References

  1. Anderson L.W., Hunter R.P., Koch R.J. Some results on stability in semigroups. Trans. Amer. Math. Soc. 1965, 117, 521–529. doi:10.1090/S0002-9947-1965-0171869-7
  2. Bardyla S. Classifying locally compact semitopological polycyclic monoids. Mat. Visn. Nauk. Tov. Im. Shevchenka 2016, 13, 21–28.
  3. Bardyla S. On locally compact semitopological graph inverse semigroups. Mat. Stud. 2018, 49 (1), 19–28. doi:10.15330/ms.49.1.19-28
  4. Bardyla S. On topological McAlister semigroups. J. Pure Appl. Algebra 2023, 227 (4), 107274. doi:10.1016/j.jpaa.2022.107274
  5. Berglund J.F. Compact semitopological inverse Clifford semigroups. Semigroup Forum 1973, 5 (2), 191–215. doi:10.1007/BF02572892
  6. Bertman M.O., West T.T. Conditionally compact bicyclic semitopological semigroups. Proc. Roy. Irish Acad. 1976, A76 (21–23), 219–226.
  7. Bruck R.H. A survey of binary systems. Berlin-Göttingen-Heidelberg: Springer-Verlag. VII, Ergebn. Math. Heft 20, 1958.
  8. Carruth J.H., Hildebrant J.A., Koch R.J. The theory of topological semigroups. Vol. I, Marcel Dekker, Inc., New York and Basel, 1983.
  9. Chornenka A., Gutik O. On topologization of the bicyclic monoid. Visn. L’viv. Univ., Ser. Mekh.-Mat. 2023, 95, 46–56. doi:10.30970/vmm.2023.95.046-056
  10. Clifford A.H., Preston G. B. The algebraic theory of semigroups. Vol. I, Amer. Math. Soc. Surveys 7, Providence, R.I., 1961.
  11. Clifford A.H., Preston G. B. The algebraic theory of semigroups. Vol. II, Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.
  12. Din’ N’e T’ong. Preclosed mappings and A.D. Taı̆manov’s theorem. Soviet Math. Dokl. 1963, 4, 1335–1338.
  13. Eberhart C., Selden J. On the closure of the bicyclic semigroup. Trans. Amer. Math. Soc. 1969, 144, 115–126. doi:10.1090/S0002-9947-1969-0252547-6
  14. Engelking R. General topology. 2nd ed., Heldermann, Berlin, 1989.
  15. Gutik O.V. Embedding of topological semigroups in simple semigroups. Mat. Stud. 1994, 3, 10–14 (in Russian).
  16. Gutik O.V. On coarsing of the direct sum topology on the Bruck semigroup. Visn. L’viv. Univ., Ser. Mekh.-Mat. 1997, 47, 17–21 (in Ukrainian).
  17. Gutik O. On the dichotomy of a locally compact semitopological bicyclic monoid with adjoined zero. Visn. L’viv. Univ., Ser. Mekh.-Mat. 2015, 80, 33–41.
  18. Gutik O. On locally compact semitopological \(0\)-bisimple inverse \(\omega\)-semigroups. Topol. Algebra Appl. 2018, 6, 77–101. doi:10.1515/taa-2018-0008
  19. Gutik O.V., Maksymyk K.M. On a semitopological extended bicyclic semigroup with adjoined zero. J. Math. Sci. 2022, 265 (3), 369–381 doi:10.1007/s10958-022-06058-6
  20. Gutik O.V., Pavlyk K.P. Bruck–Reilly extensions of semitopological semigroups. Applied Problems of Mech. and Math. 2009, 7, 66–73.
  21. Kochin B.P. The structure of inverse ideal-simple \(\omega\)-semigroups. Vestnik Leningrad. Univ. 1968, 23 (7), 41–50 (in Russian).
  22. Lawson M. Inverse semigroups. The theory of partial symmetries. World Scientific, Singapore, 1998.
  23. Maksymyk K. On locally compact groups with zero. Visn. Lviv Univ., Ser. Mekh.-Mat. 2019, 88, 51–58 (in Ukrainian).
  24. McDougle P. A theorem on quasi-compact mappings. Proc. Amer. Math. Soc. 1958, 9 (3), 474–477. doi:10.1090/S0002-9939-1958-0095469-4
  25. Moore R.L. Concerning upper semi-continuous collections of continua. Trans. Amer. Math. Soc. 1925, 27, 416–428. doi:10.1090/S0002-9947-1925-1501320-8
  26. Mokrytskyi T. On the dichotomy of a locally compact semitopological monoid of order isomorphisms between principal filters of  \(\mathbb{N}^n\) with adjoined zero. Visn. Lviv Univ., Ser. Mekh.-Mat. 2019, 87, 37–45.
  27. Munn W.D., Reilly N.R. Congruences on a bisimple \(\omega\)-semigroup. Proc. Glasg. Math. Assoc. 1966, 7 (4), 184–192. doi:10.1017/S2040618500035413
  28. Pavlyk K.P. Topological Bruck-Reilly extensions of topological semigroups. Applied Problems of Mech. and Math. 2008, 6, 38–47 (in Ukrainian).
  29. Petrich M. Inverse semigroups. John Wiley \(\&\) Sons, New York, 1984.
  30. Reilly N.R. Bisimple \(\omega\)-semigroups. Proc. Glasgow Math. Assoc. 1966, 7 (3), 160–169. doi:10.1017/s2040618500035346
  31. Ruppert W. Compact semitopological semigroups: an intrinsic theory. Lect. Notes Math., 1079. Springer, Berlin, 1984. doi:10.1007/BFb0073675
  32. Selden A.A. Bisimple \(\omega\)-semigroups in the locally compact setting. Bogazici Univ. J. Sci. Math. 1975, 3, 15–77.
  33. Selden A.A. On the closure of bisimple \(\omega\)-semigroups. Semigroup Forum 1976, 12 (3), 373–379. doi:10.1007/BF02195943
  34. Selden A.A. The kernel of the determining endomorphism of a bisimple \(\omega\)-semigroup. Semigroup Forum 1977, 14 (2), 265–271. doi:10.1007/BF02194671
  35. Vaı̆nšteı̆n I.A. On closed mappings of metric spaces. Dokl. Akad. Nauk SSSR 1947, 57, 319–321 (in Russian).
  36. Wagner V.V. Generalized groups. Dokl. Akad. Nauk SSSR 1952, 84, 1119–1122 (in Russian).
  37. Warne R.J. A class of bisimple inverse semigroups. Pacif. J. Math. 1966, 18 (3), 563–577. doi:10.2140/pjm.1966.18.563