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On Banach spaces of normalized Bloch mappings

Jiménez-Vargas A., Ruiz-Casternado D.

Applying the theory of tensor products of Banach spaces, we study the Banach spaces of nor-

malized Bloch maps from D (the complex unit open disc) into X∗ (the dual of a complex Banach

space X) that can be represented canonically as the dual of the completion of the tensor product

lin(Γ(D))⊗α X, where lin(Γ(D)) is the space of X-valued Bloch molecules on D and α is a Bloch

cross-norm on lin(Γ(D)) ⊗ X. We show that the normalized spaces of Bloch maps, p-summing

Bloch maps and Bloch maps that factor through a Hilbert space admit such a representation. On

the converse problem, we characterize when a Banach normalized Bloch space B(D, X∗) is isomet-

rically isomorphic to (lin(Γ(D))⊗̂αX)∗ for some Bloch cross-norm α, in terms of the compactness of

its unit ball with respect to the weak* Bloch topology.
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1 Introduction

The use of the tensor product of Banach spaces to study spaces of vector-valued holomor-

phic mappings is well known (see, for example, [2, 11–13]). Recently, some tensorial tools have

been applied to address the problem of the duality of some distinguished ideals of vector-

valued Bloch mappings in [3, 4, 8, 9].

Let D be the complex unit open disc, X be a complex Banach space and H(D, X) be the

space of all holomorphic maps from D into X. A mapping f ∈ H(D, X) is said to be Bloch if

there exists a constant c ≥ 0 such that (1 − |z|2) ‖ f ′(z)‖ ≤ c for all z ∈ D.

The normalized Bloch space B̂(D, X) is the Banach space of all mappings f ∈ H(D, X) for

which f (0) = 0 satisfying

ρB( f ) := sup
{
(1 − |z|2)

∥∥ f ′(z)
∥∥ : z ∈ D

}
< ∞

equipped with the Bloch norm ρB . In particular, B̂(D) := B̂(D, C). The monographs by

J.M. Anderson [1] and K. Zhu [16] provide a comprehensive study of these known function

spaces.
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© Jiménez-Vargas A., Ruiz-Casternado D., 2025
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Following [8], a Banach ideal of normalized Bloch maps is an assignment [I B̂ , ‖ · ‖
I B̂ ] that

associates with every complex Banach space X, a set I B̂(D, X) ⊆ B̂(D, X) and a function

‖ · ‖
I B̂ : I B̂ → R satisfying the properties:

(i) (I B̂(D, X), ‖ · ‖
I B̂ ) is a Banach space and ‖ f‖

I B̂ ≥ ρB( f ) for all f ∈ I B̂(D, X),

(ii) for each g ∈ B̂(D) and x ∈ X, the map g · x : z ∈ D 7→ g(z)x ∈ X belongs to I B̂(D, X)

and ‖g · x‖
I B̂ = ρB(g) ‖x‖,

(iii) the ideal property: if f ∈ I B̂(D, X), h : D → D is a holomorphic function such that

h(0) = 0 and T ∈ L(X, Y), where Y is a complex Banach space, then T ◦ f ◦ h is in

I B̂(D, Y) and ‖T ◦ f ◦ h‖
I B̂ ≤ ‖T‖ ‖ f‖

I B̂ .

If the ideal property (iii) is removed, then the concept of Banach space of normalized Bloch

mappings arises, which has a linear counterpart in the notion of Banach space of operators

presented by J.R. Holub in [7].

Definition 1. A Banach space of normalized Bloch mappings (or simply, a Banach normalized

Bloch space) from D into X is a linear space B(D, X) ⊆ B̂(D, X) endowed with a norm ‖ · ‖B

satisfying:

(i) (B(D, X), ‖ · ‖B) is a Banach space and ‖ f‖B ≥ ρB( f ) for every f ∈ B(D, X),

(ii) for every g ∈ B̂(D) and x ∈ X, we have g · x ∈ B(D, X) and ‖g · x‖B = ρB(g)‖x‖.

To describe the content of this paper, we need to introduce some notation and recall certain

concepts and results from [4, 8].

Notation. Given complex Banach spaces X and Y, L(X, Y) denotes the Banach space of all

bounded linear operators from X to Y under the operator canonical norm. In particular, the

space L(X, C) is denoted by X∗. The symbol κX stands for the canonical injection from X into

X∗∗. For x ∈ X and x∗ ∈ X∗, we will sometimes write 〈x∗, x〉 = x∗(x). As usual, BX and SX

represent the closed unit ball of X and the unit sphere of X, respectively.

Given Banach spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y), we will write (X, ‖ · ‖X) ≤ (Y, ‖ · ‖Y) to

indicate that X ⊆ Y and ‖x‖Y ≤ ‖x‖X for all x ∈ X; and (X, ‖ · ‖X) ∼= (Y, ‖ · ‖Y) to point out

that they are isometrically isomorphic.

Preliminaries. For each z ∈ D, a Bloch atom of D is the function γz ∈ B̂(D)∗ given by

γz( f ) = f ′(z), f ∈ B̂(D).

The elements of lin({γz : z ∈ D}) ⊆ B̂(D)∗ are called Bloch molecules of D. The Bloch-

free Banach space over D, denoted by G(D), is the norm-closed linear hull of {γz : z ∈ D} ⊆

B̂(D)∗. The mapping Γ : D → G(D), defined by Γ(z) = γz for all z ∈ D, is holomorphic with

‖γz‖ = 1/(1 − |z|2) for all z ∈ D.

For any z ∈ D and x ∈ X, the functional γz ⊗ x : B̂(D, X∗) → C, given by

(γz ⊗ x) ( f ) =
〈

f ′(z), x
〉
, f ∈ B̂(D, X∗),

is in B̂(D, X∗)∗ with ‖γz ⊗ x‖ = ‖x‖ /(1 − |z|2). Define the linear space

lin(Γ(D))⊗ X := lin ({γz ⊗ x : z ∈ D, x ∈ X}) ⊆ B̂(D, X∗)∗.
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The elements of this tensor product space are referred to as X-valued Bloch molecules on D.

We denote by lin(Γ(D)) ⊗α X the linear space lin(Γ(D)) ⊗ X with the norm α, and by

lin(Γ(D))⊗̂αX the completion of lin(Γ(D)) ⊗α X. A norm α on lin(Γ(D)) ⊗ X is said to be a

Bloch reasonable cross-norm if it satisfies the following properties:

(i) α(γz ⊗ x) = ‖γz‖ ‖x‖ for all z ∈ D and x ∈ X,

(ii) for every g ∈ B̂(D) and x∗ ∈ X∗, the linear functional g ⊗ x∗ : lin(Γ(D)) ⊗ X → C,

which is defined by (g ⊗ x∗)(γz ⊗ x) = g′(z)x∗(x), is bounded on lin(Γ(D)) ⊗α X with

‖g ⊗ x∗‖ ≤ ρB(g) ‖x∗‖.

For each z ∈ D, the function fz : D → C defined by

fz(w) =
(1 − |z|2)w

1 − zw
, w ∈ D,

belongs to B̂(D) with ρB( fz) = 1 = (1 − |z|2) f ′z(z).

Remark 1. In [4, Definition 2.5], the inequality ≤ is only required in the condition (i) above

since the inequality ≥ holds always by applying the condition (ii). Indeed, given z ∈ D and

x ∈ X, take x∗ ∈ SX∗ such that x∗(x) = ‖x‖, and it follows that

α(γz ⊗ x) ≥ ‖ fz ⊗ x∗‖ α(γz ⊗ x) ≥ |( fz ⊗ x∗)(γz ⊗ x)|

=
∣∣ f ′z(z)

∣∣ |x∗(x)| =
‖x‖

1 − |z|2
= ‖γz‖ ‖x‖ .

Content. We have divided it into three sections. Inspired by the relation between tensor

products and operator spaces studied by R. Schatten [15] and J.R. Holub [7], in Section 2 we

introduce and study the space B̂α(D, X∗) of normalized α-Bloch mappings with respect to a

Bloch cross-norm α on lin(Γ(D)) ⊗ X, that is, normalized Bloch mappings from D to X∗ that

induce a continuous linear functional on lin(Γ(D))⊗α X. We show that several known classes

of normalized Bloch maps – namely, Bloch maps, p-summing Bloch maps and Bloch maps that

factor through a Hilbert space – are associated to Bloch cross-norms in this way.

Section 3 deals with the duality theory for spaces of normalized α-Bloch mappings and

contains the main result of this paper: the space of X∗-valued normalized α-Bloch mappings

on D is canonically isometrically isomorphic to the dual of the space lin(Γ(D))⊗̂αX. This

section is completed by studying the weak* topology and the weak* Bloch topology on the

space B̂α(D, X∗).

The main questions we raise in Section 4 can be formulated as follows. When is B̂α(D, X∗)

a Banach space of normalized Bloch mappings? In response to this question, we show that

reasonable Bloch cross-norms α on lin(Γ(D))⊗X are justly those for which the cited statement

holds.

The canonical identification of B̂α(D, X∗) with the dual space (lin(Γ(D))⊗̂αX)∗ is the basis

of our study of the duality for Banach normalized Bloch spaces. On the converse problem,

given a Banach space of normalized Bloch mappings, when can it be represented as a space

of normalized α-Bloch mappings? In response to this question, we characterize such Banach

normalized Bloch spaces by means of the compactness of their unit closed balls with respect

to the weak* Bloch topology.
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2 Cross-norm-Bloch mappings

The following type of Bloch mappings will permit us to associate canonically a Bloch cross-

norm on lin(Γ(D)) ⊗ X with a Banach space of normalized Bloch mappings from D into X∗.

Compare it to the concept of operator with “finite α-norm” between Banach spaces E and F,

where α is a cross-norm on E ⊗ F that was introduced by R. Schatten in [15, Definition 3.2].

Definition 2. Let α be a Bloch cross-norm on lin(Γ(D)) ⊗ X. A zero-preserving holomorphic

mapping f : D → X∗ is said to be an α-Bloch mapping if there exists a constant c ≥ 0 such that

∣∣∣∣
n

∑
i=1

λi

〈
f ′(zi), xi

〉∣∣∣∣ ≤ cα

( n

∑
i=1

λiγzi
⊗ xi

)

for all ∑
n
i=1 λiγzi

⊗ xi ∈ lin(Γ(D)) ⊗ X. The infimum of such constants c is denoted by ρα( f )

and called the α-Bloch norm of f . The set of all α-Bloch maps from D into X∗ is denoted by

B̂α(D, X∗).

Remark 2. Note that if γ = ∑
n
i=1 λiγzi

⊗ xi ∈ lin(Γ(D))⊗ X and f ∈ B̂(D, X∗), then

γ( f ) =
n

∑
i=1

λi

〈
f ′(zi), xi

〉
,

and therefore f ∈ B̂α(D, X∗) if and only if |γ( f )| ≤ cα(γ) for all γ ∈ lin(Γ(D)) ⊗ X. More-

over, we have

ρα( f ) = min
{

c ≥ 0 : |γ( f )| ≤ cα(γ), ∀γ ∈ lin(Γ(D))⊗ X
}

= sup
{
|γ( f )| : γ ∈ lin(Γ(D))⊗ X, α(γ) ≤ 1

}
.

We now show that every α-Bloch mapping turns out to be a Bloch mapping and this justifies

the terminology used in Definition 2.

Lemma 1. Let α be a Bloch cross-norm on lin(Γ(D)) ⊗ X. Then (B̂α(D, X∗), ρα) is a normed

space such that (B̂α(D, X∗), ρα) ≤ (B̂(D, X∗), ρB).

Proof. Let f ∈ B̂α(D, X∗). Given z ∈ D, we have

∣∣〈 f ′(z), x
〉∣∣ = |(γz ⊗ x)( f )| ≤ ρα( f )α (γz ⊗ x) = ρα( f )‖γz‖ ‖x‖

for all x ∈ X. Hence (1 − |z|2)‖ f ′(z)‖ ≤ ρα( f ) for all z ∈ D, and thus f ∈ B̂(D, X∗) with

ρB( f ) ≤ ρα( f ). Clearly, ρB( f ) ≥ 0. If ρα( f ) = 0, it follows that ρB( f ) = 0, and therefore f = 0.

Next we use Remark 2. Let λ ∈ C. For any γ ∈ lin(Γ(D)) ⊗ X, we obtain

|γ(λ f )| = |λγ( f )| = |λ| |γ( f )| ≤ |λ| ρα( f )α(γ),

and therefore λ f ∈ B̂α(D, X∗) and ρα(λ f ) ≤ |λ| ρα( f ). Moreover, by above-proved, if λ = 0,

then ρα(λ f ) = 0 = |λ| ρα( f ), and if λ 6= 0, we have ρα( f ) = ρα(λ−1(λ f )) ≤ |λ|−1 ρα(λ f ), and

hence |λ| ρα( f ) ≤ ρα(λ f ). This proves that ρα(λ f ) = |λ| ρα( f ). Finally, given g ∈ B̂α(D, X∗),

we have

|γ( f + g)| = |γ( f ) + γ(g)| ≤ |γ( f )| + |γ(g)| ≤ (ρα( f ) + ρα(g))α(γ)

for all γ ∈ lin(Γ(D))⊗ X, and so f + g ∈ B̂α(D, X∗) and ρα( f + g) ≤ ρα( f ) + ρα(g).
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Given 1 ≤ p ≤ ∞, let p∗ denote the Hölder’s conjugate of p given by p∗ = ∞ if p = 1,

p∗ = p/(p − 1) if 1 < p < ∞ and p∗ = 1 if p = ∞.

The following Bloch variants of the Chevet-Saphar norms on the tensor product of two

Banach spaces (see [6, 14]) were introduced in [4].

For each γ ∈ lin(Γ(D)) ⊗ X, the Bloch projective norm π and the p-Chevet-Saphar Bloch

norms dBp for 1 ≤ p ≤ ∞ are defined on lin(Γ(D))⊗ X by

π(γ) = inf

{ n

∑
i=1

|λi| ‖xi‖

1 − |zi|
2

}
,

dB1 (γ) = inf

{(
sup

g∈BB̂(D)

(
max

1≤i≤n
|λi|

∣∣g′(zi)
∣∣
))( n

∑
i=1

‖xi‖

)}
,

dBp (γ) = inf

{(
sup

g∈BB̂(D)

( n

∑
i=1

|λi|
p∗ ∣∣g′(zi)

∣∣p∗
) 1

p∗
)( n

∑
i=1

‖xi‖
p
) 1

p
}

, 1 < p < ∞,

dB∞(γ) = inf

{(
sup

g∈BB̂(D)

( n

∑
i=1

|λi|
∣∣g′(zi)

∣∣
))(

max
1≤i≤n

‖xi‖

)}
,

where the infimum is taken over all such representations of γ as ∑
n
i=1 λiγzi

⊗ xi with n ∈ N,

λ1, . . . , λn ∈ C, z1, . . . , zn ∈ D and x1, . . . , xn ∈ X.

The following result gathers some properties of such Bloch norms.

Proposition 1 ([4]). For each p ∈ [1, ∞], dBp is a reasonable Bloch cross-norm on lin(Γ(D))⊗ X.

Moreover, π(γ) = dB1 (γ) = ‖γ‖, where

‖γ‖ = sup
{
|γ( f )| : f ∈ B̂(D, X∗), ρB( f ) ≤ 1

}

for all γ ∈ lin(Γ(D))⊗ X.

Proof. The first assertion of the statement was proved in [4, Theorem 2.6]. The equalities

π = dB1 = ‖ · ‖ on lin(Γ(D)) ⊗ X were established in [4, Propositions 2.4 and 2.7].

We now identify the space of all Bloch mappings from D into X∗ with the space of all

π-Bloch mappings.

Lemma 2. (B̂(D, X∗), ρB) = (B̂π(D, X∗), ρπ).

Proof. Let f ∈ B̂(D, X∗). Given γ = ∑
n
i=1 λiγzi

⊗ xi ∈ lin(Γ(D))⊗ X, we have

|γ( f )| =

∣∣∣∣
n

∑
i=1

λi

〈
f ′(zi), xi

〉 ∣∣∣∣ ≤
n

∑
i=1

|λi|
∥∥ f ′(zi)

∥∥ ‖xi‖ ≤ ρB( f )
n

∑
i=1

|λi| ‖xi‖

1 − |zi|
2

,

and taking the infimum over all the representations of γ, we deduce that |γ( f )| ≤ ρB( f )π(γ).

Hence f ∈ B̂π(D, X∗) and ρπ( f ) ≤ ρB( f ). The converse inclusion and inequality follow from

Lemma 1.
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Following [4], a zero-preserving map f ∈ H(D, X) is said to be p-summing Bloch for

1 ≤ p ≤ ∞, if there exists a constant c ≥ 0 such that

( n

∑
i=1

|λi|
p‖ f ′(zi)‖

p

) 1
p

≤ c sup
g∈B

B̂(D)

( n

∑
i=1

|λi|
p
∣∣g′(zi)

∣∣p
) 1

p

, if 1 ≤ p < ∞,

max
1≤i≤n

|λi|‖ f ′(zi)‖ ≤ c sup
g∈B

B̂(D)

(
max

1≤i≤n
|λi|

∣∣g′(zi)
∣∣
)

, if p = ∞,

for all n ∈ N, λ1, . . . , λn ∈ C and z1, . . . , zn ∈ D. The infimum of such constants c

is denoted by πB
p ( f ) and called the p-summing Bloch norm of f . The set ΠB̂

p (D, X) of all

p-summing Bloch mappings from D into X so that f (0) = 0 with the norm πB
p is a Banach

space by [4, Proposition 1.2].

Theorem 1. Let 1 ≤ p ≤ ∞. Then

(B̂dBp
(D, X∗), ρdBp

) = (ΠB̂
p∗(D, X∗), πB

p∗).

Proof. Let f ∈ ΠB̂
p∗(D, X∗) and γ ∈ lin(Γ(D)) ⊗ X. If ∑

n
i=1 λiγzi

⊗ xi is a representation of γ,

then

|γ( f )| ≤
n

∑
i=1

|λi|
∥∥ f ′(zi)

∥∥ ‖xi‖

≤

( n

∑
i=1

|λi|
p∗
∥∥ f ′(zi)

∥∥p∗
) 1

p∗
( n

∑
i=1

‖xi‖
p
) 1

p

≤ πB
p∗( f )

( n

∑
i=1

‖xi‖
p
) 1

p

sup
g∈BB̂(D)

( n

∑
i=1

|λi|
p∗
∣∣g′(zi)

∣∣p∗
) 1

p∗

whenever 1 < p < ∞. For p = 1, one has

|γ( f )| ≤
n

∑
i=1

|λi|
∥∥ f ′(zi)

∥∥ ‖xi‖

≤

(
max

1≤i≤n
|λi|

∥∥ f ′(zi)
∥∥
) n

∑
i=1

‖xi‖

≤ πB
∞( f ) sup

g∈BB̂(D)

(
max

1≤i≤n
|λi|

∣∣g′(zi)
∣∣
) n

∑
i=1

‖xi‖ ,

and, for p = ∞, we obtain

|γ( f )| ≤
n

∑
i=1

|λi|
∥∥ f ′(zi)

∥∥ ‖xi‖

≤

(
max

1≤i≤n
‖xi‖

) n

∑
i=1

|λi|
∥∥ f ′(zi)

∥∥

≤ πB
1 ( f )

(
max

1≤i≤n
‖xi‖

)
sup

g∈BB̂(D)

( n

∑
i=1

|λi|
∣∣g′(zi)

∣∣
)

.
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Passing to the infimum over all such representations of γ yields that |γ( f )| ≤ πB
p∗( f )dBp (γ).

Hence, f ∈ B̂dBp
(D, X∗) and ρdBp

( f ) ≤ πB
p∗( f ).

Conversely, let f ∈ B̂dBp
(D, X∗), n ∈ N, λ1, . . . , λn ∈ C and z1, . . . , zn ∈ D. Choose ε > 0.

For each i ∈ {1, . . . , n}, we can take xi ∈ X with ‖xi‖ ≤ 1 + ε such that 〈 f ′(zi), xi〉 = ‖ f ′(zi)‖.

Clearly, the function T : Kn → K, defined by

T(t1, . . . , tn) =
n

∑
i=1

tiλi

∥∥ f ′(zi)
∥∥ , ∀(t1, . . . , tn) ∈ K

n,

belongs to (Kn, ‖ · ‖p)∗ with

‖T‖ =





( n

∑
i=1

|λi|
p∗ ∥∥ f ′(zi)

∥∥p∗
) 1

p∗

, if 1 < p ≤ ∞,

max
1≤i≤n

|λi|
∥∥ f ′(zi)

∥∥ , if p = 1.

For all (t1, . . . , tn) ∈ Kn with ‖(t1, . . . , tn)‖p ≤ 1, we obtain

|T(t1, . . . , tn)| =

∣∣∣∣
n

∑
i=1

λi

〈
f ′(zi), tixi

〉 ∣∣∣∣ =
∣∣∣∣

n

∑
i=1

λi 〈γzi
⊗ (tixi), f 〉

∣∣∣∣

≤ ρdBp
( f )dBp

( n

∑
i=1

λiγzi
⊗ (tixi)

)
.

For 1 < p < ∞ we get

|T(t1, . . . , tn)| ≤ ρdBp
( f )

( n

∑
i=1

‖tixi‖
p
) 1

p

sup
g∈B

B̂(D)

( n

∑
i=1

|λi|
p∗ ∣∣g′(zi)

∣∣p∗
) 1

p∗

≤ ρdBp
( f )(1 + ε) sup

g∈B
B̂(D)

( n

∑
i=1

|λi|
p∗ ∣∣g′(zi)

∣∣p∗
) 1

p∗

,

hence one has

( n

∑
i=1

|λi|
p∗ ∥∥ f ′(zi)

∥∥p∗
) 1

p∗

≤ ρdBp
( f )(1 + ε) sup

g∈B
B̂(D)

( n

∑
i=1

|λi|
p∗ ∣∣g′(zi)

∣∣p∗
) 1

p∗

.

By the arbitrariness of ε we get

( n

∑
i=1

|λi|
p∗ ∥∥ f ′(zi)

∥∥p∗
) 1

p∗

≤ ρdBp
( f ) sup

g∈B
B̂(D)

( n

∑
i=1

|λi|
p∗ ∣∣g′(zi)

∣∣p∗
) 1

p∗

,

and so f ∈ ΠB̂
p∗(D, X∗) with πB

p∗( f ) ≤ ρdBp
( f ).

For p = 1 we have

|T(t1, . . . , tn)| ≤ ρdB1
( f )

( n

∑
i=1

‖tixi‖

)
sup

g∈BB̂(D)

(
max

1≤i≤n
|λi|

∣∣g′(zi)
∣∣
)

≤ ρdB1
( f )(1 + ε) sup

g∈BB̂(D)

(
max

1≤i≤n
|λi|

∣∣g′(zi)
∣∣
)

,
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which yields

max
1≤i≤n

|λi|
∥∥ f ′(zi)

∥∥ ≤ ρdB1
( f ) sup

g∈BB̂(D)

(
max

1≤i≤n
|λi|

∣∣g′(zi)
∣∣
)

,

and so f ∈ ΠB̂
∞(D, X∗) with πB

∞( f ) ≤ ρdB1
( f ).

For p = ∞ one has

|T(t1, . . . , tn)| ≤ ρdB∞
( f )

(
max

1≤i≤n
‖tixi‖

)
sup

g∈B
B̂(D)

( n

∑
i=1

|λi|
∣∣g′(zi)

∣∣
)

≤ ρdB∞
( f )(1 + ε) sup

g∈B
B̂(D)

( n

∑
i=1

|λi|
∣∣g′(zi)

∣∣
)

,

consequently,
n

∑
i=1

|λi|
∥∥ f ′(zi)

∥∥ ≤ ρdB∞
( f ) sup

g∈BB̂(D)

( n

∑
i=1

|λi|
∣∣g′(zi)

∣∣
)

,

and so f ∈ ΠB̂
1 (D, X∗) with πB

1 ( f ) ≤ ρdB∞
( f ).

We can obtain a similar identification for the space of Bloch maps that admit a factorization

through of a Hilbert space. Let us recall the basic facts from [5].

A mapping f ∈ H(D, X) is said to factor through of a Hilbert space if there exists a measure

µ, a mapping g ∈ B̂(D, L2(µ)) and an operator T ∈ L(L2(µ), X) such that f = T ◦ g, that is,

the following diagram

L2(µ)
T

""❊
❊❊

❊❊
❊❊

❊

D

g
<<②②②②②②②②

f
// X

commutes. We set γB
2 ( f ) = inf {‖T‖ ρB(g)}, where the infimum runs over all possible fac-

torizations of f as above. We denote by (ΓB̂
2 (D, X), γB

2 ) the Banach space of all mappings

f ∈ H(D, X) that admit such a factorization.

For (λi, zi)
n
i=1 ∈ (C × D)n and (µj, wj)

m
j=1 ∈ (C × D)m, n, m ∈ N, we say that (λi, zi)

n
i=1 is

Bloch subordinated to (µj, wj)
m
j=1, and we write (λi, zi)

n
i=1 ≺ (µj, wj)

m
j=1, whenever

n

∑
i=1

|λi|
2 ∣∣g′(zi)

∣∣2 ≤
m

∑
j=1

∣∣µj

∣∣2 ∣∣g′(wj)
∣∣2

for all g ∈ B̂(D). This means that there exists an operator T ∈ L(ℓm
2 , ℓn

2) with ‖T‖ ≤ 1,

represented by an n × m complex matrix (aij), such that λiγzi
= ∑

m
j=1 aijµjγwj

for every

1 ≤ i ≤ n.

Moreover, a mapping f ∈ B̂(D, X) factors through a Hilbert space if and only if there exists

a constant c ≥ 0 such that

n

∑
i=1

|λi|
2 ∥∥ f ′(zi)

∥∥2
≤ c2

m

∑
j=1

∣∣µj

∣∣2

(1 − |wj|2)2
,

whenever (λi, zi)
n
i=1 ≺ (µj, wj)

m
j=1, (λi, zi)

n
i=1 ∈ (C × D)n, (µj, wj)

m
j=1 ∈ (C × D)m, n, m ∈ N.

In this case, γB
2 ( f ) is the minimum of all constants c satisfying the preceding inequality.
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For γ ∈ lin(Γ(D))⊗ X, we set

wB
2 (γ) = inf

{( n

∑
i=1

‖xi‖
2
) 1

2
( m

∑
j=1

|µj|
2

(1 − |wj|2)2

) 1
2

}
,

where the infimum is taken over the representations of γ in the form ∑
n
i=1 λiγzi

⊗ xi such that

(λi, zi)
n
i=1 ≺ (µj, wj)

m
j=1 with (λi, zi)

n
i=1 ∈ (C × D)n, (µj , wj)

m
j=1 ∈ (C × D)m, n, m ∈ N, and

(xi)
n
i=1 ∈ Xn. We know that wB

2 defines a reasonable Bloch cross-norm on lin(Γ(D))⊗ X.

We now prove that the Banach space of all normalized wB
2 -Bloch mappings from D to X∗

can be identified with the Banach space ΓB̂
2 (D, X∗).

Theorem 2. (B̂wB
2
(D, X∗), ρwB

2
) = (ΓB̂

2 (D, X∗), γB
2 ).

Proof. Let f ∈ ΓB̂
2 (D, X∗) and γ ∈ lin(Γ(D)) ⊗ X. Take a representation ∑

n
i=1 λiγzi

⊗ xi of γ

such that (λi, zi)
n
i=1 ≺ (µj, wj)

m
j=1, (λi, zi)

n
i=1 ∈ (C × D)n, (µj, wj)

m
j=1 ∈ (C × D)m, n, m ∈ N,

and (xi)
n
i=1 ∈ Xn. We have

|γ( f )| ≤
n

∑
i=1

|λi|
∥∥ f ′(zi)

∥∥ ‖xi‖

≤

( n

∑
i=1

|λi|
2
∥∥ f ′(zi)

∥∥2
) 1

2
( n

∑
i=1

‖xi‖
2
) 1

2

≤ γB
2 ( f )

( n

∑
i=1

‖xi‖
2
) 1

2
( m

∑
j=1

|µj|
2

(1 − |wj|2)2

) 1
2

,

and therefore |γ( f )| ≤ γB
2 ( f )wB

2 (γ) by taking the infimum over all the representations of γ.

Hence, f ∈ B̂wB
2
(D, X∗) and ρwB

2
( f ) ≤ γB

2 ( f ).

Conversely, let f ∈ B̂wB
2
(D, X∗) and let (λi, zi)

n
i=1 ∈ (C × D)n, (µj, wj)

m
j=1 ∈ (C × D)m,

n, m ∈ N, be such that (λi, zi)
n
i=1 ≺ (µj, wj)

m
j=1. Choose any ε > 0. For each i ∈ {1, . . . , n},

let us choose xi ∈ X with ‖xi‖ ≤ 1 + ε such that 〈 f ′(zi), xi〉 = ‖ f ′(zi)‖. Clearly, the function

T : K
n → K, given by

T(t1, . . . , tn) =
n

∑
i=1

tiλi

∥∥ f ′(zi)
∥∥ , ∀(t1, . . . , tn) ∈ K

n,

is in (Kn, ‖ · ‖2)
∗ with

‖T‖ =

( n

∑
i=1

|λi|
2 ∥∥ f ′(zi)

∥∥2
) 1

2

.

For all (t1, . . . , tn) ∈ K
n with ‖(t1, . . . , tn)‖2 ≤ 1, we have

|T(t1, . . . , tn)| =

∣∣∣∣
n

∑
i=1

λi

〈
f ′(zi), tixi

〉 ∣∣∣∣ =
∣∣∣∣

n

∑
i=1

λi 〈γzi
⊗ (tixi), f 〉

∣∣∣∣

≤ ρwB
2
( f )wB

2

( n

∑
i=1

λiγzi
⊗ (tixi)

)
.
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Hence, we get

|T(t1, . . . , tn)| ≤ ρwB
2
( f )

( n

∑
i=1

‖tixi‖
2
) 1

2
( m

∑
j=1

|µj|
2

(1 − |wj|2)2

) 1
2

≤ ρwB
2
( f )(1 + ε)

( m

∑
j=1

|µj |
2

(1 − |wj|2)2

) 1
2

,

therefore ( n

∑
i=1

|λi|
2 ∥∥ f ′(zi)

∥∥2
) 1

2

≤ ρwB
2
( f )(1 + ε)

( m

∑
j=1

|µj |
2

(1 − |wj|2)2

) 1
2

.

Passing to the limit as ε → 0 yields

( n

∑
i=1

|λi|
2 ∥∥ f ′(zi)

∥∥2
) 1

2

≤ ρwB
2
( f )

( m

∑
j=1

|µj|
2

(1 − |wj|2)2

) 1
2

,

and thus f ∈ ΓB̂
2 (D, X∗) with γB

2 ( f ) ≤ ρwB
2
( f ).

3 Duality for spaces of cross-norm-Bloch mappings

We now establish a canonical identification between the normed space (B̂α(D, X∗), ρα) and

the dual space of lin(Γ(D))⊗̂αX if α is a Bloch cross-norm on lin(Γ(D)) ⊗ X. Compare this

result to [15, Theorem 3.1]. In particular, (B̂α(D, X∗), ρα) will be a Banach space.

Theorem 3. Let α be a Bloch cross-norm on lin(Γ(D)) ⊗ X. Then B̂α(D, X∗) is isometrically

isomorphic to (lin(Γ(D))⊗̂αX)∗ via the map Λ : B̂α(D, X∗) → (lin(Γ(D))⊗̂αX)∗ defined by

Λ( f )(γ) =
n

∑
i=1

λi

〈
f ′(zi), xi

〉

for all f ∈ B̂α(D, X∗) and γ = ∑
n
i=1 λiγzi

⊗ xi ∈ lin(Γ(D))⊗ X.

Its inverse satisfies 〈
(Λ−1(ϕ))′(z), x

〉
= ϕ(γz ⊗ x)

for all ϕ ∈ (lin(Γ(D))⊗̂αX)∗, z ∈ D and x ∈ X.

Proof. Let f ∈ B̂α(D, X∗) and let Λ0( f ) be the linear functional on lin(Γ(D))⊗ X given by

Λ0( f )(γ) =
n

∑
i=1

λi

〈
f ′(zi), xi

〉

for all γ = ∑
n
i=1 λiγzi

⊗ xi ∈ lin(Γ(D)) ⊗ X. Notice that Λ0( f ) ∈ (lin(Γ(D)) ⊗α X)∗ and

‖Λ0( f )‖ ≤ ρα( f ), since

|Λ0( f )(γ)| =

∣∣∣∣
n

∑
i=1

λi

〈
f ′(zi), xi

〉 ∣∣∣∣ ≤ ρα( f )α(γ)

for all γ = ∑
n
i=1 λiγzi

⊗ xi ∈ lin(Γ(D)) ⊗ X. Hence, there is a unique continuous

extension Λ( f ) of Λ0( f ) to lin(Γ(D))⊗̂αX. Moreover, Λ( f ) is linear and ‖Λ( f )‖ = ‖Λ0( f )‖.

Let Λ : B̂α(D, X∗) → (lin(Γ(D))⊗̂αX)∗ be the map so defined.
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Clearly, the mapping Λ0 : B̂α(D, X∗) → (lin(Γ(D)) ⊗α X)∗ is linear. If f ∈ B̂α(D, X∗) and

Λ0( f ) = 0, then 〈 f ′(z), x〉 = Λ0( f )(γz ⊗ x) = 0 for all z ∈ D and x ∈ X, hence f ′(z) = 0 for

all z ∈ D and therefore f = 0. This proves that Λ0 is injective.

The map Λ is also linear and injective. Indeed, let φ ∈ lin(Γ(D))⊗̂αX and let {γn} be

a sequence in lin(Γ(D)) ⊗α X such that α(γn − φ) → 0 as n → ∞. Given a, b ∈ C and

f , g ∈ B̂α(D, X∗), an easy calculation shows that

Λ(a f + bg)(γn) = Λ0(a f + bg)(γn) = (aΛ0( f ) + bΛ0(g))(γn) = (aΛ( f ) + bΛ(g))(γn)

for all n ∈ N. Taking limits with n → ∞, we get Λ(a f + bg)(φ) = (aΛ( f )+ bΛ(g))(φ). Hence,

Λ is linear. For the injectivity of Λ, note that if f ∈ B̂α(D, X∗) and Λ( f ) = 0, then Λ0( f ) = 0,

which implies that f = 0 by the injectivity of Λ0.

We now claim that Λ is a surjective isometry. Indeed, let ϕ ∈ (lin(Γ(D))⊗̂αX)∗ and define

gϕ : D → X∗ by 〈
gϕ(z), x

〉
= ϕ(γz ⊗ x), z ∈ D, x ∈ X.

Clearly, gϕ(z) is a bounded linear functional on X with
∥∥gϕ(z)

∥∥ = ‖ϕ‖ ‖γz‖. Reasoning as

in the proof of [4, Proposition 2.4], the mapping gϕ is in H(D, X∗) and there exists a map

fϕ ∈ B̂(D, X∗) such that f ′ϕ = gϕ. For any ∑
n
i=1 λiγzi

⊗ xi ∈ lin(Γ(D))⊗ X, we have

∣∣∣∣
n

∑
i=1

λi

〈
f ′ϕ(zi), xi

〉 ∣∣∣∣ =
∣∣∣∣

n

∑
i=1

λi

〈
gϕ(zi), xi

〉 ∣∣∣∣

=

∣∣∣∣ϕ
( n

∑
i=1

λiγzi
⊗ xi

)∣∣∣∣ ≤ ‖ϕ‖ α

( n

∑
i=1

λiγzi
⊗ xi

)
.

Therefore, fϕ ∈ B̂α(D, X∗) and ρα( fϕ) ≤ ‖ϕ‖. For all γ = ∑
n
i=1 λiγzi

⊗α xi ∈ lin(Γ(D)) ⊗ X,

we get

Λ( fϕ)(γ) = Λ0( fϕ)(γ) =
n

∑
i=1

λi

〈
f ′ϕ(zi), xi

〉

=
n

∑
i=1

λi ϕ(γzi
⊗ xi) = ϕ

( n

∑
i=1

λiγzi
⊗ xi

)
= ϕ(γ).

Hence, Λ( fϕ) = ϕ on a dense subspace of lin(Γ(D))⊗̂αX. So, Λ( fϕ) = ϕ. Moreover,

ρα( fϕ) ≤ ‖ϕ‖ = ‖Λ( fϕ)‖. This completes the proof of our claim.

For the last assertion of the statement, note that

〈(Λ−1(ϕ))′(z), x〉 = 〈 f ′ϕ(z), x〉 = 〈gϕ(z), x〉 = ϕ(γz ⊗ x)

for ϕ ∈ (lin(Γ(D))⊗̂αX)∗, z ∈ D and x ∈ X.

Lemma 2 and Theorem 3 provide the following identification.

Corollary 1. (B̂(D, X∗), ρB) ∼= ((lin(Γ(D))⊗̂πX)∗, ‖ · ‖).

From Theorems 1 and 3, we infer the following description for the space of p-summing

Bloch mappings from D into X∗.

Corollary 2. (ΠB̂
p (D, X∗), πB

p )
∼= ((lin(Γ(D))⊗̂dB

p∗
X)∗, ‖ · ‖) for any 1 ≤ p ≤ ∞.
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Similarly, Theorems 2 and 3 permit us to describe the space of Bloch mappings from D into

X∗ that factor through a Hilbert space.

Corollary 3. (ΓB̂
2 (D, X∗), γB

2 )
∼= ((lin(Γ(D))⊗̂wB

2
X)∗, ‖ · ‖).

Since B̂α(D, X∗) is a dual Banach space by Theorem 3, the following topologies can be

considered.

Definition 3. Let α be a Bloch cross-norm on lin(Γ(D)) ⊗ X.

The weak* topology (in short, w∗) on B̂α(D, X∗) is the topology induced by the linear space

κlin(Γ(D))⊗̂αX(lin(Γ(D))⊗̂αX) of linear functionals on (lin(Γ(D))⊗̂αX)∗.

The weak* Bloch topology (in short, w∗B) on B̂α(D, X∗) is the topology induced by the

linear space lin(Γ(D)) ⊗ X of linear functionals on B̂α(D, X∗).

The following facts on w∗B can be deduced from the theory on topologies induced by

families of functions (see, for example, [10, Section 2.4]).

Remark 3. Let α be a Bloch cross-norm on lin(Γ(D)) ⊗ X.

(i) w∗B is a locally convex topology on B̂α(D, X∗), and the dual of B̂α(D, X∗) with respect

to this topology is lin(Γ(D))⊗ X. Since the family of functions lin(Γ(D))⊗ X is separat-

ing, then w∗B is completely regular.

(ii) If { fν} is a net in B̂α(D, X∗) and f ∈ B̂α(D, X∗), then { fν} → f in the w∗B-topology if

and only if {γ( fν)} → γ( f ) for each γ ∈ lin(Γ(D))⊗ X.

(iii) If B(D, X∗) is a linear subspace of B̂α(D, X∗) and B̂α(D, X∗) is equipped with the

w∗B-topology, then the relative w∗B-topology of B̂α(D, X∗) on B(D, X∗) agrees with

the topology induced by the linear space
{

γ
∣∣
B(D,X∗)

: γ ∈ lin(Γ(D))⊗ X
}

of linear func-

tionals on B(D, X∗).

Corollary 4. Let α be a Bloch cross-norm on lin(Γ(D))⊗ X.

(i) A net { fν} in B̂α(D, X∗) converges to f ∈ B̂α(D, X∗) in the w∗-topology if and only if

{γ( fν)} converges to γ( f ) for every γ ∈ lin(Γ(D))⊗̂αX.

(ii) On B̂α(D, X∗), the w∗B-topology is weaker than the w∗-topology. Moreover, both topolo-

gies agree on bounded subsets of B̂α(D, X∗).

Proof. (i) Let Λ : B̂α(D, X∗) → (lin(Γ(D))⊗̂αX)∗ be the identification of Theorem 3. Then we

have

{ fν} → f in (B̂α(D, X∗), w∗) ⇔ {Λ( fν)} → Λ( f ) in ((lin(Γ(D))⊗̂αX)∗, w∗)

⇔
{〈

κlin(Γ(D))⊗̂αX(γ), Λ( fν)
〉}

→
〈
κlin(Γ(D))⊗̂αX(γ), Λ( f )

〉
,

∀γ ∈ lin(Γ(D))⊗̂αX,

⇔ {Λ( fν)(γ)} → Λ( f )(γ), ∀γ ∈ lin(Γ(D))⊗̂αX,

⇔ {γ( fν)} → γ( f ), ∀γ ∈ lin(Γ(D))⊗̂αX.
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(ii) Let { fν} be a net in B̂α(D, X∗) such that { fν} → f ∈ B̂α(D, X∗) in the w∗-topology.

By (i), we have {γ( fν)} → γ( f ) for each γ ∈ lin(Γ(D))⊗̂αX. In particular, {γ( fν)} → γ( f )

for each γ ∈ lin(Γ(D)) ⊗ X. This means that { fν} → f in the w∗B-topology. Hence, the

identity on B̂α(D, X∗) is a continuous bijection from the w∗-topology to the w∗B-topology

and thus the latter topology is weaker that the former as required. On a bounded subset of

B̂α(D, X∗), the w∗-topology is compact and the w∗B-topology is Hausdorff, so both topologies

must coincide.

4 Banach spaces of normalized Bloch mappings

We have identified B̂α(D, X∗) as the dual space (lin(Γ(D))⊗̂αX)∗ in Theorem 3. Our goal

now is to address the general duality problem as to when a space of normalized Bloch map-

pings from D into X∗ is isometrically isomorphic to (lin(Γ(D))⊗̂αX)∗ for some Bloch cross-

norm α.

We first determine what are those Bloch cross-norms α on lin(Γ(D)) ⊗ X for which

B̂α(D, X∗) is a Banach normalized Bloch space.

Theorem 4. Let α be a Bloch cross-norm on lin(Γ(D)) ⊗ X. Then B̂α(D, X∗) is a Banach nor-

malized Bloch space if and only if α is reasonable.

Proof. In view of Lemma 1 and Theorem 3, we have that B̂α(D, X∗) is a linear subspace of

B̂(D, X∗) and (B̂α(D, X∗), ρα) satisfies condition (i) in Definition 1. Hence, we only need to

prove that (B̂α(D, X∗), ρα) satisfies condition (ii) in Definition 1 if and only if α is reasonable.

Assume that α is reasonable. Let g ∈ B̂(D) and x∗ ∈ X∗. We have
∣∣∣∣

n

∑
i=1

λi

〈
(g · x∗)′(zi), xi

〉 ∣∣∣∣ =
∣∣∣∣

n

∑
i=1

λig
′(zi)x∗(xi)

∣∣∣∣

=

∣∣∣∣(g ⊗ x∗)

( n

∑
i=1

λiγzi
⊗ xi

)∣∣∣∣

≤ ‖g ⊗ x∗‖ α

( n

∑
i=1

λiγzi
⊗ xi

)

≤ ρB(g) ‖x∗‖ α

( n

∑
i=1

λiγzi
⊗ xi

)

for all ∑
n
i=1 λiγzi

⊗ xi ∈ lin(Γ(D))⊗ X. So, g · x∗ ∈ B̂α(D, X∗) and ρα(g · x∗) ≤ ρB(g) ‖x∗‖.

For the converse inequality, note that ρB(g) ‖x∗‖ = ρB(g · x∗) ≤ ρα(g · x∗), where we have

used Lemma 1.

Conversely, if (B̂α(D, X∗), ρα) enjoys the cited condition (ii), given g ∈ B̂(D) and x∗ ∈ X∗,

one has ∣∣∣∣(g ⊗ x∗)

( n

∑
i=1

λiγzi
⊗ xi

)∣∣∣∣ =
∣∣∣∣

n

∑
i=1

λi

〈
(g · x∗)′(zi), xi

〉 ∣∣∣∣

≤ ρα(g · x∗)α

( n

∑
i=1

λiγzi
⊗ xi

)

= ρB(g) ‖x∗‖ α

( n

∑
i=1

λiγzi
⊗ xi

)

for all ∑
n
i=1 λiγzi

⊗ xi ∈ lin(Γ(D))⊗ X, and thus α is reasonable.
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The combination of [5, Theorem 5.2], Proposition 1 and Theorem 4 yields the following

assertion.

Corollary 5. B̂α(D, X∗) is a Banach normalized Bloch space for α = wB
2 and dBp with p ∈ [1, ∞].

We will now deal with the problem of when a Banach normalized Bloch space can be

canonically identified with the dual of a tensor product space endowed with a Bloch cross-

norm. Our approach is based on the arguments applied to address a similar problem in the

setting of operator spaces (see [7, Section 4]).

Lemma 3. Let B(D, X∗) be a Banach normalized Bloch space.

For γ = ∑
n
i=1 λiγzi

⊗ xi ∈ lin(Γ(D))⊗ X, define

α(γ) = sup

{∣∣∣∣
n

∑
i=1

λi

〈
f ′(zi), xi

〉 ∣∣∣∣ : f ∈ B(D, X∗), ‖ f‖B = 1

}

and

〈ι(γ), f 〉 =
n

∑
i=1

λi

〈
f ′(zi), xi

〉
, f ∈ B(D, X∗).

Then α is a reasonable Bloch cross-norm on lin(Γ(D)) ⊗ X, and ι is a linear isometry

from lin(Γ(D))⊗α X into B(D, X∗)∗.

Proof. Let γ = ∑
n
i=1 λiγzi

⊗ xi ∈ lin(Γ(D)) ⊗ X and f ∈ B(D, X∗). Note that 〈ι(γ), f 〉 = γ( f ).

Clearly, ι(γ) is well defined on B(D, X∗), it is linear and

|〈ι(γ), f 〉| ≤ ρB( f )π(γ) ≤ ‖ f‖Bπ(γ)

for all f ∈ B(D, X∗). Then ι(γ) is in B(D, X∗)∗ and

‖ι(γ)‖ := sup {|〈ι(γ), f 〉| : f ∈ B(D, X∗), ‖ f‖B = 1} ≤ π(γ).

Clearly, ι : lin(Γ(D)) ⊗ X → B(D, X∗)∗ is well defined and linear. Moreover, it is injec-

tive. Indeed, ι(γ) = 0 means that 〈ι(γ), f 〉 = 0 for all f ∈ B(D, X∗). In particular, we have

〈γ, g · x∗〉 = 〈ι(γ), g · x∗〉 = 0 for all g ∈ B̂(D) and x∗ ∈ X∗. It follows that

x∗
( n

∑
i=1

λig
′(zi)xi

)
=

n

∑
i=1

λig
′(zi)x∗(xi) = 0

for all g ∈ B̂(D) and x∗ ∈ X∗. Since X∗ separates the points of X, this implies that

n

∑
i=1

λig
′(zi)xi = 0

for all g ∈ B̂(D). For each i ∈ {1, . . . , n}, consider the polynomial qi : D → C defined by

qi(z) =
n

∏
k=1,k 6=i

z − zk

zi − zk
,

and take a polynomial pi : D → C such that p′i = qi and pi(0) = 0. Then pi ∈ B̂(D) with

p′i(zk) = δik for all k ∈ {1, . . . , n}, where δik is the Kronecker’s delta.
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Hence,

0 =
n

∑
k=1

λk p′i(zk)xk =
n

∑
k=1

λkδikxk = λixi

for each i ∈ {1, . . . , n}. Therefore, γ( f ) = ∑
n
i=1 〈 f ′(zi), λixi〉 = 0 for all f ∈ B(D, X∗), and so

we get γ = 0.

Define the map α on lin(Γ(D)) ⊗ X as in the statement. Notice that α(γ) = ‖ι(γ)‖.

Then α is a norm on lin(Γ(D)) ⊗ X and so ι is a linear isometry from lin(Γ(D)) ⊗α X into

B(D, X∗)∗.

We now prove that α is a reasonable Bloch cross-norm. For any z ∈ D and x ∈ X, we have

α (γz ⊗ x) = ‖ι (γz ⊗ x)‖ ≤ π (γz ⊗ x) =
‖x‖

1 − |z|2
.

The converse inequality will follow in light of Remark 1.

Given ∑
n
i=1 λiγzi

⊗ xi ∈ lin(Γ(D)) ⊗ X, for any g ∈ SB̂(D) and x∗ ∈ SX∗ , we get

∣∣∣∣(g ⊗ x∗)

( n

∑
i=1

λiγzi
⊗ xi

)∣∣∣∣ =
∣∣∣∣

n

∑
i=1

λig
′(zi)x∗(xi)

∣∣∣∣

=

∣∣∣∣
n

∑
i=1

λi

〈
(g · x∗)′(zi), xi

〉 ∣∣∣∣

≤ sup

{∣∣∣∣
n

∑
i=1

λi

〈
f ′(zi), xi

〉 ∣∣∣∣ : f ∈ B(D, X∗), ‖ f‖B = 1

}

= α

( n

∑
i=1

λiγzi
⊗ xi

)
,

and so α is reasonable.

We are ready to state the main result of this section. Compare it to [7, Theorem 5].

Theorem 5. Let B(D, X∗) be a Banach normalized Bloch space. The following statements are

equivalent:

(i) there is a reasonable Bloch cross-norm α on lin(Γ(D))⊗ X such that

(B(D, X∗), ‖ · ‖B) = (B̂α(D, X∗), ρα),

(ii) if f is in B̂(D, X∗) and { fν} is a bounded net in B(D, X∗) converging to f in the

weak* Bloch topology of B̂(D, X∗), then f ∈ B(D, X∗) and

‖ f‖B ≤ sup{‖ fν‖B : ν ∈ N}.

Proof. (i) ⇒ (ii) Let f and { fν} be as in (ii). Put M = sup{‖ fν‖B : ν ∈ N}.

If ∑
n
i=1 λiγzi

⊗ xi ∈ lin(Γ(D))⊗ X and ε > 0, then we get

∣∣∣∣
n

∑
i=1

λi

〈
f ′(zi), xi

〉
−

n

∑
i=1

〈
f ′ν0

(zi), xi

〉 ∣∣∣∣ =
∣∣∣∣
( n

∑
i=1

λiγzi
⊗ xi

)
( f − fν0)

∣∣∣∣ < ε
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for some ν0 ∈ N, and therefore
∣∣∣∣

n

∑
i=1

λi

〈
f ′(zi), xi

〉 ∣∣∣∣ <
∣∣∣∣

n

∑
i=1

λi

〈
f ′ν0

(zi), xi

〉 ∣∣∣∣+ ε

≤ ρα( fν0)α

( n

∑
i=1

λiγzi
⊗ xi

)
+ ε

= ‖ fν0‖B α

( n

∑
i=1

λiγzi
⊗ xi

)
+ ε

≤ Mα

( n

∑
i=1

λiγzi
⊗ xi

)
+ ε.

Let us take the limit as ε → 0. We obtain that f ∈ B̂α(D, X∗) and ρα( f ) ≤ M. Hence,

f ∈ B(D, X∗) and ‖ f‖B ≤ M.

(ii) ⇒ (i) Take the reasonable Bloch cross-norm α on lin(Γ(D)) ⊗ X and the linear iso-

metry ι from lin(Γ(D)) ⊗α X into B(D, X∗)∗ defined in Lemma 3. In order to prove that

(B(D, X∗), ‖ · ‖B) = (B̂α(D, X∗), ρα), given f ∈ B(D, X∗), the definition of α yields
∣∣∣∣

n

∑
i=1

λi

〈
f ′(zi), xi

〉 ∣∣∣∣ ≤ ‖ f‖B α

( n

∑
i=1

λiγzi
⊗ xi

)

for all ∑
n
i=1 λiγzi

⊗ xi ∈ lin(Γ(D))⊗ X, and thus f ∈ B̂α(D, X∗) with ρα( f ) ≤ ‖ f‖B .

Conversely, take f ∈ B̂α(D, X∗) and define the functional S( f ) : ι(lin(Γ(D))⊗ X) → C by

〈S( f ), ι(γ)〉 =
n

∑
i=1

λi

〈
f ′(zi), xi

〉

for γ = ∑
n
i=1 λiγzi

⊗ xi ∈ lin(Γ(D)) ⊗ X. The injectivity of ι guarantees that S( f ) is well

defined. The linearity of S( f ) follows easily. Since

|〈S( f ), ι(γ)〉| = |γ( f )| ≤ ρα( f )α(γ) = ρα( f )‖ι(γ)‖

for all γ ∈ lin(Γ(D)) ⊗ X, it follows that S( f ) is continuous and ‖S( f )‖ ≤ ρα( f ). Since

ι(lin(Γ(D)) ⊗ X) is a linear subspace of B(D, X∗)∗, the Hahn-Banach theorem gives a func-

tional S̃( f ) ∈ B(D, X∗)∗∗ such that

〈S̃( f ), ι(γ)〉 = γ( f )

for all γ ∈ lin(Γ(D))⊗ X, and

‖S̃( f )‖ = ‖S( f )‖.

Let κB be the canonical injection from B(D, X∗) into B(D, X∗)∗∗. By Goldstein’s theorem,

there exists a net { fν} in B(D, X∗) for which

sup{‖ fν‖B : ν ∈ N} ≤ ‖S̃( f )‖

and {κB( fν)} → S̃( f ) in (B(D, X∗)∗∗, w∗). This means that

〈κB∗(ϕ), κB( fν)〉 = 〈κB( fν), ϕ〉 → 〈κB∗(ϕ), S̃( f )〉 = 〈S̃( f ), ϕ〉

for every ϕ ∈ B(D, X∗)∗. Since ι(lin(Γ(D)) ⊗ X) ⊆ B(D, X∗)∗, it follows that for each γ ∈

lin(Γ(D))⊗ X, we have

{〈κB( fν), ι(γ)〉} → 〈S̃( f ), ι(γ)〉,

that is, {γ( fν)} → γ( f ). Hence { fν} → f in (B̂(D, X∗), w∗B) by Remark 3. Then, by hypothe-

sis, f ∈ B(D, X∗) and ‖ f‖B ≤ sup{‖ fν‖B : ν ∈ N} ≤ ρα( f ).
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Theorem 5 admits the following useful reformulation that can be compared to the result by

J.R. Holub (see [7, Corollary, p. 400]).

Corollary 6. Let B(D, X∗) be a Banach normalized Bloch space. Then the following statements

are equivalent:

(i) there exists a reasonable Bloch cross-norm α on lin(Γ(D))⊗ X such that

(B(D, X∗), ‖ · ‖B) = (B̂α(D, X∗), ρα),

(ii) the closed unit ball of B(D, X∗) is compact in the weak* Bloch topology of B̂(D, X∗).

Proof. (i) ⇒ (ii) Recall that (B̂α(D, X∗), ρα) is a dual Banach space by Theorem 3. Then, by (i),

Alaoglu’s theorem asserts that the closed unit ball of B(D, X∗) is compact in (B̂α(D, X∗), w∗)

and therefore in (B̂α(D, X∗), w∗B) by Corollary 4. Since B̂α(D, X∗) is a linear subspace of

B̂(D, X∗), this last topology agrees with the relative w∗B-topology of B̂(D, X∗) on B̂α(D, X∗)

by Remark 3, and then (ii) follows easily.

(ii) ⇒ (i) Let f ∈ B̂(D, X∗) and let { fν} be a bounded net in B(D, X∗) such that { fν} → f

in (B̂(D, X∗), w∗B). Let M = sup{‖ fν‖B : ν ∈ N}. By (ii), the closed unit ball of B(D, X∗) is

closed in (B̂(D, X∗), w∗B). Hence, the limit f /M of the net { fν/M} exists in (B̂(D, X∗), w∗B),

that is, f /M is in the closed unit ball of B(D, X∗). Hence, f ∈ B(D, X∗) and ‖ f‖B ≤ M. Then

the statement (ii) of Theorem 5 holds and we obtain (i).
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Хiменес-Варгас А., Руїс-Кастернадо Д. Про банаховi простори нормалiзованих Блох-образiв // Кар-

патськi матем. публ. — 2025. — Т.17, №2. — C. 717–734.

Застосовуючи теорiю тензорних добуткiв банахових просторiв, ми дослiджуємо банаховi

простори нормалiзованих Блох-образiв iз D (вiдкритого одиничного круга комплексної пло-

щини) у X∗ (спряжений простiр до комплексного банахового простору X), якi можуть

бути канонiчно поданi як спряжений простiр до поповнення тензорного добутку

lin(Γ(D))⊗α X, де lin(Γ(D)) позначає простiр X-значних Блох-молекул на D, а α є Блох-крос-

нормою на lin(Γ(D)) ⊗ X. Показано, що простори нормалiзованих Блох-образiв, p-сумовнi

Блох-образи, а також Блох-образи, якi факторизуються через гiльбертiв простiр, допускають

таке подання. У зворотнiй задачi охарактеризовано умови, за яких банахiв простiр норма-

лiзованих Блох-образiв B(D, X∗) є iзометрично iзоморфним до (lin(Γ(D))⊗̂αX)∗ для деякої

Блох-кроснорми α, зокрема в термiнах компактностi його одиничної кулi вiдносно слабкої*

Блох-топологiї.

Ключовi слова i фрази: векторнозначне Блох-вiдображення, тензорний добуток, p-сумовний

оператор, двоїстiсть.


