j, 1_S, i) \cdot x \cdot (i, 1_S, j)$.

Also, [18, Proposition 2.4] implies that for any $i \in \omega$ the following sets $(i, 1_S, i) \cdot \mathbf{BR}(T, \theta)$ and $\mathbf{BR}(T, \theta) \cdot (i, 1_S, i)$ are retracts of $(\mathbf{BR}(T, \theta), \tau_{\mathbf{BR}})$, hence, by [14, 1.5.C] they are closed subsets in the topological space $(\mathbf{BR}(T, \theta), \tau_{\mathbf{BR}})$. Then

$$T_{1,1} = \mathbf{BR}(T,\theta) \setminus ((1,1_S,1) \cdot \mathbf{BR}(T,\theta) \cup \mathbf{BR}(T,\theta) \cdot (1,1_S,1))$$

is an open subset of $(\mathbf{BR}(T,\theta), \tau_{\mathbf{BR}})$. This implies the last statement, because by [14, Theorem 3.3.8] an open subspace of a locally compact space is locally compact as well.

Definition 2. Let \mathscr{B}_S be a base of the topology τ_S on a semitopological semigroup S. The topology $\tau_{\mathbf{BR}}^{\oplus}$ on $\mathbf{BR}(S,\theta)$ generated by the base $\mathscr{B}_{\mathbf{BR}}^{\oplus} = \{U_{i,j} : U \in \mathscr{B}_S, i, j \in \omega\}$ is called a sum direct topology on $\mathbf{BR}(S,\theta)$.

The following statement is proved in [15, 20].

Proposition 4. Let (S, τ_S) be a semitopological semigroup. Then $(\mathbf{BR}(S, \theta), \tau_{\mathbf{BR}}^{\oplus})$ is a semitopological semigroup, i.e. $(\mathbf{BR}(S, \theta), \tau_{\mathbf{BR}}^{\oplus})$ is a topological Bruck-Reilly extension of (S, τ_S) in the class of semitopological semigroups. Moreover, if (S, τ_S) satisfies one of the following conditions: it is metrizable, Hausdorff, a semitopological semigroup with the continuous inversion, a topological semigroup, a topological inverse semigroup, then so is $(\mathbf{BR}(S,\theta), \tau_{\mathbf{BR}}^{\oplus})$, and $(\mathbf{BR}(S,\theta), \tau_{\mathbf{BR}}^{\oplus})$ is a topological Bruck-Reilly extension of (S,τ_S) in the corresponding class of semitopological semigroups.

The following statement is a consequence of [20, Theorem 8].

Corollary 1. Let (S, τ_S) be a Hausdorff compact semitopological semigroup. If $(\mathbf{BR}(S, \theta), \tau_{\mathbf{BR}})$ is a topological Bruck-Reilly extension of (S, τ_S) in the class of Hausdorff semitopological semigroups, then $\tau_{\mathbf{BR}}$ coincides with the sum direct topology $\tau_{\mathbf{BR}}^{\oplus}$ on $\mathbf{BR}(S, \theta)$.

Theorem 1. Let T be a compact Hausdorff topological semigroup and $(\mathbf{BR}(T,\theta), \tau_{\mathbf{BR}})$ be a topological Bruck-Reilly extension of T in the class of Hausdorff semitopological semigroups. Then $(\mathbf{BR}(T,\theta), \tau_{\mathbf{BR}})$ is a Hausdorff topological semigroup. Moreover, if T is a topological inverse semigroup, then so is $(\mathbf{BR}(T,\theta), \tau_{\mathbf{BR}})$.

Proof. By Corollary 1, $\tau_{\mathbf{BR}}$ coincides with the sum direct topology $\tau_{\mathbf{BR}}^{\oplus}$ on $\mathbf{BR}(T, \theta)$. Fix arbitrary (i, s, j), $(k, t, l) \in \mathbf{BR}(T, \theta)$. Then we have that

$$(i,s,j)\cdot(k,t,l) = \begin{cases} (i-j+k,(s)\theta^{k-j}\cdot t,l), & \text{if } j < k, \\ (i,s\cdot t,l), & \text{if } j = k, \\ (i,s\cdot(t)\theta^{j-k},j-k+l), & \text{if } j > k. \end{cases}$$

Next we consider the following cases.

Case 1. Suppose that j < k. Then for any open neighbourhood $U((s)\theta^{k-j} \cdot t)$ of the point $(s)\theta^{k-j} \cdot t$ in T there exist open neighbourhoods $V((s)\theta^{k-j})$ and V(t) of the points $(s)\theta^{k-j}$ and t in T, respectively, such that $V((s)\theta^{k-j}) \cdot V(t) \subseteq U((s)\theta^{k-j} \cdot t)$, because T is a topological semigroup. By [18, Proposition 2.4] the homomorphism $\theta \colon T \to H(1_T)$ is continuous. Hence there exists an open neighbourhood O(s) of the point s in T such that $(O(s))\theta^{k-j} \subseteq V((s)\theta^{k-j})$.

Since j < k, $O(s)_{i,j} \subseteq T_{i,j}$, $V(t)_{k,l} \subseteq T_{k,l}$, and $U((s)\theta^{k-j} \cdot t)_{i-j+k,l} \subseteq T_{i-j+k,l}$, the semigroup operation in **BR** (T,θ) implies that

$$O(s)_{i,j} \cdot V(t)_{k,l} \subseteq U((s)\theta^{k-j} \cdot t)_{i-j+k,l}.$$

Case 2. Suppose that j = k. Since T is a topological semigroup, for any open neighbourhood $U(s \cdot t)$ of the point $s \cdot t$ in the space T there exist open neighbourhoods V(s) and V(t) of the points s and t in T, respectively, such that $V(s) \cdot V(t) \subseteq U(s \cdot t)$. Since j = k, $V(s)_{i,j} \subseteq T_{i,j}$, $V(t)_{k,l} \subseteq T_{k,l}$, and $U(s \cdot t)_{i,l} \subseteq T_{i,l}$, by the semigroup operation of $\mathbf{BR}(T,\theta)$ we obtain that

$$V(s)_{i,j} \cdot V(t)_{k,l} \subseteq U(s \cdot t)_{i,l}$$
.

Case 3. Suppose that j > k. Since T is a topological semigroup, for any open neighbourhood $U(s \cdot (t)\theta^{j-k})$ of the point $s \cdot (t)\theta^{j-k}$ in the space T there exist open neighbourhoods V(s) and $V((t)\theta^{j-k})$ of s and $(t)\theta^{j-k}$ in T, respectively, such that $V(s) \cdot V((t)\theta^{j-k}) \subseteq U(s \cdot (t)\theta^{j-k})$. By [18, Proposition 2.4] the homomorphism $\theta \colon T \to H(1_T)$ is continuous. Hence, there exists an open neighbourhood O(t) of t in the topological space T such that $(O(t))\theta^{j-k} \subseteq V((t)\theta^{j-k})$. Since j > k, $V(s)_{i,j} \subseteq T_{i,j}$, $O(t)_{k,l} \subseteq T_{k,l}$, and $U(s \cdot (t)\theta^{j-k})_{i,j-k+l} \subseteq T_{i,j-k+l}$, by the semigroup operation of $\mathbf{BR}(T,\theta)$ we get that

$$V(s)_{i,j} \cdot O(t)_{k,l} \subseteq U(s \cdot (t)\theta^{j-k})_{i,j-k+l}.$$

The above three cases imply that the semigroup operation is continuous in $(\mathbf{BR}(T,\theta), \tau_{\mathbf{BR}})$. If T is an inverse semigroup, then $(i,s,j)^{-1}=(j,s^{-1},i)$ for any $(i,s,j)\in\mathbf{BR}(T,\theta)$. Since T is an inverse topological semigroup, for any open neighbourhood $U(s^{-1})$ of s^{-1} in T there exists an open neighbourhood V(s) of s in T such that $(V(s))^{-1}\subseteq U(s^{-1})$. Since $V(s)_{i,j}\subseteq T_{i,j}$ and $U(s^{-1})_{j,i}\subseteq T_{j,i}$, the semigroup operation in $\mathbf{BR}(T,\theta)$ implies that $(V(s)_{i,j})^{-1}\subseteq U(s^{-1})_{j,i}$. Hence, the inversion is continuous in $(\mathbf{BR}(T,\theta),\tau_{\mathbf{BR}})$.

The main result of this section is the following theorem.

Theorem 2. Let S be a Hausdorff semitopological simple inverse ω -semigroup such that every maximal subgroup of S is compact. Then S is topologically isomorphic to the Bruck-Reilly extension $(\mathbf{BR}(T,\theta), \tau_{\mathbf{BR}}^{\oplus})$ of a finite semilattice $T = [E; G_{\alpha}, \varphi_{\alpha,\beta}]$ of compact groups G_{α} in the class of topological inverse semigroups. Moreover, the space of S is locally compact.

Proof. The first statement of the theorem follows from Proposition 3 and Theorem 1. The second statement is a consequence of [14, Theorem 3.3.12]. □

The following example shows that the statement of Theorem 2 is not true when a Hausdorff locally compact semitopological simple inverse ω -semigroup S contains non-compact maximal subgroup.

Example 1 ([18, Example 4.7]). Let $\mathbb{Z}(+)$ be the additive group of integers and $0_{\mathbb{Z}}$ be the neutral element of $\mathbb{Z}(+)$. We define a topology τ_{cf} on $\mathbf{BR}(\mathbb{Z}(+), \theta)$ in the following way. Let (i, g, j) be an isolated point of $(\mathbf{BR}(\mathbb{Z}(+), \theta), \tau_{cf})$ in the following cases:

- (i) $g \neq 0_{\mathbb{Z}}$ and $i, j \in \omega$;
- (ii) i = 0 or j = 0.

The family

$$\mathscr{B}_{cf}(i,0_{\mathbb{Z}},j) = \left\{ (UF)_{i-1,j-1}^{0} = (\mathbb{Z}(+) \setminus F)_{i-1,j-1} \cup \{(i,0_{\mathbb{Z}},j)\} \colon F \text{ is a finite subset of } \mathbb{Z}(+) \right\}$$

is a base of the topology τ_{cf} on $BR(\mathbb{Z}(+),\theta)$ at the point $(i,0_{\mathbb{Z}},j)$ for all $i,j \in \omega$. Then $(BR(\mathbb{Z}(+),\theta),\tau_{cf})$ is a Hausdorff locally compact semitopological inverse semigroup with continuous inversion.

2 On adjoining zero to a simple inverse locally compact semitopological ω -semigroup with compact maximal subgroups

Throughout the section, we denote by $\mathbf{BR^0}(S, \theta)$ the Bruck-Reilly semigroup $\mathbf{BR}(S, \theta)$ with an adjoined zero $\mathbf{0}$ (see [10, Section 1.1]).

Proposition 5. Let τ_{BR}^0 be a Hausdorff topology on $BR^0(S, \theta)$ such that the set $S_{i,j}$ is open in $(BR^0(S, \theta), \tau_{BR}^0)$ for all $i, j \in \omega$. Then η^{\natural} is a closed congruence on $(BR^0(S, \theta), \tau_{BR}^0)$.

Proof. Fix arbitrary non- η^{\natural} -equivalent non-zero elements (i, s, j) and (m, t, n) of the semigroup $\mathbf{BR^0}(S, \theta)$. Then $S_{i,j}$ and $S_{m,n}$ are open disjoint neighbourhoods of the points (i, s, j) and (m, t, n) in the space $(\mathbf{BR^0}(S, \theta), \tau_{\mathbf{BR}}^0)$, respectively, such that $\eta^{\natural} \cap (S_{i,j} \times S_{m,n}) = \varnothing$. Since the topology $\tau_{\mathbf{BR}}^0$ is Hausdorff, there exist disjoint open neighbourhoods U(i, s, j) and U(0) of (i, s, j) and U(0) in $(\mathbf{BR^0}(S, \theta), \tau_{\mathbf{BR}}^0)$, respectively. This implies that $U(i, s, j) \times U(0)$ is an open neighbourhood of the ordered pair $((i, s, j), \mathbf{0})$ in $\mathbf{BR^0}(S, \theta) \times \mathbf{BR^0}(S, \theta)$ with the product topology which does not intersect the congruence η^{\natural} of the semigroup $\mathbf{BR^0}(S, \theta)$. Hence, η^{\natural} is a closed congruence on the semigroup $(\mathbf{BR^0}(S, \theta), \tau_{\mathbf{BR}}^0)$. □

We put $\mathscr{C}^0 = \mathscr{C}(p,q) \sqcup \{0\}$ to be the bicyclic semigroup with adjoined zero. Obviously that the congruence η^{\natural} on the Bruck-Reilly extension $\mathbf{BR^0}(S,\theta)$ of a semigroup S generates the natural homomorphism $\eta \colon \mathbf{BR^0}(S,\theta) \to \mathscr{C}^0$.

Lemma 2. Let $(\mathbf{BR^0}(S,\theta), \tau_{\mathbf{BR}}^{\mathbf{0}})$ be a semitopological semigroup with a compact (left, right) ideal. If the natural homomorphism $\eta \colon \mathbf{BR^0}(S,\theta) \to \mathscr{C}^0$ is a quotient map, then η is an open map.

Proof. Let us suppose that \mathscr{C}^0 admits a topology such that the natural homomorphism $\eta \colon \mathbf{BR}^0(S,\theta) \to \mathscr{C}^0$ is a quotient map.

If U is an open subset of $(\mathbf{BR^0}(S,\theta),\tau_{\mathbf{BR}}^0)$ such that $U\not\ni \mathbf{0}$, then $\eta(U)$ is an open subset of \mathscr{C}^0 , because by [13, Proposition 1] the bicyclic monoid $\mathscr{C}(p,q)$ is a discrete open subset of the space \mathscr{C}^0 .

Suppose $U \ni \mathbf{0}$ is an open subset of $(\mathbf{BR^0}(S,\theta),\tau_{\mathbf{BR}}^{\mathbf{0}})$. Put $U^* = \eta^{-1}(\eta(U))$. Then $U^* = \eta^{-1}(\eta(U^*))$. Since $\eta \colon \mathbf{BR^0}(S,\theta) \to \mathscr{C}^0$ is a natural homomorphism, we have

$$U^* = \bigcup \{G_{i,j} \colon G_{i,j} \cap U \neq \varnothing\} \cup \{\mathbf{0}\}.$$

By [20, Theorem 8] the restriction of the topology τ_{BR}^0 on the semigroup $BR(S,\theta)$ coincides with the sum direct topology τ_{BR}^{\oplus} on $BR(S,\theta)$. This implies that U^* is an open subset of the space $(BR^0(S,\theta),\tau_{BR}^0)$. Since η is a quotient map and $U^*=\eta^{-1}(\eta(U^*))$, we conclude that $\eta(U)$ is an open subset of the space \mathscr{C}^0 .

The following example from [17] shows that the semigroup \mathcal{C}^0 admits a shift-continuous compact Hausdorff topology.

Example 2 ([17]). On the semigroup \mathscr{C}^0 we define a topology τ_{AC} in the following way:

- (i) every element of the bicyclic monoid $\mathscr{C}(p,q)$ is an isolated point in the space $(\mathscr{C}^0, \tau_{Ac})$;
- (ii) the family $\mathscr{B}(0) = \{U \subseteq \mathscr{C}^0 : U \ni 0 \text{ and } \mathscr{C}(p,q) \setminus U \text{ is finite}\}$ determines a base of the topology τ_{AC} at zero $0 \in \mathscr{C}^0$,

i.e. τ_{AC} is the topology of the Alexandroff one-point compactification of the discrete space $\mathscr{C}(p,q)$ with the remainder $\{0\}$. Then $(\mathscr{C}^0,\tau_{AC})$ is a Hausdorff compact semitopological semigroup.

Lemma 3. Let $(\mathbf{BR^0}(S,\theta), \tau_{\mathbf{BR}}^{\mathbf{0}})$ be a Hausdorff semitopological semigroup with a compact subsemigroup $S_{i,i}$ for some $i \in \omega$. Then $S_{i,j}$ is an open-and-closed subspace of $(\mathbf{BR^0}(S,\theta), \tau_{\mathbf{BR}}^{\mathbf{0}})$ for any $i, j \in \omega$.

Proof. Since $(i, 1_S, i)$ is an idempotent of $\mathbf{BR^0}(S, \theta)$ for any $i \in \omega$, the subsets $(i, 1_S, i) \cdot \mathbf{BR^0}(T, \theta)$ and $\mathbf{BR^0}(T, \theta) \cdot (i, 1_S, i)$ are retracts of $(\mathbf{BR^0}(T, \theta), \tau_{\mathbf{BR}}^{\mathbf{0}})$. Hence by [14, 1.5.C] they are closed subsets in the topological space $(\mathbf{BR^0}(T, \theta), \tau_{\mathbf{BR}}^{\mathbf{0}})$. Then

$$T_{k,k} = \mathbf{BR^0}(T,\theta) \setminus \left((k+1,1_S,k+1) \cdot \mathbf{BR^0}(T,\theta) \cup \mathbf{BR}(T,\theta) \cdot (k+1,1_S,k+1) \right)$$

is an open subset of $(\mathbf{BR}(T, \theta), \tau_{\mathbf{BR}})$ for any $k \in \omega$.

Since the subsemigroup $S_{i,i}$ of $(\mathbf{BR^0}(S,\theta),\tau_{\mathbf{BR}}^0)$ is compact for some $i \in \omega$ and the subspaces $S_{i,j}$, $i,j \in \omega$, of $(\mathbf{BR^0}(S,\theta),\tau_{\mathbf{BR}}^0)$ are homeomorphic due to [18, Proposition 2.4(iv)], $S_{i,j}$ are compact subspaces of $(\mathbf{BR^0}(S,\theta),\tau_{\mathbf{BR}}^0)$. Then for any $i,j \leq k$ the subspace $S_{i,j}$ is openand-closed in $(\mathbf{BR^0}(S,\theta),\tau_{\mathbf{BR}}^0)$.

Proposition 6. Let $(\mathbf{BR^0}(S,\theta), \tau_{\mathbf{BR}}^0)$ be a Hausdorff locally compact semitopological semigroup with a compact subsemigroup $S_{i,i}$ for some $i \in \omega$. Then the quotient semigroup $\mathbf{BR^0}(S,\theta)/\eta^{\natural}$ with the quotient topology is topologically isomorphic to the semigroup \mathscr{C}^0 with either the topology τ_{AC} or the discrete topology.

Proof. By Lemma 3, $S_{i,j}$ is an open-and-closed subspace of $(\mathbf{BR^0}(S,\theta),\tau_{\mathbf{BR}}^0)$ for any $i,j\in\omega$. Hence, by Proposition 5, η^{\natural} is a closed congruence on $(\mathbf{BR^0}(S,\theta),\tau_{\mathbf{BR}}^0)$. Then the quotient semigroup $\mathbf{BR^0}(S,\theta)/\eta^{\natural}$ with the quotient topology is a Hausdorff space. Lemma 2 implies that $\eta\colon \mathbf{BR^0}(S,\theta)\to\mathscr{C}^0$ is an open map. Hence, by [14, Theorem 3.3.15], the quotient semigroup $\mathbf{BR^0}(S,\theta)/\eta^{\natural}$ with the quotient topology is a locally compact space. Since $\mathbf{BR^0}(S,\theta)/\eta^{\natural}$ is isomorphic to the semigroup \mathscr{C}^0 , [17, Theorem 1] implies the statement of the proposition.

Throughout the section, if the otherwise is not stated explicitly, we assume that τ_{BR}^0 is a Hausdorff locally compact shift-continuous topology on the semigroup $BR^0(S,\theta)$ such that the following conditions hold:

- (*i*) the subsemigroup $S_{i,i}$ of $\mathbf{BR^0}(S,\theta)$ with the restriction topology from $(\mathbf{BR^0}(S,\theta), \tau_{\mathbf{BR}}^{\mathbf{0}})$ is a compact semitopological semigroup for some $i \in \omega$ (hence, by [18, Proposition 2.4] for all $i \in \omega$);
- (*ii*) **0** is a non-isolated point of $(\mathbf{BR^0}(S, \theta), \tau_{\mathbf{BR}}^{\mathbf{0}})$.

Let $\mathscr{P} = \{P_{\alpha} : \alpha \in \mathscr{I}\}$ be an infinite family of nonempty subsets of a set X. We shall say that a set $A \subseteq X$ *intersects almost all* subsets of \mathscr{P} if $A \cap P_{\alpha} = \emptyset$ for finitely many $P_{\alpha} \in \mathscr{P}$.

Lemma 4. Every open neighbourhood U_0 of zero 0 in $(\mathbf{BR^0}(S,\theta), \tau_{\mathbf{BR}}^0)$ intersects almost all subsets $S_{i,j}$, $i,j \in \omega$, of $\mathbf{BR}(S,\theta)$.

Proof. Suppose to the contrary that there exists an open neighbourhood U_0 of zero in $(\mathbf{BR^0}(S,\theta),\tau_{\mathbf{BR}}^0)$ such that $U_0 \cap S_{i,j} = \emptyset$ for infinitely many $S_{i,j}$, $i,j \in \omega$. Then by Lemma 2 the quotient natural homomorphism $\eta \colon \mathbf{BR^0}(S,\theta) \to \mathscr{C}^0$ is an open map, and hence the quotient semigroup $\mathbf{BR^0}(S,\theta)/\eta^{\natural}$, equipped with the quotient topology, is neither compact nor discrete, which contradicts Proposition 6.

For an arbitrary subset A of $\mathbf{BR^0}(S, \theta)$ and any $i, j \in \omega$ we denote $[A]_{i,j} = A \cap S_{i,j}$.

Lemma 5. For every open neighbourhood U_0 of 0 in $(\mathbf{BR^0}(S,\theta), \tau_{\mathbf{BR}}^0)$ and any $i_0 \in \omega$ the sets

$$\{j \in \omega \colon S_{i_0,j} \nsubseteq U_{\mathbf{0}}\}$$
 and $\{j \in \omega \colon S_{j,i_0} \nsubseteq U_{\mathbf{0}}\}$

are finite.

Proof. Suppose to the contrary that there exists an open neighbourhood U_0 of zero in $(\mathbf{BR^0}(S,\theta),\tau_{\mathbf{BR}}^0)$ and $i_0 \in \omega$ such that $\{j \in \omega \colon S_{i_0,j} \subseteq U_0\}$ is infinite. Since $(\mathbf{BR^0}(S,\theta),\tau_{\mathbf{BR}}^0)$ is a locally compact space, we can take a regular open neighbourhood U_0 of the zero with compact closure.

We consider the following two cases:

- (*i*) there exists $j_0 \in \omega$ such that $[U_0]_{i_0,j} \neq S_{i_0,j}$ for all $j \geq j_0$;
- (ii) for every $k \in \mathbb{N}$ there exists a positive integer n > k such that $[U_0]_{i_0,n} = S_{i_0,n}$.

Let the case (i) holds. Since every subset $S_{i,j}$, $i,j \in \omega$, of $(\mathbf{BR^0}(S,\theta), \tau_{\mathbf{BR}}^{\mathbf{0}})$ is compact, the separate continuity of the semigroup operation in $(\mathbf{BR^0}(S,\theta), \tau_{\mathbf{BR}}^{\mathbf{0}})$ and Lemma 4 imply that without loss of generality we may assume that $j_0 = 0$. By Lemma 3, every subset $S_{i,j}$ is openand-compact in $(\mathbf{BR^0}(S,\theta), \tau_{\mathbf{BR}}^{\mathbf{0}})$. Hence, the set

$$\mathcal{S}_{i_0}^0(U_0) = \{\mathbf{0}\} \cup \bigcup_{j \in \omega} \left[\operatorname{cl}_{\mathbf{BR}^0(S,\theta)}(U_0) \right]_{i_0,j}$$

is compact. By Lemma 3, the family $\mathscr{U}_{i_0} = \{\{U_0\}, \{S_{i_0,j}: j \in \omega\}\}$ is an open cover of the compactum $S_{i_0}^0(U_0)$. Hence, there exists $j_1 \in \mathbb{N}$ such that

$$[U_{\mathbf{0}}]_{i_0,n} = \left[\operatorname{cl}_{\mathbf{BR}^{\mathbf{0}}(S,\theta)}(U_{\mathbf{0}}) \right]_{i_0,n}$$

for all integers $n \ge j_1$. Since the right shift

$$\rho_{(1,1_S,0)} \colon \mathbf{BR}^{\mathbf{0}}(S,\theta) \ni x \mapsto x \cdot (1,1_S,0) \in \mathbf{BR}^{\mathbf{0}}(S,\theta),$$

is continuous in $(\mathbf{BR^0}(S,\theta),\tau_{\mathbf{BR}}^0)$, the full preimage $V_0=\rho_{(1,1_S,0)}^{-1}(U_0)$ is an open neighbourhood of the zero. By Lemma 3, the family $\mathscr{V}_{i_0}=\left\{\{V_0\},\left\{S_{i_0,j}\colon j\in\omega\right\}\right\}$ is an open cover of the compactum $\mathcal{S}_{i_0}^0(U_0)$. Hence, there exists a positive integer $j_2\geqslant j_1$ such that

$$[V_{\mathbf{0}}]_{i_{0},n} = [U_{\mathbf{0}}]_{i_{0},n} = \left[\operatorname{cl}_{\mathbf{BR}^{\mathbf{0}}(S,\theta)}(U_{\mathbf{0}}) \right]_{i_{0},n} \tag{1}$$

for all integers $n \ge j_2$. Indeed, since $(i_0, s, j) \cdot (1, 1_S, 0) = (i_0, s, j - 1)$ for all $j \in \mathbb{N}$ and any $s \in S$, we obtain that the equalities (1) hold for all integers $n \ge j_2$.

Put $\widetilde{U}_0 = U_0 \setminus (S_{i_0,0} \cup \cdots \cup S_{i_0,j_2-1})$. By Lemma 3, \widetilde{U}_0 is an open neighbourhood of zero in $(\mathbf{BR}^0(S,\theta), \tau_{\mathbf{BR}}^0)$ such that

$$\left[\widetilde{U}_{\mathbf{0}}\right]_{i_{0},n} = \left[U_{\mathbf{0}}\right]_{i_{0},n} = \left[\operatorname{cl}_{\mathbf{BR}^{\mathbf{0}}(S,\theta)}(U_{\mathbf{0}})\right]_{i_{0},n}$$

for all integers $n \geqslant j_2$. Since the space $(\mathbf{BR^0}(S,\theta),\tau_{\mathbf{BR}}^0)$ is locally compact, without loss of generality we may assume that the neighbourhood U_0 is a regular open set. This implies that \widetilde{U}_0 is a regular open set as well. Hence, there exist distinct $s,t\in S$ such that $(i_0,s,n)\notin [U_0]_{i_0,n}$ and $(i_0,t,n)\in [U_0]_{i_0,n}$ for all integers $n\geqslant j_2$. But we have that

$$(i_0, s \cdot ((t)\theta)^{-1}, i_0 + 1) \cdot (i_0, t, n) = (i_0, s \cdot ((t)\theta)^{-1} \cdot (t)\theta, n + 1) = (i_0, s, n + 1).$$

Let $W_0 = (\widetilde{U}_0)\lambda_{(i_0,s\cdot((t)\theta)^{-1},i_0+1)}^{-1}$, where $\lambda_{(i_0,s\cdot((t)\theta)^{-1},i_0+1)}$ is the left shift on the element $(i_0,s\cdot((t)\theta)^{-1},i_0+1)$ in the semigroup $\mathbf{BR^0}(S,\theta)$. Then we have that

$$\left[\widetilde{U}_{\mathbf{0}}\right]_{i_0,n}\setminus\left[W_{\mathbf{0}}\right]_{i_0,n}\neq\varnothing$$
 and $\left[W_{\mathbf{0}}\right]_{i_0,n}\setminus\left[\widetilde{U}_{\mathbf{0}}\right]_{i_0,n}\neq\varnothing$

for all integers $n \geqslant j_2 + 1$. By Lemma 3, the family $\mathscr{W}_{i_0} = \{\{W_0\}, \{S_{i_0,j} : j \in \omega\}\}$ is an open cover of $S_{i_0}^0(U_0)$ which has no a finite subcover. This contradicts the compactness of $S_{i_0}^0(U_0)$. Hence, the set $\{j \in \omega : S_{i_0,j} \nsubseteq U_0\}$ is finite.

Let the case (ii) holds. Then there are infinitely many $j \in \omega$ such that $[U_0]_{i_0,j} = S_{i_0,j}$, but $[U_0]_{i_0,j-1} \neq S_{i_0,j-1}$. Since every subset $S_{i,j}$, $i,j \in \omega$, of $(\mathbf{BR^0}(S,\theta),\tau_{\mathbf{BR}}^0)$ is compact, Lemma 3 implies that every subset $S_{i,j}$ is open-and-compact in $(\mathbf{BR^0}(S,\theta),\tau_{\mathbf{BR}}^0)$. Hence, the set

$$\mathcal{S}_{i_0}^0(U_0) = \{\mathbf{0}\} \cup \bigcup_{j \in \omega} \left[\operatorname{cl}_{\mathbf{BR}^0(S,\theta)}(U_0) \right]_{i_0,j}$$

is compact. Let $V_0 = (U_0)\rho_{(1,1_S,0)}^{-1}$, where $\rho_{(1,1_S,0)}$ is the right shift on the element $(1,1_S,0)$ in the semigroup $\mathbf{BR^0}(S,\theta)$. By Lemma 3, the family $\mathscr{V}_{i_0} = \left\{ \{V_0\}, \left\{ S_{i_0,j} \colon j \in \omega \right\} \right\}$ is an open cover of the compactum $S_{i_0}^0(U_0)$. Then the continuity of the right shift $\rho_{(1,1_S,0)}$ in $\left(\mathbf{BR^0}(S,\theta), \tau_{\mathbf{BR}}^0 \right)$ and the equality $(i_0,s,j)\cdot (1,1_S,0)=(i_0,s,j-1)$ imply that $\left[V_0 \right]_{i_0,j} \neq S_{i_0,j}$ for infinitely many $j \in \omega$. Also, the equality $(i_0,s,j)\cdot (1,1_S,0)=(i_0,s,j-1)$ and the assumption of the case (ii) imply that $\left[U_0 \right]_{i_0,j} \setminus \left[V_0 \right]_{i_0,j} \neq \varnothing$ for infinitely many $j \in \omega$. Hence, the open cover \mathscr{V}_{i_0} of $S_{i_0}^0(U_0)$ does not have finite subcovers, which contradicts the compactness of $S_{i_0}^0(U_0)$. Hence, the set $\{j \in \omega \colon S_{i_0,j} \nsubseteq U_0\}$ is finite.

The proof of the statement that the set $\{j \in \omega \colon S_{j,i_0} \nsubseteq U_0\}$ is finite is similar. \square

Lemma 6. For every open neighbourhood U_0 of 0 in $(\mathbf{BR^0}(S,\theta), \tau_{\mathbf{BR}}^0)$ the set

$$N_{U_0} = \{(i,j) \in \omega \times \omega \colon S_{i,j} \subseteq U_0\}$$

is finite.

Proof. Suppose to the contrary that there exists an open neighbourhood U_0 of zero in $(\mathbf{BR^0}(S,\theta),\tau_{\mathbf{BR}}^0)$ such that the set N_{U_0} is infinite. Since $(\mathbf{BR^0}(S,\theta),\tau_{\mathbf{BR}}^0)$ is a locally compact

space, without loss of generality we may assume that the closure $\operatorname{cl}_{\mathbf{BR}^0(S,\theta)}(U_0)$ of the neighbourhood U_0 is compact and the neighbourhood U_0 is regular open. By Lemma 5, for every $k \in \mathbb{N}$ there exists $(i,j) \in N_{U_0}$ such that i > k and j > k.

Using induction, we define an infinite sequence $\{(i_n, j_n)\}_{n \in \omega}$ of elements of the set N_{U_0} in the following way. By the assumption, there exists the smallest $i_0 \in \omega$ such that $S_{i_0,j} \nsubseteq U_0$, $j \in \omega$. By Lemma 5, there exists $j_0 = \max\{j \in \omega : S_{i_0,j} \nsubseteq U_0\}$.

At (k+1)th step of induction we define pair $(i_{k+1,jk+1}) \in N_{U_0}$ as follows. Let i_{k+1} be the smallest integer which is greater than i_k such that $S_{i_k,j} \nsubseteq U_0$, $j \in \omega$. By Lemma 5, there exists $j_{k+1} = \max\{j \in \omega \colon S_{i_{k+1},j} \nsubseteq U_0\}$. Our assumption and Lemma 5 imply that the ordered pair (i_{k+1},j_{k+1}) belongs to N_{U_0} .

By the separate continuity of the semigroup operation in $(\mathbf{BR^0}(S,\theta), \tau_{\mathbf{BR}}^0)$, there exists an open neighbourhood $V_0 \subseteq U_0$ of zero in $(\mathbf{BR^0}(S,\theta), \tau_{\mathbf{BR}}^0)$ such that $V_0 \cdot (1,1_S,0) \subseteq U_0$. The construction of the sequence $\{(i_n,j_n)\}_{n\in\omega}$ implies that

$$[V_0]_{i_n,j_n} \subseteq [U_0]_{i_n,j_n} \neq S_{i_n,j_n}$$
 and $[U_0]_{i_n,j_n+1} = S_{i_n,j_n+1}$

for each $(i_n,j_n)\in N_{U_0}$. By Lemma 3, the family $\mathscr{V}=\left\{\{V_0\},\left\{S_{i,j}\colon i,j\in\omega\right\}\right\}$ is an open cover of the compact set $\mathrm{cl}_{\mathbf{BR}^0(S,\theta)}(U_0)$. The continuity of the right shift $\rho_{(1,1_S,0)}$ in $\left(\mathbf{BR}^0(S,\theta),\tau_{\mathbf{BR}}^0\right)$ implies that $[V_0]_{i_n,j_n+1}\neq S_{i_n,j_n+1}$ for infinitely many ordered pairs $(i_n,j_{n+1})\in N_{U_0}$. Hence, we obtain that $[U_0]_{i_n,j_n+1}\setminus [V_0]_{i_n,j_n+1}\neq\varnothing$ for infinitely many $(i_n,j_{n+1})\in N_{U_0}$. The above arguments guarantee that the cover $\mathscr V$ has no finite subcovers, which contradicts the compactness of $\mathrm{cl}_{\mathbf{BR}^0(S,\theta)}(U_0)$. The obtained contradiction implies the statement of the lemma.

Example 3. Let (S, τ_S) be a Hausdorff semitopological monoid, $\theta: S \to H(1_S)$ be a continuous homomorphism and $\mathscr{B}_S(s)$ be a base of the topology τ_S at a point $s \in S$.

On the semigroup **BR**⁰(S, θ) we define a topology $\tau_{\mathbf{BR}}^{\oplus}$ in the following way:

(i) for any non-zero element $(i, s, j) \in S_{i,j}$ of the semigroup $\mathbf{BR^0}(S, \theta)$ the family

$$\mathscr{B}_{\mathbf{BR}}^{\oplus}(i,s,j) = \{U_{i,j} \colon U \in \mathscr{B}_{S}(s)\}$$

is a base of the topology $\tau_{\mathbf{BR}}^{\oplus}$ at the point $(i, s, j) \in \mathbf{BR}^{\mathbf{0}}(S, \theta)$;

(ii) zero $0 \in \mathbf{BR}^{0}(S, \theta)$ is an isolated point in $(\mathbf{BR}^{0}(S, \theta), \tau_{\mathbf{BR}}^{\oplus})$.

The semigroup operation in $(\mathbf{BR^0}(S,\theta), \tau_{\mathbf{BR}}^{\oplus})$ is separately continuous (see [20]). Moreover, if (S,τ_S) be a topological monoid, then so is $(\mathbf{BR^0}(S,\theta), \tau_{\mathbf{BR}}^{\oplus})$ (see [15]).

In the following example, we extend the construction, proposed in [18, Example 3.4], onto compact Bruck-Reilly extensions of compact semitopological monoids in the class of Hausdorff semitopological semigroups with adjoined zero.

Example 4. Let (S, τ_S) be a Hausdorff compact semitopological monoid, $\theta \colon S \to H(1_S)$ be a continuous homomorphism and $\mathscr{B}_S(s)$ be a base of the topology τ_S at a point $s \in S$. On the semigroup $BR^0(S, \theta)$ we define a topology τ_{BR}^{Ac} in the following way:

(i) for any non-zero element $(i, s, j) \in S_{i,j}$ of the semigroup $\mathbf{BR^0}(S, \theta)$ the family

$$\mathscr{B}_{\mathbf{BR}}^{\mathbf{Ac}}(i,s,j) = \{U_{i,j} \colon U \in \mathscr{B}_{S}(s)\}$$

is a base of the topology τ_{BR}^{Ac} at the point $(i, s, j) \in BR^{0}(S, \theta)$;

(ii) the family
$$\mathscr{B}^{\mathbf{Ac}}_{\mathbf{BR}}(\mathbf{0}) = \left\{ U_{(i_1,j_1),\dots,(i_k,j_k)} \colon (i_1,j_1),\dots,(i_k,j_k) \in \omega \times \omega \right\}$$
, where
$$U_{(i_1,j_1),\dots,(i_k,j_k)} = \mathbf{BR}^{\mathbf{0}}(S,\theta) \setminus \left(S_{i_1,j_1} \cup \dots \cup S_{i_k,j_k} \right),$$

is a base of the topology τ_{BR}^{Ac} at zero $0 \in BR^0(S, \theta)$.

Obviously that $\tau_{\mathbf{BR}}^{\mathbf{Ac}}$ is the topology of the Alexandroff one-point compactification of the Hausdorff locally compact space $\bigoplus \{S_{i,j} \colon i,j \in \omega\}$ with the remainder $\{\mathbf{0}\}$ (here for any $i,j \in \omega$ the space $S_{i,j}$ is homeomorphic to the compact semigroup (S,τ_S) by the map $(i,s,j) \mapsto s$). Simple routine verifications show that the semigroup operation in $(\mathbf{BR}^{\mathbf{0}}(S,\theta),\tau_{\mathbf{BR}}^{\mathbf{Ac}})$ is separately continuous.

Lemmas 3 and 6 imply the following dichotomy for locally compact Bruck-Reilly extensions of compact semitopological monoids in the class of Hausdorff semitopological semigroups with adjoined zero.

Theorem 3. Let $(\mathbf{BR^0}(S,\theta), \tau_{\mathbf{BR}}^0)$ be a Hausdorff locally compact semitopological semigroup with a compact subsemigroup $S_{i,i}$ for some $i \in \omega$. Then $(\mathbf{BR^0}(S,\theta), \tau_{\mathbf{BR}}^0)$ is topologically isomorphic either to $(\mathbf{BR^0}(S,\theta), \tau_{\mathbf{BR}}^\oplus)$ or to $(\mathbf{BR^0}(S,\theta), \tau_{\mathbf{BR}}^{\mathbf{Ac}})$.

The following theorem describes the structure of inverse 0-simple ω -semigroups.

Theorem 4. Every inverse 0-simple ω -semigroup is isomorphic to an inverse simple ω -semigroup with adjoined zero.

Proof. Suppose that S is an inverse 0-simple ω -semigroup and $\mathbf{0}$ is zero of S. We shall show that $S \setminus \{\mathbf{0}\}$ is an inverse subsemigroup of S. Since S is an inverse semigroup, we have that $x^{-1} \in S \setminus \{\mathbf{0}\}$ for a non-zero element x from S.

Suppose to the contrary that there exist $x,y \in S \setminus \{\mathbf{0}\}$ such that $x \cdot y = \mathbf{0}$. If x^{-1} and y^{-1} are inverse elements of x and y in S, then $x^{-1} \neq \mathbf{0} \neq y^{-1}$. Then $x^{-1} \cdot x$ and $y \cdot y^{-1}$ are non-zero idempotents of S. Since S is an inverse 0-simple ω -semigroup, we conclude that $(x^{-1} \cdot x) \cdot (y \cdot y^{-1}) \neq \mathbf{0}$, but $(x^{-1} \cdot x) \cdot (y \cdot y^{-1}) = x^{-1} \cdot (x \cdot y) \cdot y^{-1} = x^{-1} \cdot \mathbf{0} \cdot y^{-1} = \mathbf{0}$, a contradiction.

The Kochin's Theorem [21] and Theorem 4 imply the following assertion.

Theorem 5. Every inverse 0-simple ω -semigroup S is isomorphic to the Bruck-Reilly extension $\mathbf{BR^0}(T,\theta)$ of a finite chain of groups $T=[E;G_\alpha,\varphi_{\alpha,\beta}]$ with adjoined zero.

The main result of this section is the following theorem.

Theorem 6. Let *S* be a Hausdorff semitopological 0-simple ω-semigroup such that every maximal subgroup of *S* is compact. Then *S* is topologically isomorphic to the topological Bruck-Reilly extension ($\mathbf{BR^0}(T,\theta), \tau_{\mathbf{BR}}^{\mathbf{0}}$) of a finite semilattice $T = [E; G_\alpha, \varphi_{\alpha,\beta}]$ of compact groups G_α in the class of Hausdorff topological inverse semigroups with adjoined zero such that the topology $\tau_{\mathbf{BR}}^{\mathbf{0}}$ induces on $\mathbf{BR^0}(T,\theta)$ the sum direct topology $\tau_{\mathbf{BR}}^{\oplus}$. Moreover, if the space *S* is locally compact, then either the space ($\mathbf{BR^0}(T,\theta), \tau_{\mathbf{BR}}^{\mathbf{0}}$) is compact or any *H*-class in ($\mathbf{BR^0}(T,\theta), \tau_{\mathbf{BR}}^{\mathbf{0}}$) is open-and-compact.

Proof. The first statement of the theorem follows from Theorems 2 and 5. Next, using Theorem 3, we obtain the second statement. □

Remark 1. We observe that the Bruck-Reilly extension $BR^0(T,\theta)$ of a finite semilattice $T = [E; G_\alpha, \varphi_{\alpha,\beta}]$ of groups G_α with adjoined zero has two types of \mathcal{H} -classes: the first is a singleton and it consists of zero $\mathbf{0}$, and other classes are of the form $(G_\alpha)_{i,j}$, $i,j \in \omega$.

Since the bicyclic monoid $\mathcal{C}(p,q)$ does not embed into any Hausdorff compact topological semigroup [1], Theorem 6 implies the following corollary.

Corollary 2. Let S be a Hausdorff topological 0-simple inverse ω -semigroup such that every maximal subgroup of S is compact. Then S is topologically isomorphic to the topological Bruck-Reilly extension $(\mathbf{BR^0}(T,\theta),\tau_{\mathbf{BR}}^0)$ of a finite semilattice $T=[E;G_\alpha,\varphi_{\alpha,\beta}]$ of compact groups G_α in the class of Hausdorff topological inverse semigroups with adjoined zero and any \mathscr{H} -class in $(\mathbf{BR^0}(T,\theta),\tau_{\mathbf{BR}}^0)$ is open-and-compact.

On closures of simple inverse semitopological ω -semigroup with compact maximal subgroups

We need the following lemma which is a simple generalization of [13, Lemma I.1(i)].

Lemma 7. Let $\mathbf{BR}(T,\theta)$ be the Bruck-Reilly extension of a monoid T. Then for arbitrary T_{i_1,j_1} and T_{i_2,j_2} of $\mathbf{BR}(T,\theta)$, $i_1,j_1,i_2,j_2 \in \omega$, there exist finitely many subsets $T_{i,j}$ in $\mathbf{BR}(T,\theta)$, $i,j \in \omega$, such that $T_{i_1,j_1} \cdot T_{i,j} \subseteq T_{i_2,j_2}$ ($T_{i,j} \cdot T_{i_1,j_1} \subseteq T_{i_2,j_2}$).

Proof. The definitions of the semigroup operations of the Bruck-Reilly extension $\mathbf{BR}(S,\theta)$ and the bicyclic monoid $\mathscr{C}(p,q)$ imply that if $(i_a,s_a,j_a)\cdot(i_x,s_x,j_x)=(i_b,s_b,j_b)$ in $\mathbf{BR}(S,\theta)$, then $(i_a,j_a)\cdot(i_x,j_x)=(i_b,j_b)$ in $\mathscr{C}(p,q)$. By [13, Lemma I.1(i)], every equation of the form ax=b (xa=b) in $\mathscr{C}(p,q)$ has finitely many solutions, which implies the statement of the lemma.

The following proposition generalizes [13, Theorem I.3] and the corresponding proposition from [17].

Proposition 7. Let T be a compact Hausdorff topological semigroup and $(\mathbf{BR}(T,\theta), \tau_{\mathbf{BR}})$ be a topological Bruck-Reilly extension of T in the class of Hausdorff semitopological semigroups. If $(\mathbf{BR}(T,\theta), \tau_{\mathbf{BR}})$ is a dense subsemigroup of a Hausdorff semitopological monoid S and $I = S \setminus \mathbf{BR}(T,\theta) \neq \emptyset$, then I is a two-sided ideal of the semigroup S.

Proof. Fix an arbitrary element $y \in I$. If $(i,s,j) \cdot y = z \notin I$ for some $(i,s,j) \in \mathbf{BR}(T,\theta)$, then $z = (k,t,l) \in \mathbf{BR}(T,\theta)$ for some $t \in T$ and $k,l \in \omega$. By Theorem 2, there exists an open neighbourhood U(y) of the point y in the space S such that $\{(i,s,j)\} \cdot U(y) \subseteq T_{k,l}$. Since T is a compact Hausdorff topological semigroup, Theorem 2 implies that the topology $\tau_{\mathbf{BR}}$ coincides with the sum direct topology $\tau_{\mathbf{BR}}^{\oplus}$. By [18, Proposition 2.4], all subsets of the form $T_{n,m}$, $n,m \in \omega$, are compact. Hence the neighbourhood U(y) intersects infinitely many sets of the form $T_{n,m}$, $n,m \in \omega$. Then the semigroup operation of $\mathbf{BR}(T,\theta)$ implies that $\{(i,s,j)\} \cdot U(y) \nsubseteq T_{k,l}$, which contradicts Lemma 7. The obtained contradiction implies that $(i,s,j) \cdot y \in I$. The proof of the statement that $y \cdot (i,s,j) \in I$ for all $(i,s,j) \in \mathbf{BR}(T,\theta)$ and $y \in I$ is similar.

Suppose to the contrary that $xy = w = (k, t, l) \in \mathbf{BR}(T, \theta)$ for some $x, y \in I$. Theorem 2 and the separate continuity of the semigroup operation in S imply that there exist open neighbourhoods U(x) and U(y) of the points x and y in S, respectively, such that $\{x\} \cdot U(y) \subseteq T_{k,l}$ and $U(x) \cdot \{y\} \subseteq T_{k,l}$. By [18, Proposition 2.4], all subsets of the form $T_{n,m}$, $n, m \in \omega$, are compact. Hence, the neighbourhood U(y) intersects infinitely many sets of the form $T_{n,m}$, $n, m \in \omega$, therefore both inclusions $\{x\} \cdot U(y) \subseteq T_{k,l}$ and $U(x) \cdot \{y\} \subseteq T_{k,l}$ contradict mentioned above Lemma 7. The obtained contradiction implies that $xy \in I$.

For an arbitrary ideal I of a semigroup S the binary relation $\mathfrak{C}_I = \{(t,t) : t \in S\} \cup (I \times I)$ on S is a congruence and \mathfrak{C}_I is called the *Rees congruence* on S [10]. Also the quotient semigroup S/\mathfrak{C}_I is called the *Rees-quotient semigroup* and denoted by S/I.

We need the following trivial lemma, which follows from the separate continuity of the semigroup operation in semitopological semigroups.

Lemma 8. Let *S* be a Hausdorff semitopological semigroup and *I* be a compact ideal in *S*. Then the Rees-quotient semigroup *S*/*I* with the quotient topology is a Hausdorff semitopological semigroup.

Theorem 7. Let T be a compact Hausdorff semitopological semigroup and $(\mathbf{BR}(T,\theta), \tau_{\mathbf{BR}})$ be a topological Bruck-Reilly extension of T in the class of Hausdorff semitopological semigroups. Let $\mathbf{BR}_I(T,\theta) = \mathbf{BR}(T,\theta) \sqcup I$ and τ be a Hausdorff locally compact shift-continuous topology on $\mathbf{BR}_I(T,\theta)$, where I is a compact ideal of $\mathbf{BR}_I(T,\theta)$. Then either $(\mathbf{BR}_I(T,\theta),\tau)$ is a compact semitopological semigroup or the ideal I is open.

Proof. Suppose that the ideal I is not open. By Lemma 8, the Rees-quotient semigroup $\mathbf{BR}_I(T,\theta)/I$, endowed with the quotient topology $\tau_{\mathbf{q}}$, is a semitopological semigroup. Let $\pi\colon \mathbf{BR}_I(T,\theta)\to \mathbf{BR}_I(T,\theta)/I$ be the natural homomorphism, which is a quotient map. It is obvious that the Rees-quotient semigroup $\mathbf{BR}_I(T,\theta)/I$ is isomorphic to the Bruck-Reilly extension with adjoined zero $\mathbf{BR}^0(T,\theta)$ and the image $(I)\pi$ is zero of the semigroup $\mathbf{BR}^0(T,\theta)$.

We show that the natural homomorphism $\pi\colon \mathbf{BR}_I(T,\theta)\to \mathbf{BR}_I(T,\theta)/I$ is a hereditarily quotient map. In particular, we show that for every open neighbourhood U(I) of the compact ideal I in $(\mathbf{BR}_I(T,\theta)/I,\tau_{\mathbf{q}})$ the image $(U(I))\pi$ is an open neighbourhood of $\mathbf{0}$ in $(\mathbf{BR}_I(T,\theta)/I,\tau_{\mathbf{q}})$. Indeed, $\mathbf{BR}_I(T,\theta)/I\setminus U(I)$ is a closed subset of $(\mathbf{BR}_I(T,\theta)/I,\tau_{\mathbf{q}})$. Also, since the restriction $\pi|_{\mathbf{BR}(T,\theta)}\colon \mathbf{BR}(T,\theta)\to (\mathbf{BR}(T,\theta))\pi$ of the natural homomorphism $\pi\colon \mathbf{BR}_I(T,\theta)\to \mathbf{BR}_I(T,\theta)/I$ is one-to-one, we get that $(\mathbf{BR}_I(T,\theta)/I\setminus U(I))\pi$ is a closed subset of $(\mathbf{BR}_I(T,\theta)/I,\tau_{\mathbf{q}})$. Hence, $(U(I))\pi$ is an open neighbourhood of $\mathbf{0}$ of the semigroup $(\mathbf{BR}_I(T,\theta)/I,\tau_{\mathbf{q}})$. This implies that the natural homomorphism $\pi\colon \mathbf{BR}_I(T,\theta)\to \mathbf{BR}_I(T,\theta)/I$ is a hereditarily quotient map.

Since I is a compact ideal of the semitopological semigroup $(\mathbf{BR}_I(T,\theta),\tau)$, the preimage $(y)\pi^{-1}$ is a compact subset of $(\mathbf{BR}_I(T,\theta),\tau)$ for every $y\in\mathbf{BR}_I(T,\theta)/I$. By the Din'N'e T'ong's Theorem, the image of a locally compact Hausdorff space under a hereditary quotient map with compact fibers into a Hausdorff space is locally compact (see [12] or [14, 3.7.E]). Hence, the space $(\mathbf{BR}_I(T,\theta)/I,\tau_{\mathbf{q}})$ is Hausdorff and locally compact. Since the ideal I is not open, by Theorem 6 the semitopological semigroup $(\mathbf{BR}_I(T,\theta)/I,\tau_{\mathbf{q}})$ is topologically isomorphic to $(\mathbf{BR}^0(T,\theta),\tau_{\mathbf{BR}}^{\mathbf{Ac}})$, and hence, it is compact.

Next, we show that the space $(\mathbf{BR}_I(T,\theta),\tau)$ is compact. Let $\mathscr{U}=\{U_\alpha\colon \alpha\in\mathscr{I}\}$ be any open cover of $(\mathbf{BR}_I(T,\theta),\tau)$. Since the ideal I is compact, it can be covered by some finite subfamily $\mathscr{U}'=\{U_{\alpha_1},\ldots,U_{\alpha_k}\}$ of \mathscr{U} . Put $U=U_{\alpha_1}\cup\cdots\cup U_{\alpha_k}$. Then $\mathbf{BR}_I(T,\theta)\setminus U$ is a closed subset of $(\mathbf{BR}_I(T,\theta),\tau)$. Since the restriction $\pi|_{\mathbf{BR}(T,\theta)}\colon \mathbf{BR}(T,\theta)\to (\mathbf{BR}(T,\theta))\pi$ of the natural homomorphism $\pi\colon \mathbf{BR}_I(T,\theta)\to \mathbf{BR}_I(T,\theta)/I$ is one-to-one, the image $(\mathbf{BR}_I(T,\theta)\setminus U)\pi$ is a closed subset of the space $(\mathbf{BR}_I(T,\theta)/I,\tau_{\mathbf{q}})$. Hence, the image $(\mathbf{BR}_I(T,\theta)\setminus U)\pi$ is compact, because the semitopological semigroup $(\mathbf{BR}_I(T,\theta)/I,\tau_{\mathbf{q}})$ is compact. Therefore, the set $\mathbf{BR}_I(T,\theta)\setminus U$ is compact, and hence, there exists a finite subfamily \mathscr{U}'' of \mathscr{U} , which is an open cover of $\mathbf{BR}_I(T,\theta)\setminus U$. Then $\mathscr{U}'\cup\mathscr{U}''$ is a finite cover of the space $(\mathbf{BR}_I(T,\theta),\tau)(\mathbf{BR}_I(T,\theta),\tau)$. Hence, the space $(\mathbf{BR}_I(T,\theta),\tau)$ is compact too.

Theorem 7 implies the following assertion.

Theorem 8. Let S be a Hausdorff semitopological simple inverse ω -semigroup such that every maximal subgroup of S is compact. Let $S_I = S \sqcup I$, τ be a Hausdorff locally compact shift-continuous topology on S_I , and I be a compact ideal of S_I . Then either (S_I, τ) is a compact semitopological semigroup or the ideal I is open.

Since every Bruck-Reilly extension of a monoid contains an isomorphic copy of the bicyclic monoid $\mathcal{C}(p,q)$ and compact topological semigroups do not contain the semigroup $\mathcal{C}(p,q)$, Theorem 7 implies the following corollary.

Corollary 3. Let T be a compact Hausdorff topological semigroup and $(\mathbf{BR}(T,\theta), \tau_{\mathbf{BR}})$ be a topological Bruck-Reilly extension of T in the class of Hausdorff semitopological semigroups. Let $\mathbf{BR}_I(T,\theta) = \mathbf{BR}(T,\theta) \sqcup I$ and τ be a Hausdorff locally compact shift-continuous topology on $\mathbf{BR}_I(T,\theta)$, where I is a compact ideal of $(\mathbf{BR}_I(T,\theta),\tau)$. Then the ideal I is open in $(\mathbf{BR}_I(T,\theta),\tau)$.

Corollary 3 implies the following result.

Corollary 4. Let S be a Hausdorff semitopological simple inverse ω -semigroup such that every maximal subgroup of S is compact. Let $S_I = S \sqcup I$, τ be a Hausdorff locally compact semigroup topology on S_I , and I be a compact ideal of S_I . Then the ideal I is open in (S_I, τ) .

Acknowledgements

The authors acknowledge the referee for his comments and suggestions.

References

- [1] Anderson L.W., Hunter R.P., Koch R.J. *Some results on stability in semigroups*. Trans. Amer. Math. Soc. 1965, **117**, 521–529. doi:10.1090/S0002-9947-1965-0171869-7
- [2] Bardyla S. *Classifying locally compact semitopological polycyclic monoids*. Mat. Visn. Nauk. Tov. Im. Shevchenka 2016, **13**, 21–28.
- [3] Bardyla S. On locally compact semitopological graph inverse semigroups. Mat. Stud. 2018, 49 (1), 19–28. doi:10.15330/ms.49.1.19-28
- [4] Bardyla S. On topological McAlister semigroups. J. Pure Appl. Algebra 2023, 227 (4), 107274. doi:10.1016/j.jpaa.2022.107274

- [5] Berglund J.F. Compact semitopological inverse Clifford semigroups. Semigroup Forum 1973, 5 (2), 191–215. doi:10.1007/BF02572892
- [6] Bertman M.O., West T.T. Conditionally compact bicyclic semitopological semigroups. Proc. Roy. Irish Acad. 1976, A76 (21–23), 219–226.
- [7] Bruck R.H. A survey of binary systems. Berlin-Göttingen-Heidelberg: Springer-Verlag. VII, Ergebn. Math. Heft **20**, 1958.
- [8] Carruth J.H., Hildebrant J.A., Koch R.J. The theory of topological semigroups. Vol. I, Marcel Dekker, Inc., New York and Basel, 1983.
- [9] Chornenka A., Gutik O. *On topologization of the bicyclic monoid*. Visn. L'viv. Univ., Ser. Mekh.-Mat. 2023, **95**, 46–56. doi:10.30970/vmm.2023.95.046-056
- [10] Clifford A.H., Preston G. B. The algebraic theory of semigroups. Vol. I, Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.
- [11] Clifford A.H., Preston G. B. The algebraic theory of semigroups. Vol. II, Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.
- [12] Din' N'e T'ong. Preclosed mappings and A.D. Taïmanov's theorem. Soviet Math. Dokl. 1963, 4, 1335–1338.
- [13] Eberhart C., Selden J. *On the closure of the bicyclic semigroup*. Trans. Amer. Math. Soc. 1969, **144**, 115–126. doi:10.1090/S0002-9947-1969-0252547-6
- [14] Engelking R. General topology. 2nd ed., Heldermann, Berlin, 1989.
- [15] Gutik O.V. Embedding of topological semigroups in simple semigroups. Mat. Stud. 1994, 3, 10–14 (in Russian).
- [16] Gutik O.V. On coarsing of the direct sum topology on the Bruck semigroup. Visn. L'viv. Univ., Ser. Mekh.-Mat. 1997, 47, 17–21 (in Ukrainian).
- [17] Gutik O. *On the dichotomy of a locally compact semitopological bicyclic monoid with adjoined zero.* Visn. L'viv. Univ., Ser. Mekh.-Mat. 2015, **80**, 33–41.
- [18] Gutik O. On locally compact semitopological 0-bisimple inverse ω -semigroups. Topol. Algebra Appl. 2018, **6**, 77–101. doi:10.1515/taa-2018-0008
- [19] Gutik O.V., Maksymyk K.M. On a semitopological extended bicyclic semigroup with adjoined zero. J. Math. Sci. 2022, **265** (3), 369–381 doi:10.1007/s10958-022-06058-6
- [20] Gutik O.V., Pavlyk K.P. *Bruck–Reilly extensions of semitopological semigroups*. Applied Problems of Mech. and Math. 2009, 7, 66–73.
- [21] Kochin B.P. *The structure of inverse ideal-simple* ω -semigroups. Vestnik Leningrad. Univ. 1968, **23** (7), 41–50 (in Russian).
- [22] Lawson M. Inverse semigroups. The theory of partial symmetries. World Scientific, Singapore, 1998.
- [23] Maksymyk K. On locally compact groups with zero. Visn. Lviv Univ., Ser. Mekh.-Mat. 2019, 88, 51–58 (in Ukrainian).
- [24] McDougle P. *A theorem on quasi-compact mappings*. Proc. Amer. Math. Soc. 1958, **9** (3), 474–477. doi: 10.1090/S0002-9939-1958-0095469-4
- [25] Moore R.L. *Concerning upper semi-continuous collections of continua*. Trans. Amer. Math. Soc. 1925, **27**, 416–428. doi:10.1090/S0002-9947-1925-1501320-8
- [26] Mokrytskyi T. On the dichotomy of a locally compact semitopological monoid of order isomorphisms between principal filters of \mathbb{N}^n with adjoined zero. Visn. Lviv Univ., Ser. Mekh.-Mat. 2019, 87, 37–45.
- [27] Munn W.D., Reilly N.R. Congruences on a bisimple ω -semigroup. Proc. Glasg. Math. Assoc. 1966, 7 (4), 184–192. doi:10.1017/S2040618500035413
- [28] Pavlyk K.P. *Topological Bruck-Reilly extensions of topological semigroups*. Applied Problems of Mech. and Math. 2008, **6**, 38–47 (in Ukrainian).

- [29] Petrich M. Inverse semigroups. John Wiley & Sons, New York, 1984.
- [30] Reilly N.R. *Bisimple* ω -semigroups. Proc. Glasgow Math. Assoc. 1966, 7 (3), 160–169. doi:10.1017/s2040618500035346
- [31] Ruppert W. Compact semitopological semigroups: an intrinsic theory. Lect. Notes Math., 1079. Springer, Berlin, 1984. doi:10.1007/BFb0073675
- [32] Selden A.A. Bisimple ω -semigroups in the locally compact setting. Bogazici Univ. J. Sci. Math. 1975, **3**, 15–77.
- [33] Selden A.A. On the closure of bisimple ω -semigroups. Semigroup Forum 1976, **12** (3), 373–379. doi:10.1007/BF02195943
- [34] Selden A.A. The kernel of the determining endomorphism of a bisimple ω -semigroup. Semigroup Forum 1977, **14** (2), 265–271. doi:10.1007/BF02194671
- [35] Vaĭnšteĭn I.A. On closed mappings of metric spaces. Dokl. Akad. Nauk SSSR 1947, 57, 319–321 (in Russian).
- [36] Wagner V.V. Generalized groups. Dokl. Akad. Nauk SSSR 1952, 84, 1119-1122 (in Russian).
- [37] Warne R.J. *A class of bisimple inverse semigroups*. Pacif. J. Math. 1966, **18** (3), 563–577. doi:10.2140/pjm.1966.18.563

Received 06.11.2024 Revised 28.01.2025

Гутік О.В., Максимик К.М. Про напівтопологічні прості інверсні ω -напівгрупи з компактними максимальними підгрупами // Карпатські матем. публ. — 2025. — Т.17, №1. — С. 110–127.

Описано структуру (0-)простих інверсних гаусдорфових напівтопологічних ω -напівгруп з компактними максимальними підгрупами. Зокрема, доведено, що якщо S — проста інверсна гаусдорфова напівтопологічна ω -напівгрупа з компактними максимальними підгрупами, то S ϵ топологічно ізоморфною розширенню Брука-Рейлі ($\mathbf{BR}(T,\theta), \tau_{\mathbf{BR}}^{\oplus}$) скінченної напігратки $T=\left[E;G_{\alpha},\varphi_{\alpha,\beta}\right]$ компактних груп G_{α} у класі топологічних інверсних напівгруп, де $\tau_{\mathbf{BR}}^{\oplus}$ — це топологія прямої суми на $\mathbf{BR}(T,\theta)$. Також доведено, що кожна гаусдорфова локально компактна трансляційно-неперервна топологія на простій інверсній гаусдорфовій напівтопологічній ω -напівгрупі з компактними максимальними підгрупами та приєднаним нулем ϵ або компактною, або нуль ϵ ізольованою точкою.

 $Ключові \ слова \ i \ фрази: \ біциклічна напівгрупа, проста інверсна <math>\omega$ -напівгрупа, напівтопологічна напівгрупа, локально компактний, топологічна напівгрупа, компактна максимальна підгрупа, приєднаний нуль, компактний ідеал.