

On Banach spaces of normalized Bloch mappings

Jiménez-Vargas A., Ruiz-Casternado D.

Applying the theory of tensor products of Banach spaces, we study the Banach spaces of normalized Bloch maps from \mathbb{D} (the complex unit open disc) into X^* (the dual of a complex Banach space X) that can be represented canonically as the dual of the completion of the tensor product $\text{lin}(\Gamma(\mathbb{D})) \otimes_{\alpha} X$, where $\text{lin}(\Gamma(\mathbb{D}))$ is the space of X -valued Bloch molecules on \mathbb{D} and α is a Bloch cross-norm on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$. We show that the normalized spaces of Bloch maps, p -summing Bloch maps and Bloch maps that factor through a Hilbert space admit such a representation. On the converse problem, we characterize when a Banach normalized Bloch space $B(\mathbb{D}, X^*)$ is isometrically isomorphic to $(\text{lin}(\Gamma(\mathbb{D})) \widehat{\otimes}_{\alpha} X)^*$ for some Bloch cross-norm α , in terms of the compactness of its unit ball with respect to the weak* Bloch topology.

Key words and phrases: vector-valued Bloch mapping, tensor product, p -summing operator, duality.

University of Almería, Carretera de Sacramento s/n, 04120 La Cañada de San Urbano, Almería, Spain
E-mail: ajimenez@ual.es (Jiménez-Vargas A.), drc446@ual.es (Ruiz-Casternado D.)

1 Introduction

The use of the tensor product of Banach spaces to study spaces of vector-valued holomorphic mappings is well known (see, for example, [2, 11–13]). Recently, some tensorial tools have been applied to address the problem of the duality of some distinguished ideals of vector-valued Bloch mappings in [3, 4, 8, 9].

Let \mathbb{D} be the complex unit open disc, X be a complex Banach space and $\mathcal{H}(\mathbb{D}, X)$ be the space of all holomorphic maps from \mathbb{D} into X . A mapping $f \in \mathcal{H}(\mathbb{D}, X)$ is said to be Bloch if there exists a constant $c \geq 0$ such that $(1 - |z|^2) \|f'(z)\| \leq c$ for all $z \in \mathbb{D}$.

The normalized Bloch space $\widehat{\mathcal{B}}(\mathbb{D}, X)$ is the Banach space of all mappings $f \in \mathcal{H}(\mathbb{D}, X)$ for which $f(0) = 0$ satisfying

$$\rho_{\mathcal{B}}(f) := \sup \{(1 - |z|^2) \|f'(z)\| : z \in \mathbb{D}\} < \infty$$

equipped with the Bloch norm $\rho_{\mathcal{B}}$. In particular, $\widehat{\mathcal{B}}(\mathbb{D}) := \widehat{\mathcal{B}}(\mathbb{D}, \mathbb{C})$. The monographs by J.M. Anderson [1] and K. Zhu [16] provide a comprehensive study of these known function spaces.

УДК 517.53

2020 Mathematics Subject Classification: 30H30, 46E15, 46B28, 46E40.

Research partially supported by Junta de Andalucía grant FQM194, and by P_FORT_GRUPOS_2023/76, PPIT-UAL, Junta de Andalucía-ERDF 2021-2027. Programme: 54.A. The first author was supported in part by grant PID2021-122126NB-C31 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”; and the second author by an FPU predoctoral fellowship of the Spanish Ministry of Universities (FPU23/03235).

Following [8], a Banach ideal of normalized Bloch maps is an assignment $[\mathcal{I}^{\widehat{\mathcal{B}}}, \|\cdot\|_{\mathcal{I}^{\widehat{\mathcal{B}}}}]$ that associates with every complex Banach space X , a set $\mathcal{I}^{\widehat{\mathcal{B}}}(\mathbb{D}, X) \subseteq \widehat{\mathcal{B}}(\mathbb{D}, X)$ and a function $\|\cdot\|_{\mathcal{I}^{\widehat{\mathcal{B}}}}: \mathcal{I}^{\widehat{\mathcal{B}}} \rightarrow \mathbb{R}$ satisfying the properties:

- (i) $(\mathcal{I}^{\widehat{\mathcal{B}}}(\mathbb{D}, X), \|\cdot\|_{\mathcal{I}^{\widehat{\mathcal{B}}}})$ is a Banach space and $\|f\|_{\mathcal{I}^{\widehat{\mathcal{B}}}} \geq \rho_{\mathcal{B}}(f)$ for all $f \in \mathcal{I}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$,
- (ii) for each $g \in \widehat{\mathcal{B}}(\mathbb{D})$ and $x \in X$, the map $g \cdot x: z \in \mathbb{D} \mapsto g(z)x \in X$ belongs to $\mathcal{I}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$ and $\|g \cdot x\|_{\mathcal{I}^{\widehat{\mathcal{B}}}} = \rho_{\mathcal{B}}(g) \|x\|$,
- (iii) *the ideal property:* if $f \in \mathcal{I}^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$, $h: \mathbb{D} \rightarrow \mathbb{D}$ is a holomorphic function such that $h(0) = 0$ and $T \in \mathcal{L}(X, Y)$, where Y is a complex Banach space, then $T \circ f \circ h$ is in $\mathcal{I}^{\widehat{\mathcal{B}}}(\mathbb{D}, Y)$ and $\|T \circ f \circ h\|_{\mathcal{I}^{\widehat{\mathcal{B}}}} \leq \|T\| \|f\|_{\mathcal{I}^{\widehat{\mathcal{B}}}}$.

If the ideal property (iii) is removed, then the concept of Banach space of normalized Bloch mappings arises, which has a linear counterpart in the notion of Banach space of operators presented by J.R. Holub in [7].

Definition 1. A Banach space of normalized Bloch mappings (or simply, a Banach normalized Bloch space) from \mathbb{D} into X is a linear space $B(\mathbb{D}, X) \subseteq \widehat{\mathcal{B}}(\mathbb{D}, X)$ endowed with a norm $\|\cdot\|_B$ satisfying:

- (i) $(B(\mathbb{D}, X), \|\cdot\|_B)$ is a Banach space and $\|f\|_B \geq \rho_{\mathcal{B}}(f)$ for every $f \in B(\mathbb{D}, X)$,
- (ii) for every $g \in \widehat{\mathcal{B}}(\mathbb{D})$ and $x \in X$, we have $g \cdot x \in B(\mathbb{D}, X)$ and $\|g \cdot x\|_B = \rho_{\mathcal{B}}(g) \|x\|$.

To describe the content of this paper, we need to introduce some notation and recall certain concepts and results from [4,8].

Notation. Given complex Banach spaces X and Y , $\mathcal{L}(X, Y)$ denotes the Banach space of all bounded linear operators from X to Y under the operator canonical norm. In particular, the space $\mathcal{L}(X, \mathbb{C})$ is denoted by X^* . The symbol κ_X stands for the canonical injection from X into X^{**} . For $x \in X$ and $x^* \in X^*$, we will sometimes write $\langle x^*, x \rangle = x^*(x)$. As usual, B_X and S_X represent the closed unit ball of X and the unit sphere of X , respectively.

Given Banach spaces $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$, we will write $(X, \|\cdot\|_X) \leq (Y, \|\cdot\|_Y)$ to indicate that $X \subseteq Y$ and $\|x\|_Y \leq \|x\|_X$ for all $x \in X$; and $(X, \|\cdot\|_X) \cong (Y, \|\cdot\|_Y)$ to point out that they are isometrically isomorphic.

Preliminaries. For each $z \in \mathbb{D}$, a Bloch atom of \mathbb{D} is the function $\gamma_z \in \widehat{\mathcal{B}}(\mathbb{D})^*$ given by

$$\gamma_z(f) = f'(z), \quad f \in \widehat{\mathcal{B}}(\mathbb{D}).$$

The elements of $\text{lin}(\{\gamma_z: z \in \mathbb{D}\}) \subseteq \widehat{\mathcal{B}}(\mathbb{D})^*$ are called Bloch molecules of \mathbb{D} . The Bloch-free Banach space over \mathbb{D} , denoted by $\mathcal{G}(\mathbb{D})$, is the norm-closed linear hull of $\{\gamma_z: z \in \mathbb{D}\} \subseteq \widehat{\mathcal{B}}(\mathbb{D})^*$. The mapping $\Gamma: \mathbb{D} \rightarrow \mathcal{G}(\mathbb{D})$, defined by $\Gamma(z) = \gamma_z$ for all $z \in \mathbb{D}$, is holomorphic with $\|\gamma_z\| = 1/(1 - |z|^2)$ for all $z \in \mathbb{D}$.

For any $z \in \mathbb{D}$ and $x \in X$, the functional $\gamma_z \otimes x: \widehat{\mathcal{B}}(\mathbb{D}, X^*) \rightarrow \mathbb{C}$, given by

$$(\gamma_z \otimes x)(f) = \langle f'(z), x \rangle, \quad f \in \widehat{\mathcal{B}}(\mathbb{D}, X^*),$$

is in $\widehat{\mathcal{B}}(\mathbb{D}, X^*)^*$ with $\|\gamma_z \otimes x\| = \|x\| / (1 - |z|^2)$. Define the linear space

$$\text{lin}(\Gamma(\mathbb{D})) \otimes X := \text{lin}(\{\gamma_z \otimes x: z \in \mathbb{D}, x \in X\}) \subseteq \widehat{\mathcal{B}}(\mathbb{D}, X^*)^*.$$

The elements of this tensor product space are referred to as X -valued Bloch molecules on \mathbb{D} .

We denote by $\text{lin}(\Gamma(\mathbb{D})) \otimes_{\alpha} X$ the linear space $\text{lin}(\Gamma(\mathbb{D})) \otimes X$ with the norm α , and by $\text{lin}(\Gamma(\mathbb{D})) \widehat{\otimes}_{\alpha} X$ the completion of $\text{lin}(\Gamma(\mathbb{D})) \otimes_{\alpha} X$. A norm α on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$ is said to be a Bloch reasonable cross-norm if it satisfies the following properties:

- (i) $\alpha(\gamma_z \otimes x) = \|\gamma_z\| \|x\|$ for all $z \in \mathbb{D}$ and $x \in X$,
- (ii) for every $g \in \widehat{\mathcal{B}}(\mathbb{D})$ and $x^* \in X^*$, the linear functional $g \otimes x^* : \text{lin}(\Gamma(\mathbb{D})) \otimes X \rightarrow \mathbb{C}$, which is defined by $(g \otimes x^*)(\gamma_z \otimes x) = g'(z)x^*(x)$, is bounded on $\text{lin}(\Gamma(\mathbb{D})) \otimes_{\alpha} X$ with $\|g \otimes x^*\| \leq \rho_{\mathcal{B}}(g) \|x^*\|$.

For each $z \in \mathbb{D}$, the function $f_z : \mathbb{D} \rightarrow \mathbb{C}$ defined by

$$f_z(w) = \frac{(1 - |z|^2)w}{1 - \bar{z}w}, \quad w \in \mathbb{D},$$

belongs to $\widehat{\mathcal{B}}(\mathbb{D})$ with $\rho_{\mathcal{B}}(f_z) = 1 = (1 - |z|^2)f'_z(z)$.

Remark 1. In [4, Definition 2.5], the inequality \leq is only required in the condition (i) above since the inequality \geq holds always by applying the condition (ii). Indeed, given $z \in \mathbb{D}$ and $x \in X$, take $x^* \in S_{X^*}$ such that $x^*(x) = \|x\|$, and it follows that

$$\begin{aligned} \alpha(\gamma_z \otimes x) &\geq \|f_z \otimes x^*\| \alpha(\gamma_z \otimes x) \geq |(f_z \otimes x^*)(\gamma_z \otimes x)| \\ &= |f'_z(z)| |x^*(x)| = \frac{\|x\|}{1 - |z|^2} = \|\gamma_z\| \|x\|. \end{aligned}$$

Content. We have divided it into three sections. Inspired by the relation between tensor products and operator spaces studied by R. Schatten [15] and J.R. Holub [7], in Section 2 we introduce and study the space $\widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*)$ of normalized α -Bloch mappings with respect to a Bloch cross-norm α on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$, that is, normalized Bloch mappings from \mathbb{D} to X^* that induce a continuous linear functional on $\text{lin}(\Gamma(\mathbb{D})) \otimes_{\alpha} X$. We show that several known classes of normalized Bloch maps – namely, Bloch maps, p -summing Bloch maps and Bloch maps that factor through a Hilbert space – are associated to Bloch cross-norms in this way.

Section 3 deals with the duality theory for spaces of normalized α -Bloch mappings and contains the main result of this paper: the space of X^* -valued normalized α -Bloch mappings on \mathbb{D} is canonically isometrically isomorphic to the dual of the space $\text{lin}(\Gamma(\mathbb{D})) \widehat{\otimes}_{\alpha} X$. This section is completed by studying the weak* topology and the weak* Bloch topology on the space $\widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*)$.

The main questions we raise in Section 4 can be formulated as follows. When is $\widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*)$ a Banach space of normalized Bloch mappings? In response to this question, we show that reasonable Bloch cross-norms α on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$ are justly those for which the cited statement holds.

The canonical identification of $\widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*)$ with the dual space $(\text{lin}(\Gamma(\mathbb{D})) \widehat{\otimes}_{\alpha} X)^*$ is the basis of our study of the duality for Banach normalized Bloch spaces. On the converse problem, given a Banach space of normalized Bloch mappings, when can it be represented as a space of normalized α -Bloch mappings? In response to this question, we characterize such Banach normalized Bloch spaces by means of the compactness of their unit closed balls with respect to the weak* Bloch topology.

2 Cross-norm-Bloch mappings

The following type of Bloch mappings will permit us to associate canonically a Bloch cross-norm on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$ with a Banach space of normalized Bloch mappings from \mathbb{D} into X^* . Compare it to the concept of operator with “finite α -norm” between Banach spaces E and F , where α is a cross-norm on $E \otimes F$ that was introduced by R. Schatten in [15, Definition 3.2].

Definition 2. Let α be a Bloch cross-norm on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$. A zero-preserving holomorphic mapping $f: \mathbb{D} \rightarrow X^*$ is said to be an α -Bloch mapping if there exists a constant $c \geq 0$ such that

$$\left| \sum_{i=1}^n \lambda_i \langle f'(z_i), x_i \rangle \right| \leq c\alpha \left(\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \right)$$

for all $\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$. The infimum of such constants c is denoted by $\rho_\alpha(f)$ and called the α -Bloch norm of f . The set of all α -Bloch maps from \mathbb{D} into X^* is denoted by $\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$.

Remark 2. Note that if $\gamma = \sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$ and $f \in \widehat{\mathcal{B}}(\mathbb{D}, X^*)$, then

$$\gamma(f) = \sum_{i=1}^n \lambda_i \langle f'(z_i), x_i \rangle,$$

and therefore $f \in \widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$ if and only if $|\gamma(f)| \leq c\alpha(\gamma)$ for all $\gamma \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$. Moreover, we have

$$\begin{aligned} \rho_\alpha(f) &= \min \{c \geq 0: |\gamma(f)| \leq c\alpha(\gamma), \forall \gamma \in \text{lin}(\Gamma(\mathbb{D})) \otimes X\} \\ &= \sup \{|\gamma(f)| : \gamma \in \text{lin}(\Gamma(\mathbb{D})) \otimes X, \alpha(\gamma) \leq 1\}. \end{aligned}$$

We now show that every α -Bloch mapping turns out to be a Bloch mapping and this justifies the terminology used in Definition 2.

Lemma 1. Let α be a Bloch cross-norm on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$. Then $(\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*), \rho_\alpha)$ is a normed space such that $(\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*), \rho_\alpha) \leq (\widehat{\mathcal{B}}(\mathbb{D}, X^*), \rho_\mathcal{B})$.

Proof. Let $f \in \widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$. Given $z \in \mathbb{D}$, we have

$$|\langle f'(z), x \rangle| = |(\gamma_z \otimes x)(f)| \leq \rho_\alpha(f) \alpha(\gamma_z \otimes x) = \rho_\alpha(f) \|\gamma_z\| \|x\|$$

for all $x \in X$. Hence $(1 - |z|^2) \|f'(z)\| \leq \rho_\alpha(f)$ for all $z \in \mathbb{D}$, and thus $f \in \widehat{\mathcal{B}}(\mathbb{D}, X^*)$ with $\rho_\mathcal{B}(f) \leq \rho_\alpha(f)$. Clearly, $\rho_\mathcal{B}(f) \geq 0$. If $\rho_\alpha(f) = 0$, it follows that $\rho_\mathcal{B}(f) = 0$, and therefore $f = 0$.

Next we use Remark 2. Let $\lambda \in \mathbb{C}$. For any $\gamma \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$, we obtain

$$|\gamma(\lambda f)| = |\lambda \gamma(f)| = |\lambda| |\gamma(f)| \leq |\lambda| \rho_\alpha(f) \alpha(\gamma),$$

and therefore $\lambda f \in \widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$ and $\rho_\alpha(\lambda f) \leq |\lambda| \rho_\alpha(f)$. Moreover, by above-proved, if $\lambda = 0$, then $\rho_\alpha(\lambda f) = 0 = |\lambda| \rho_\alpha(f)$, and if $\lambda \neq 0$, we have $\rho_\alpha(f) = \rho_\alpha(\lambda^{-1}(\lambda f)) \leq |\lambda|^{-1} \rho_\alpha(\lambda f)$, and hence $|\lambda| \rho_\alpha(f) \leq \rho_\alpha(\lambda f)$. This proves that $\rho_\alpha(\lambda f) = |\lambda| \rho_\alpha(f)$. Finally, given $g \in \widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$, we have

$$|\gamma(f + g)| = |\gamma(f) + \gamma(g)| \leq |\gamma(f)| + |\gamma(g)| \leq (\rho_\alpha(f) + \rho_\alpha(g)) \alpha(\gamma)$$

for all $\gamma \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$, and so $f + g \in \widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$ and $\rho_\alpha(f + g) \leq \rho_\alpha(f) + \rho_\alpha(g)$. \square

Given $1 \leq p \leq \infty$, let p^* denote the Hölder's conjugate of p given by $p^* = \infty$ if $p = 1$, $p^* = p/(p-1)$ if $1 < p < \infty$ and $p^* = 1$ if $p = \infty$.

The following Bloch variants of the Chevet-Saphar norms on the tensor product of two Banach spaces (see [6, 14]) were introduced in [4].

For each $\gamma \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$, the Bloch projective norm π and the p -Chevet-Saphar Bloch norms d_p^B for $1 \leq p \leq \infty$ are defined on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$ by

$$\begin{aligned}\pi(\gamma) &= \inf \left\{ \sum_{i=1}^n \frac{|\lambda_i| \|x_i\|}{1 - |z_i|^2} \right\}, \\ d_1^B(\gamma) &= \inf \left\{ \left(\sup_{g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}} \left(\max_{1 \leq i \leq n} |\lambda_i| |g'(z_i)| \right) \right) \left(\sum_{i=1}^n \|x_i\| \right) \right\}, \\ d_p^B(\gamma) &= \inf \left\{ \left(\sup_{g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}} \left(\sum_{i=1}^n |\lambda_i|^{p^*} |g'(z_i)|^{p^*} \right)^{\frac{1}{p^*}} \right) \left(\sum_{i=1}^n \|x_i\|^p \right)^{\frac{1}{p}} \right\}, \quad 1 < p < \infty, \\ d_\infty^B(\gamma) &= \inf \left\{ \left(\sup_{g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}} \left(\sum_{i=1}^n |\lambda_i| |g'(z_i)| \right) \right) \left(\max_{1 \leq i \leq n} \|x_i\| \right) \right\},\end{aligned}$$

where the infimum is taken over all such representations of γ as $\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i$ with $n \in \mathbb{N}$, $\lambda_1, \dots, \lambda_n \in \mathbb{C}$, $z_1, \dots, z_n \in \mathbb{D}$ and $x_1, \dots, x_n \in X$.

The following result gathers some properties of such Bloch norms.

Proposition 1 ([4]). *For each $p \in [1, \infty]$, d_p^B is a reasonable Bloch cross-norm on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$. Moreover, $\pi(\gamma) = d_1^B(\gamma) = \|\gamma\|$, where*

$$\|\gamma\| = \sup \left\{ |\gamma(f)| : f \in \widehat{\mathcal{B}}(\mathbb{D}, X^*), \rho_{\mathcal{B}}(f) \leq 1 \right\}$$

for all $\gamma \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$.

Proof. The first assertion of the statement was proved in [4, Theorem 2.6]. The equalities $\pi = d_1^B = \|\cdot\|$ on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$ were established in [4, Propositions 2.4 and 2.7]. \square

We now identify the space of all Bloch mappings from \mathbb{D} into X^* with the space of all π -Bloch mappings.

Lemma 2. $(\widehat{\mathcal{B}}(\mathbb{D}, X^*), \rho_{\mathcal{B}}) = (\widehat{\mathcal{B}}_\pi(\mathbb{D}, X^*), \rho_\pi)$.

Proof. Let $f \in \widehat{\mathcal{B}}(\mathbb{D}, X^*)$. Given $\gamma = \sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$, we have

$$|\gamma(f)| = \left| \sum_{i=1}^n \lambda_i \langle f'(z_i), x_i \rangle \right| \leq \sum_{i=1}^n |\lambda_i| \|f'(z_i)\| \|x_i\| \leq \rho_{\mathcal{B}}(f) \sum_{i=1}^n \frac{|\lambda_i| \|x_i\|}{1 - |z_i|^2},$$

and taking the infimum over all the representations of γ , we deduce that $|\gamma(f)| \leq \rho_{\mathcal{B}}(f) \pi(\gamma)$. Hence $f \in \widehat{\mathcal{B}}_\pi(\mathbb{D}, X^*)$ and $\rho_\pi(f) \leq \rho_{\mathcal{B}}(f)$. The converse inclusion and inequality follow from Lemma 1. \square

Following [4], a zero-preserving map $f \in \mathcal{H}(\mathbb{D}, X)$ is said to be p -summing Bloch for $1 \leq p \leq \infty$, if there exists a constant $c \geq 0$ such that

$$\left(\sum_{i=1}^n |\lambda_i|^p \|f'(z_i)\|^p \right)^{\frac{1}{p}} \leq c \sup_{g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}} \left(\sum_{i=1}^n |\lambda_i|^p |g'(z_i)|^p \right)^{\frac{1}{p}}, \quad \text{if } 1 \leq p < \infty,$$

$$\max_{1 \leq i \leq n} |\lambda_i| \|f'(z_i)\| \leq c \sup_{g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}} \left(\max_{1 \leq i \leq n} |\lambda_i| |g'(z_i)| \right), \quad \text{if } p = \infty,$$

for all $n \in \mathbb{N}$, $\lambda_1, \dots, \lambda_n \in \mathbb{C}$ and $z_1, \dots, z_n \in \mathbb{D}$. The infimum of such constants c is denoted by $\pi_p^{\mathcal{B}}(f)$ and called the p -summing Bloch norm of f . The set $\Pi_p^{\widehat{\mathcal{B}}}(\mathbb{D}, X)$ of all p -summing Bloch mappings from \mathbb{D} into X so that $f(0) = 0$ with the norm $\pi_p^{\mathcal{B}}$ is a Banach space by [4, Proposition 1.2].

Theorem 1. *Let $1 \leq p \leq \infty$. Then*

$$(\widehat{\mathcal{B}}_{d_p^{\mathcal{B}}}(\mathbb{D}, X^*), \rho_{d_p^{\mathcal{B}}}) = (\Pi_{p^*}^{\widehat{\mathcal{B}}}(\mathbb{D}, X^*), \pi_{p^*}^{\mathcal{B}}).$$

Proof. Let $f \in \Pi_{p^*}^{\widehat{\mathcal{B}}}(\mathbb{D}, X^*)$ and $\gamma \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$. If $\sum_{i=1}^n \lambda_i \gamma z_i \otimes x_i$ is a representation of γ , then

$$\begin{aligned} |\gamma(f)| &\leq \sum_{i=1}^n |\lambda_i| \|f'(z_i)\| \|x_i\| \\ &\leq \left(\sum_{i=1}^n |\lambda_i|^{p^*} \|f'(z_i)\|^{p^*} \right)^{\frac{1}{p^*}} \left(\sum_{i=1}^n \|x_i\|^p \right)^{\frac{1}{p}} \\ &\leq \pi_{p^*}^{\mathcal{B}}(f) \left(\sum_{i=1}^n \|x_i\|^p \right)^{\frac{1}{p}} \sup_{g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}} \left(\sum_{i=1}^n |\lambda_i|^{p^*} |g'(z_i)|^{p^*} \right)^{\frac{1}{p^*}} \end{aligned}$$

whenever $1 < p < \infty$. For $p = 1$, one has

$$\begin{aligned} |\gamma(f)| &\leq \sum_{i=1}^n |\lambda_i| \|f'(z_i)\| \|x_i\| \\ &\leq \left(\max_{1 \leq i \leq n} |\lambda_i| \|f'(z_i)\| \right) \sum_{i=1}^n \|x_i\| \\ &\leq \pi_{\infty}^{\mathcal{B}}(f) \sup_{g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}} \left(\max_{1 \leq i \leq n} |\lambda_i| |g'(z_i)| \right) \sum_{i=1}^n \|x_i\|, \end{aligned}$$

and, for $p = \infty$, we obtain

$$\begin{aligned} |\gamma(f)| &\leq \sum_{i=1}^n |\lambda_i| \|f'(z_i)\| \|x_i\| \\ &\leq \left(\max_{1 \leq i \leq n} \|x_i\| \right) \sum_{i=1}^n |\lambda_i| \|f'(z_i)\| \\ &\leq \pi_1^{\mathcal{B}}(f) \left(\max_{1 \leq i \leq n} \|x_i\| \right) \sup_{g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}} \left(\sum_{i=1}^n |\lambda_i| |g'(z_i)| \right). \end{aligned}$$

Passing to the infimum over all such representations of γ yields that $|\gamma(f)| \leq \pi_{p^*}^{\mathcal{B}}(f)d_p^{\mathcal{B}}(\gamma)$. Hence, $f \in \widehat{\mathcal{B}}_{d_p^{\mathcal{B}}}(\mathbb{D}, X^*)$ and $\rho_{d_p^{\mathcal{B}}}(f) \leq \pi_{p^*}^{\mathcal{B}}(f)$.

Conversely, let $f \in \widehat{\mathcal{B}}_{d_p^{\mathcal{B}}}(\mathbb{D}, X^*)$, $n \in \mathbb{N}$, $\lambda_1, \dots, \lambda_n \in \mathbb{C}$ and $z_1, \dots, z_n \in \mathbb{D}$. Choose $\varepsilon > 0$. For each $i \in \{1, \dots, n\}$, we can take $x_i \in X$ with $\|x_i\| \leq 1 + \varepsilon$ such that $\langle f'(z_i), x_i \rangle = \|f'(z_i)\|$. Clearly, the function $T: \mathbb{K}^n \rightarrow \mathbb{K}$, defined by

$$T(t_1, \dots, t_n) = \sum_{i=1}^n t_i \lambda_i \|f'(z_i)\|, \quad \forall (t_1, \dots, t_n) \in \mathbb{K}^n,$$

belongs to $(\mathbb{K}^n, \|\cdot\|_p)^*$ with

$$\|T\| = \begin{cases} \left(\sum_{i=1}^n |\lambda_i|^{p^*} \|f'(z_i)\|^{p^*} \right)^{\frac{1}{p^*}}, & \text{if } 1 < p \leq \infty, \\ \max_{1 \leq i \leq n} |\lambda_i| \|f'(z_i)\|, & \text{if } p = 1. \end{cases}$$

For all $(t_1, \dots, t_n) \in \mathbb{K}^n$ with $\|(t_1, \dots, t_n)\|_p \leq 1$, we obtain

$$\begin{aligned} |T(t_1, \dots, t_n)| &= \left| \sum_{i=1}^n \lambda_i \langle f'(z_i), t_i x_i \rangle \right| = \left| \sum_{i=1}^n \lambda_i \langle \gamma_{z_i} \otimes (t_i x_i), f \rangle \right| \\ &\leq \rho_{d_p^{\mathcal{B}}}(f) d_p^{\mathcal{B}} \left(\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes (t_i x_i) \right). \end{aligned}$$

For $1 < p < \infty$ we get

$$\begin{aligned} |T(t_1, \dots, t_n)| &\leq \rho_{d_p^{\mathcal{B}}}(f) \left(\sum_{i=1}^n \|t_i x_i\|^p \right)^{\frac{1}{p}} \sup_{g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}} \left(\sum_{i=1}^n |\lambda_i|^{p^*} |g'(z_i)|^{p^*} \right)^{\frac{1}{p^*}} \\ &\leq \rho_{d_p^{\mathcal{B}}}(f)(1 + \varepsilon) \sup_{g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}} \left(\sum_{i=1}^n |\lambda_i|^{p^*} |g'(z_i)|^{p^*} \right)^{\frac{1}{p^*}}, \end{aligned}$$

hence one has

$$\left(\sum_{i=1}^n |\lambda_i|^{p^*} \|f'(z_i)\|^{p^*} \right)^{\frac{1}{p^*}} \leq \rho_{d_p^{\mathcal{B}}}(f)(1 + \varepsilon) \sup_{g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}} \left(\sum_{i=1}^n |\lambda_i|^{p^*} |g'(z_i)|^{p^*} \right)^{\frac{1}{p^*}}.$$

By the arbitrariness of ε we get

$$\left(\sum_{i=1}^n |\lambda_i|^{p^*} \|f'(z_i)\|^{p^*} \right)^{\frac{1}{p^*}} \leq \rho_{d_p^{\mathcal{B}}}(f) \sup_{g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}} \left(\sum_{i=1}^n |\lambda_i|^{p^*} |g'(z_i)|^{p^*} \right)^{\frac{1}{p^*}},$$

and so $f \in \Pi_{p^*}^{\widehat{\mathcal{B}}}(\mathbb{D}, X^*)$ with $\pi_{p^*}^{\mathcal{B}}(f) \leq \rho_{d_p^{\mathcal{B}}}(f)$.

For $p = 1$ we have

$$\begin{aligned} |T(t_1, \dots, t_n)| &\leq \rho_{d_1^{\mathcal{B}}}(f) \left(\sum_{i=1}^n \|t_i x_i\| \right) \sup_{g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}} \left(\max_{1 \leq i \leq n} |\lambda_i| |g'(z_i)| \right) \\ &\leq \rho_{d_1^{\mathcal{B}}}(f)(1 + \varepsilon) \sup_{g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}} \left(\max_{1 \leq i \leq n} |\lambda_i| |g'(z_i)| \right), \end{aligned}$$

which yields

$$\max_{1 \leq i \leq n} |\lambda_i| \|f'(z_i)\| \leq \rho_{d_1^B}(f) \sup_{g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}} \left(\max_{1 \leq i \leq n} |\lambda_i| |g'(z_i)| \right),$$

and so $f \in \Pi_\infty^{\widehat{\mathcal{B}}}(\mathbb{D}, X^*)$ with $\pi_\infty^{\widehat{\mathcal{B}}}(f) \leq \rho_{d_1^B}(f)$.

For $p = \infty$ one has

$$\begin{aligned} |T(t_1, \dots, t_n)| &\leq \rho_{d_\infty^B}(f) \left(\max_{1 \leq i \leq n} \|t_i x_i\| \right) \sup_{g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}} \left(\sum_{i=1}^n |\lambda_i| |g'(z_i)| \right) \\ &\leq \rho_{d_\infty^B}(f)(1 + \varepsilon) \sup_{g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}} \left(\sum_{i=1}^n |\lambda_i| |g'(z_i)| \right), \end{aligned}$$

consequently,

$$\sum_{i=1}^n |\lambda_i| \|f'(z_i)\| \leq \rho_{d_\infty^B}(f) \sup_{g \in B_{\widehat{\mathcal{B}}(\mathbb{D})}} \left(\sum_{i=1}^n |\lambda_i| |g'(z_i)| \right),$$

and so $f \in \Pi_1^{\widehat{\mathcal{B}}}(\mathbb{D}, X^*)$ with $\pi_1^{\widehat{\mathcal{B}}}(f) \leq \rho_{d_\infty^B}(f)$. \square

We can obtain a similar identification for the space of Bloch maps that admit a factorization through of a Hilbert space. Let us recall the basic facts from [5].

A mapping $f \in \mathcal{H}(\mathbb{D}, X)$ is said to factor through of a Hilbert space if there exists a measure μ , a mapping $g \in \widehat{\mathcal{B}}(\mathbb{D}, L_2(\mu))$ and an operator $T \in \mathcal{L}(L_2(\mu), X)$ such that $f = T \circ g$, that is, the following diagram

$$\begin{array}{ccc} & L_2(\mu) & \\ g \nearrow & & \searrow T \\ \mathbb{D} & \xrightarrow{f} & X \end{array}$$

commutes. We set $\gamma_2^{\mathcal{B}}(f) = \inf \{\|T\| \rho_{\mathcal{B}}(g)\}$, where the infimum runs over all possible factorizations of f as above. We denote by $(\Gamma_2^{\widehat{\mathcal{B}}}(\mathbb{D}, X), \gamma_2^{\mathcal{B}})$ the Banach space of all mappings $f \in \mathcal{H}(\mathbb{D}, X)$ that admit such a factorization.

For $(\lambda_i, z_i)_{i=1}^n \in (\mathbb{C} \times \mathbb{D})^n$ and $(\mu_j, w_j)_{j=1}^m \in (\mathbb{C} \times \mathbb{D})^m$, $n, m \in \mathbb{N}$, we say that $(\lambda_i, z_i)_{i=1}^n$ is Bloch subordinated to $(\mu_j, w_j)_{j=1}^m$, and we write $(\lambda_i, z_i)_{i=1}^n \prec (\mu_j, w_j)_{j=1}^m$, whenever

$$\sum_{i=1}^n |\lambda_i|^2 |g'(z_i)|^2 \leq \sum_{j=1}^m |\mu_j|^2 |g'(w_j)|^2$$

for all $g \in \widehat{\mathcal{B}}(\mathbb{D})$. This means that there exists an operator $T \in \mathcal{L}(\ell_2^m, \ell_2^n)$ with $\|T\| \leq 1$, represented by an $n \times m$ complex matrix (a_{ij}) , such that $\lambda_i \gamma_{z_i} = \sum_{j=1}^m a_{ij} \mu_j \gamma_{w_j}$ for every $1 \leq i \leq n$.

Moreover, a mapping $f \in \widehat{\mathcal{B}}(\mathbb{D}, X)$ factors through a Hilbert space if and only if there exists a constant $c \geq 0$ such that

$$\sum_{i=1}^n |\lambda_i|^2 \|f'(z_i)\|^2 \leq c^2 \sum_{j=1}^m \frac{|\mu_j|^2}{(1 - |w_j|^2)^2},$$

whenever $(\lambda_i, z_i)_{i=1}^n \prec (\mu_j, w_j)_{j=1}^m$, $(\lambda_i, z_i)_{i=1}^n \in (\mathbb{C} \times \mathbb{D})^n$, $(\mu_j, w_j)_{j=1}^m \in (\mathbb{C} \times \mathbb{D})^m$, $n, m \in \mathbb{N}$. In this case, $\gamma_2^{\mathcal{B}}(f)$ is the minimum of all constants c satisfying the preceding inequality.

For $\gamma \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$, we set

$$w_2^{\mathcal{B}}(\gamma) = \inf \left\{ \left(\sum_{i=1}^n \|x_i\|^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^m \frac{|\mu_j|^2}{(1 - |w_j|^2)^2} \right)^{\frac{1}{2}} \right\},$$

where the infimum is taken over the representations of γ in the form $\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i$ such that $(\lambda_i, z_i)_{i=1}^n \prec (\mu_j, w_j)_{j=1}^m$ with $(\lambda_i, z_i)_{i=1}^n \in (\mathbb{C} \times \mathbb{D})^n$, $(\mu_j, w_j)_{j=1}^m \in (\mathbb{C} \times \mathbb{D})^m$, $n, m \in \mathbb{N}$, and $(x_i)_{i=1}^n \in X^n$. We know that $w_2^{\mathcal{B}}$ defines a reasonable Bloch cross-norm on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$.

We now prove that the Banach space of all normalized $w_2^{\mathcal{B}}$ -Bloch mappings from \mathbb{D} to X^* can be identified with the Banach space $\Gamma_2^{\widehat{\mathcal{B}}}(\mathbb{D}, X^*)$.

Theorem 2. $(\widehat{\mathcal{B}}_{w_2^{\mathcal{B}}}(\mathbb{D}, X^*), \rho_{w_2^{\mathcal{B}}}) = (\Gamma_2^{\widehat{\mathcal{B}}}(\mathbb{D}, X^*), \gamma_2^{\mathcal{B}})$.

Proof. Let $f \in \Gamma_2^{\widehat{\mathcal{B}}}(\mathbb{D}, X^*)$ and $\gamma \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$. Take a representation $\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i$ of γ such that $(\lambda_i, z_i)_{i=1}^n \prec (\mu_j, w_j)_{j=1}^m$, $(\lambda_i, z_i)_{i=1}^n \in (\mathbb{C} \times \mathbb{D})^n$, $(\mu_j, w_j)_{j=1}^m \in (\mathbb{C} \times \mathbb{D})^m$, $n, m \in \mathbb{N}$, and $(x_i)_{i=1}^n \in X^n$. We have

$$\begin{aligned} |\gamma(f)| &\leq \sum_{i=1}^n |\lambda_i| \|f'(z_i)\| \|x_i\| \\ &\leq \left(\sum_{i=1}^n |\lambda_i|^2 \|f'(z_i)\|^2 \right)^{\frac{1}{2}} \left(\sum_{i=1}^n \|x_i\|^2 \right)^{\frac{1}{2}} \\ &\leq \gamma_2^{\mathcal{B}}(f) \left(\sum_{i=1}^n \|x_i\|^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^m \frac{|\mu_j|^2}{(1 - |w_j|^2)^2} \right)^{\frac{1}{2}}, \end{aligned}$$

and therefore $|\gamma(f)| \leq \gamma_2^{\mathcal{B}}(f) w_2^{\mathcal{B}}(\gamma)$ by taking the infimum over all the representations of γ . Hence, $f \in \widehat{\mathcal{B}}_{w_2^{\mathcal{B}}}(\mathbb{D}, X^*)$ and $\rho_{w_2^{\mathcal{B}}}(f) \leq \gamma_2^{\mathcal{B}}(f)$.

Conversely, let $f \in \widehat{\mathcal{B}}_{w_2^{\mathcal{B}}}(\mathbb{D}, X^*)$ and let $(\lambda_i, z_i)_{i=1}^n \in (\mathbb{C} \times \mathbb{D})^n$, $(\mu_j, w_j)_{j=1}^m \in (\mathbb{C} \times \mathbb{D})^m$, $n, m \in \mathbb{N}$, be such that $(\lambda_i, z_i)_{i=1}^n \prec (\mu_j, w_j)_{j=1}^m$. Choose any $\varepsilon > 0$. For each $i \in \{1, \dots, n\}$, let us choose $x_i \in X$ with $\|x_i\| \leq 1 + \varepsilon$ such that $\langle f'(z_i), x_i \rangle = \|f'(z_i)\|$. Clearly, the function $T: \mathbb{K}^n \rightarrow \mathbb{K}$, given by

$$T(t_1, \dots, t_n) = \sum_{i=1}^n t_i \lambda_i \|f'(z_i)\|, \quad \forall (t_1, \dots, t_n) \in \mathbb{K}^n,$$

is in $(\mathbb{K}^n, \|\cdot\|_2)^*$ with

$$\|T\| = \left(\sum_{i=1}^n |\lambda_i|^2 \|f'(z_i)\|^2 \right)^{\frac{1}{2}}.$$

For all $(t_1, \dots, t_n) \in \mathbb{K}^n$ with $\|(t_1, \dots, t_n)\|_2 \leq 1$, we have

$$\begin{aligned} |T(t_1, \dots, t_n)| &= \left| \sum_{i=1}^n \lambda_i \langle f'(z_i), t_i x_i \rangle \right| = \left| \sum_{i=1}^n \lambda_i \langle \gamma_{z_i} \otimes (t_i x_i), f \rangle \right| \\ &\leq \rho_{w_2^{\mathcal{B}}}(f) w_2^{\mathcal{B}} \left(\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes (t_i x_i) \right). \end{aligned}$$

Hence, we get

$$\begin{aligned} |T(t_1, \dots, t_n)| &\leq \rho_{w_2^B}(f) \left(\sum_{i=1}^n \|t_i x_i\|^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^m \frac{|\mu_j|^2}{(1 - |w_j|^2)^2} \right)^{\frac{1}{2}} \\ &\leq \rho_{w_2^B}(f)(1 + \varepsilon) \left(\sum_{j=1}^m \frac{|\mu_j|^2}{(1 - |w_j|^2)^2} \right)^{\frac{1}{2}}, \end{aligned}$$

therefore

$$\left(\sum_{i=1}^n |\lambda_i|^2 \|f'(z_i)\|^2 \right)^{\frac{1}{2}} \leq \rho_{w_2^B}(f)(1 + \varepsilon) \left(\sum_{j=1}^m \frac{|\mu_j|^2}{(1 - |w_j|^2)^2} \right)^{\frac{1}{2}}.$$

Passing to the limit as $\varepsilon \rightarrow 0$ yields

$$\left(\sum_{i=1}^n |\lambda_i|^2 \|f'(z_i)\|^2 \right)^{\frac{1}{2}} \leq \rho_{w_2^B}(f) \left(\sum_{j=1}^m \frac{|\mu_j|^2}{(1 - |w_j|^2)^2} \right)^{\frac{1}{2}},$$

and thus $f \in \Gamma_2^{\widehat{B}}(\mathbb{D}, X^*)$ with $\gamma_2^B(f) \leq \rho_{w_2^B}(f)$. \square

3 Duality for spaces of cross-norm-Bloch mappings

We now establish a canonical identification between the normed space $(\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*), \rho_\alpha)$ and the dual space of $\text{lin}(\Gamma(\mathbb{D})) \widehat{\otimes}_\alpha X$ if α is a Bloch cross-norm on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$. Compare this result to [15, Theorem 3.1]. In particular, $(\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*), \rho_\alpha)$ will be a Banach space.

Theorem 3. *Let α be a Bloch cross-norm on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$. Then $\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$ is isometrically isomorphic to $(\text{lin}(\Gamma(\mathbb{D})) \widehat{\otimes}_\alpha X)^*$ via the map $\Lambda: \widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*) \rightarrow (\text{lin}(\Gamma(\mathbb{D})) \widehat{\otimes}_\alpha X)^*$ defined by*

$$\Lambda(f)(\gamma) = \sum_{i=1}^n \lambda_i \langle f'(z_i), x_i \rangle$$

for all $f \in \widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$ and $\gamma = \sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$.

Its inverse satisfies

$$\langle (\Lambda^{-1}(\varphi))'(z), x \rangle = \varphi(\gamma_z \otimes x)$$

for all $\varphi \in (\text{lin}(\Gamma(\mathbb{D})) \widehat{\otimes}_\alpha X)^*$, $z \in \mathbb{D}$ and $x \in X$.

Proof. Let $f \in \widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$ and let $\Lambda_0(f)$ be the linear functional on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$ given by

$$\Lambda_0(f)(\gamma) = \sum_{i=1}^n \lambda_i \langle f'(z_i), x_i \rangle$$

for all $\gamma = \sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$. Notice that $\Lambda_0(f) \in (\text{lin}(\Gamma(\mathbb{D})) \otimes_\alpha X)^*$ and $\|\Lambda_0(f)\| \leq \rho_\alpha(f)$, since

$$|\Lambda_0(f)(\gamma)| = \left| \sum_{i=1}^n \lambda_i \langle f'(z_i), x_i \rangle \right| \leq \rho_\alpha(f) \alpha(\gamma)$$

for all $\gamma = \sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$. Hence, there is a unique continuous extension $\Lambda(f)$ of $\Lambda_0(f)$ to $\text{lin}(\Gamma(\mathbb{D})) \widehat{\otimes}_\alpha X$. Moreover, $\Lambda(f)$ is linear and $\|\Lambda(f)\| = \|\Lambda_0(f)\|$. Let $\Lambda: \widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*) \rightarrow (\text{lin}(\Gamma(\mathbb{D})) \widehat{\otimes}_\alpha X)^*$ be the map so defined.

Clearly, the mapping $\Lambda_0: \widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*) \rightarrow (\text{lin}(\Gamma(\mathbb{D})) \otimes_\alpha X)^*$ is linear. If $f \in \widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$ and $\Lambda_0(f) = 0$, then $\langle f'(z), x \rangle = \Lambda_0(f)(\gamma_z \otimes x) = 0$ for all $z \in \mathbb{D}$ and $x \in X$, hence $f'(z) = 0$ for all $z \in \mathbb{D}$ and therefore $f = 0$. This proves that Λ_0 is injective.

The map Λ is also linear and injective. Indeed, let $\phi \in \text{lin}(\Gamma(\mathbb{D})) \widehat{\otimes}_\alpha X$ and let $\{\gamma_n\}$ be a sequence in $\text{lin}(\Gamma(\mathbb{D})) \otimes_\alpha X$ such that $\alpha(\gamma_n - \phi) \rightarrow 0$ as $n \rightarrow \infty$. Given $a, b \in \mathbb{C}$ and $f, g \in \widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$, an easy calculation shows that

$$\Lambda(af + bg)(\gamma_n) = \Lambda_0(af + bg)(\gamma_n) = (a\Lambda_0(f) + b\Lambda_0(g))(\gamma_n) = (a\Lambda(f) + b\Lambda(g))(\gamma_n)$$

for all $n \in \mathbb{N}$. Taking limits with $n \rightarrow \infty$, we get $\Lambda(af + bg)(\phi) = (a\Lambda(f) + b\Lambda(g))(\phi)$. Hence, Λ is linear. For the injectivity of Λ , note that if $f \in \widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$ and $\Lambda(f) = 0$, then $\Lambda_0(f) = 0$, which implies that $f = 0$ by the injectivity of Λ_0 .

We now claim that Λ is a surjective isometry. Indeed, let $\varphi \in (\text{lin}(\Gamma(\mathbb{D})) \widehat{\otimes}_\alpha X)^*$ and define $g_\varphi: \mathbb{D} \rightarrow X^*$ by

$$\langle g_\varphi(z), x \rangle = \varphi(\gamma_z \otimes x), \quad z \in \mathbb{D}, x \in X.$$

Clearly, $g_\varphi(z)$ is a bounded linear functional on X with $\|g_\varphi(z)\| = \|\varphi\| \|\gamma_z\|$. Reasoning as in the proof of [4, Proposition 2.4], the mapping g_φ is in $\mathcal{H}(\mathbb{D}, X^*)$ and there exists a map $f_\varphi \in \widehat{\mathcal{B}}(\mathbb{D}, X^*)$ such that $f'_\varphi = g_\varphi$. For any $\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$, we have

$$\begin{aligned} \left| \sum_{i=1}^n \lambda_i \langle f'_\varphi(z_i), x_i \rangle \right| &= \left| \sum_{i=1}^n \lambda_i \langle g_\varphi(z_i), x_i \rangle \right| \\ &= \left| \varphi \left(\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \right) \right| \leq \|\varphi\| \alpha \left(\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \right). \end{aligned}$$

Therefore, $f_\varphi \in \widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$ and $\rho_\alpha(f_\varphi) \leq \|\varphi\|$. For all $\gamma = \sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes_\alpha x_i \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$, we get

$$\begin{aligned} \Lambda(f_\varphi)(\gamma) &= \Lambda_0(f_\varphi)(\gamma) = \sum_{i=1}^n \lambda_i \langle f'_\varphi(z_i), x_i \rangle \\ &= \sum_{i=1}^n \lambda_i \varphi(\gamma_{z_i} \otimes x_i) = \varphi \left(\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \right) = \varphi(\gamma). \end{aligned}$$

Hence, $\Lambda(f_\varphi) = \varphi$ on a dense subspace of $\text{lin}(\Gamma(\mathbb{D})) \widehat{\otimes}_\alpha X$. So, $\Lambda(f_\varphi) = \varphi$. Moreover, $\rho_\alpha(f_\varphi) \leq \|\varphi\| = \|\Lambda(f_\varphi)\|$. This completes the proof of our claim.

For the last assertion of the statement, note that

$$\langle (\Lambda^{-1}(\varphi))'(z), x \rangle = \langle f'_\varphi(z), x \rangle = \langle g_\varphi(z), x \rangle = \varphi(\gamma_z \otimes x)$$

for $\varphi \in (\text{lin}(\Gamma(\mathbb{D})) \widehat{\otimes}_\alpha X)^*$, $z \in \mathbb{D}$ and $x \in X$. □

Lemma 2 and Theorem 3 provide the following identification.

Corollary 1. $(\widehat{\mathcal{B}}(\mathbb{D}, X^*), \rho_B) \cong ((\text{lin}(\Gamma(\mathbb{D})) \widehat{\otimes}_\pi X)^*, \|\cdot\|)$.

From Theorems 1 and 3, we infer the following description for the space of p -summing Bloch mappings from \mathbb{D} into X^* .

Corollary 2. $(\Pi_p^{\widehat{\mathcal{B}}}(\mathbb{D}, X^*), \pi_p^{\mathcal{B}}) \cong ((\text{lin}(\Gamma(\mathbb{D})) \widehat{\otimes}_{d_{p^*}^{\mathcal{B}}} X)^*, \|\cdot\|)$ for any $1 \leq p \leq \infty$.

Similarly, Theorems 2 and 3 permit us to describe the space of Bloch mappings from \mathbb{D} into X^* that factor through a Hilbert space.

Corollary 3. $(\Gamma_2^{\widehat{\mathcal{B}}}(\mathbb{D}, X^*), \gamma_2^{\mathcal{B}}) \cong ((\text{lin}(\Gamma(\mathbb{D}))\widehat{\otimes}_{w_2^{\mathcal{B}}} X)^*, \|\cdot\|)$.

Since $\widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*)$ is a dual Banach space by Theorem 3, the following topologies can be considered.

Definition 3. Let α be a Bloch cross-norm on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$.

The weak* topology (in short, w^*) on $\widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*)$ is the topology induced by the linear space $\kappa_{\text{lin}(\Gamma(\mathbb{D}))\widehat{\otimes}_{\alpha} X}(\text{lin}(\Gamma(\mathbb{D}))\widehat{\otimes}_{\alpha} X)$ of linear functionals on $(\text{lin}(\Gamma(\mathbb{D}))\widehat{\otimes}_{\alpha} X)^*$.

The weak* Bloch topology (in short, $w^*\mathcal{B}$) on $\widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*)$ is the topology induced by the linear space $\text{lin}(\Gamma(\mathbb{D})) \otimes X$ of linear functionals on $\widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*)$.

The following facts on $w^*\mathcal{B}$ can be deduced from the theory on topologies induced by families of functions (see, for example, [10, Section 2.4]).

Remark 3. Let α be a Bloch cross-norm on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$.

- (i) $w^*\mathcal{B}$ is a locally convex topology on $\widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*)$, and the dual of $\widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*)$ with respect to this topology is $\text{lin}(\Gamma(\mathbb{D})) \otimes X$. Since the family of functions $\text{lin}(\Gamma(\mathbb{D})) \otimes X$ is separating, then $w^*\mathcal{B}$ is completely regular.
- (ii) If $\{f_{\nu}\}$ is a net in $\widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*)$ and $f \in \widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*)$, then $\{f_{\nu}\} \rightarrow f$ in the $w^*\mathcal{B}$ -topology if and only if $\{\gamma(f_{\nu})\} \rightarrow \gamma(f)$ for each $\gamma \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$.
- (iii) If $B(\mathbb{D}, X^*)$ is a linear subspace of $\widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*)$ and $\widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*)$ is equipped with the $w^*\mathcal{B}$ -topology, then the relative $w^*\mathcal{B}$ -topology of $\widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*)$ on $B(\mathbb{D}, X^*)$ agrees with the topology induced by the linear space $\{\gamma|_{B(\mathbb{D}, X^*)} : \gamma \in \text{lin}(\Gamma(\mathbb{D})) \otimes X\}$ of linear functionals on $B(\mathbb{D}, X^*)$.

Corollary 4. Let α be a Bloch cross-norm on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$.

- (i) A net $\{f_{\nu}\}$ in $\widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*)$ converges to $f \in \widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*)$ in the w^* -topology if and only if $\{\gamma(f_{\nu})\}$ converges to $\gamma(f)$ for every $\gamma \in \text{lin}(\Gamma(\mathbb{D}))\widehat{\otimes}_{\alpha} X$.
- (ii) On $\widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*)$, the $w^*\mathcal{B}$ -topology is weaker than the w^* -topology. Moreover, both topologies agree on bounded subsets of $\widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*)$.

Proof. (i) Let $\Lambda: \widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*) \rightarrow (\text{lin}(\Gamma(\mathbb{D}))\widehat{\otimes}_{\alpha} X)^*$ be the identification of Theorem 3. Then we have

$$\begin{aligned}
 \{f_{\nu}\} \rightarrow f \text{ in } (\widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*), w^*) &\Leftrightarrow \{\Lambda(f_{\nu})\} \rightarrow \Lambda(f) \text{ in } ((\text{lin}(\Gamma(\mathbb{D}))\widehat{\otimes}_{\alpha} X)^*, w^*) \\
 &\Leftrightarrow \{\langle \kappa_{\text{lin}(\Gamma(\mathbb{D}))\widehat{\otimes}_{\alpha} X}(\gamma), \Lambda(f_{\nu}) \rangle\} \rightarrow \langle \kappa_{\text{lin}(\Gamma(\mathbb{D}))\widehat{\otimes}_{\alpha} X}(\gamma), \Lambda(f) \rangle, \\
 &\quad \forall \gamma \in \text{lin}(\Gamma(\mathbb{D}))\widehat{\otimes}_{\alpha} X, \\
 &\Leftrightarrow \{\Lambda(f_{\nu})(\gamma)\} \rightarrow \Lambda(f)(\gamma), \quad \forall \gamma \in \text{lin}(\Gamma(\mathbb{D}))\widehat{\otimes}_{\alpha} X, \\
 &\Leftrightarrow \{\gamma(f_{\nu})\} \rightarrow \gamma(f), \quad \forall \gamma \in \text{lin}(\Gamma(\mathbb{D}))\widehat{\otimes}_{\alpha} X.
 \end{aligned}$$

(ii) Let $\{f_\nu\}$ be a net in $\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$ such that $\{f_\nu\} \rightarrow f \in \widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$ in the w^* -topology. By (i), we have $\{\gamma(f_\nu)\} \rightarrow \gamma(f)$ for each $\gamma \in \text{lin}(\Gamma(\mathbb{D})) \widehat{\otimes}_\alpha X$. In particular, $\{\gamma(f_\nu)\} \rightarrow \gamma(f)$ for each $\gamma \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$. This means that $\{f_\nu\} \rightarrow f$ in the $w^*\mathcal{B}$ -topology. Hence, the identity on $\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$ is a continuous bijection from the w^* -topology to the $w^*\mathcal{B}$ -topology and thus the latter topology is weaker than the former as required. On a bounded subset of $\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$, the w^* -topology is compact and the $w^*\mathcal{B}$ -topology is Hausdorff, so both topologies must coincide. \square

4 Banach spaces of normalized Bloch mappings

We have identified $\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$ as the dual space $(\text{lin}(\Gamma(\mathbb{D})) \widehat{\otimes}_\alpha X)^*$ in Theorem 3. Our goal now is to address the general duality problem as to when a space of normalized Bloch mappings from \mathbb{D} into X^* is isometrically isomorphic to $(\text{lin}(\Gamma(\mathbb{D})) \widehat{\otimes}_\alpha X)^*$ for some Bloch cross-norm α .

We first determine what are those Bloch cross-norms α on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$ for which $\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$ is a Banach normalized Bloch space.

Theorem 4. *Let α be a Bloch cross-norm on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$. Then $\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$ is a Banach normalized Bloch space if and only if α is reasonable.*

Proof. In view of Lemma 1 and Theorem 3, we have that $\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$ is a linear subspace of $\widehat{\mathcal{B}}(\mathbb{D}, X^*)$ and $(\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*), \rho_\alpha)$ satisfies condition (i) in Definition 1. Hence, we only need to prove that $(\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*), \rho_\alpha)$ satisfies condition (ii) in Definition 1 if and only if α is reasonable.

Assume that α is reasonable. Let $g \in \widehat{\mathcal{B}}(\mathbb{D})$ and $x^* \in X^*$. We have

$$\begin{aligned} \left| \sum_{i=1}^n \lambda_i \langle (g \cdot x^*)'(z_i), x_i \rangle \right| &= \left| \sum_{i=1}^n \lambda_i g'(z_i) x^*(x_i) \right| \\ &= \left| (g \otimes x^*) \left(\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \right) \right| \\ &\leq \|g \otimes x^*\| \alpha \left(\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \right) \\ &\leq \rho_{\mathcal{B}}(g) \|x^*\| \alpha \left(\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \right) \end{aligned}$$

for all $\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$. So, $g \cdot x^* \in \widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$ and $\rho_\alpha(g \cdot x^*) \leq \rho_{\mathcal{B}}(g) \|x^*\|$.

For the converse inequality, note that $\rho_{\mathcal{B}}(g) \|x^*\| = \rho_{\mathcal{B}}(g \cdot x^*) \leq \rho_\alpha(g \cdot x^*)$, where we have used Lemma 1.

Conversely, if $(\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*), \rho_\alpha)$ enjoys the cited condition (ii), given $g \in \widehat{\mathcal{B}}(\mathbb{D})$ and $x^* \in X^*$, one has

$$\begin{aligned} \left| (g \otimes x^*) \left(\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \right) \right| &= \left| \sum_{i=1}^n \lambda_i \langle (g \cdot x^*)'(z_i), x_i \rangle \right| \\ &\leq \rho_\alpha(g \cdot x^*) \alpha \left(\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \right) \\ &= \rho_{\mathcal{B}}(g) \|x^*\| \alpha \left(\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \right) \end{aligned}$$

for all $\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$, and thus α is reasonable. \square

The combination of [5, Theorem 5.2], Proposition 1 and Theorem 4 yields the following assertion.

Corollary 5. $\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$ is a Banach normalized Bloch space for $\alpha = w_2^{\mathcal{B}}$ and $d_p^{\mathcal{B}}$ with $p \in [1, \infty]$.

We will now deal with the problem of when a Banach normalized Bloch space can be canonically identified with the dual of a tensor product space endowed with a Bloch cross-norm. Our approach is based on the arguments applied to address a similar problem in the setting of operator spaces (see [7, Section 4]).

Lemma 3. Let $B(\mathbb{D}, X^*)$ be a Banach normalized Bloch space.

For $\gamma = \sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$, define

$$\alpha(\gamma) = \sup \left\{ \left| \sum_{i=1}^n \lambda_i \langle f'(z_i), x_i \rangle \right| : f \in B(\mathbb{D}, X^*), \|f\|_B = 1 \right\}$$

and

$$\langle \iota(\gamma), f \rangle = \sum_{i=1}^n \lambda_i \langle f'(z_i), x_i \rangle, \quad f \in B(\mathbb{D}, X^*).$$

Then α is a reasonable Bloch cross-norm on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$, and ι is a linear isometry from $\text{lin}(\Gamma(\mathbb{D})) \otimes_\alpha X$ into $B(\mathbb{D}, X^*)^*$.

Proof. Let $\gamma = \sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$ and $f \in B(\mathbb{D}, X^*)$. Note that $\langle \iota(\gamma), f \rangle = \gamma(f)$. Clearly, $\iota(\gamma)$ is well defined on $B(\mathbb{D}, X^*)$, it is linear and

$$|\langle \iota(\gamma), f \rangle| \leq \rho_B(f) \pi(\gamma) \leq \|f\|_B \pi(\gamma)$$

for all $f \in B(\mathbb{D}, X^*)$. Then $\iota(\gamma)$ is in $B(\mathbb{D}, X^*)^*$ and

$$\|\iota(\gamma)\| := \sup \{ |\langle \iota(\gamma), f \rangle| : f \in B(\mathbb{D}, X^*), \|f\|_B = 1 \} \leq \pi(\gamma).$$

Clearly, $\iota: \text{lin}(\Gamma(\mathbb{D})) \otimes X \rightarrow B(\mathbb{D}, X^*)^*$ is well defined and linear. Moreover, it is injective. Indeed, $\iota(\gamma) = 0$ means that $\langle \iota(\gamma), f \rangle = 0$ for all $f \in B(\mathbb{D}, X^*)$. In particular, we have $\langle \gamma, g \cdot x^* \rangle = \langle \iota(\gamma), g \cdot x^* \rangle = 0$ for all $g \in \widehat{\mathcal{B}}(\mathbb{D})$ and $x^* \in X^*$. It follows that

$$x^* \left(\sum_{i=1}^n \lambda_i g'(z_i) x_i \right) = \sum_{i=1}^n \lambda_i g'(z_i) x^*(x_i) = 0$$

for all $g \in \widehat{\mathcal{B}}(\mathbb{D})$ and $x^* \in X^*$. Since X^* separates the points of X , this implies that

$$\sum_{i=1}^n \lambda_i g'(z_i) x_i = 0$$

for all $g \in \widehat{\mathcal{B}}(\mathbb{D})$. For each $i \in \{1, \dots, n\}$, consider the polynomial $q_i: \mathbb{D} \rightarrow \mathbb{C}$ defined by

$$q_i(z) = \prod_{k=1, k \neq i}^n \frac{z - z_k}{z_i - z_k},$$

and take a polynomial $p_i: \mathbb{D} \rightarrow \mathbb{C}$ such that $p'_i = q_i$ and $p_i(0) = 0$. Then $p_i \in \widehat{\mathcal{B}}(\mathbb{D})$ with $p'_i(z_k) = \delta_{ik}$ for all $k \in \{1, \dots, n\}$, where δ_{ik} is the Kronecker's delta.

Hence,

$$0 = \sum_{k=1}^n \lambda_k p'_i(z_k) x_k = \sum_{k=1}^n \lambda_k \delta_{ik} x_k = \lambda_i x_i$$

for each $i \in \{1, \dots, n\}$. Therefore, $\gamma(f) = \sum_{i=1}^n \langle f'(z_i), \lambda_i x_i \rangle = 0$ for all $f \in B(\mathbb{D}, X^*)$, and so we get $\gamma = 0$.

Define the map α on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$ as in the statement. Notice that $\alpha(\gamma) = \|\iota(\gamma)\|$. Then α is a norm on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$ and so ι is a linear isometry from $\text{lin}(\Gamma(\mathbb{D})) \otimes_{\alpha} X$ into $B(\mathbb{D}, X^*)^*$.

We now prove that α is a reasonable Bloch cross-norm. For any $z \in \mathbb{D}$ and $x \in X$, we have

$$\alpha(\gamma_z \otimes x) = \|\iota(\gamma_z \otimes x)\| \leq \pi(\gamma_z \otimes x) = \frac{\|x\|}{1 - |z|^2}.$$

The converse inequality will follow in light of Remark 1.

Given $\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$, for any $g \in S_{\widehat{\mathcal{B}}(\mathbb{D})}$ and $x^* \in S_{X^*}$, we get

$$\begin{aligned} \left| (g \otimes x^*) \left(\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \right) \right| &= \left| \sum_{i=1}^n \lambda_i g'(z_i) x^*(x_i) \right| \\ &= \left| \sum_{i=1}^n \lambda_i \langle (g \cdot x^*)'(z_i), x_i \rangle \right| \\ &\leq \sup \left\{ \left| \sum_{i=1}^n \lambda_i \langle f'(z_i), x_i \rangle \right| : f \in B(\mathbb{D}, X^*), \|f\|_B = 1 \right\} \\ &= \alpha \left(\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \right), \end{aligned}$$

and so α is reasonable. \square

We are ready to state the main result of this section. Compare it to [7, Theorem 5].

Theorem 5. *Let $B(\mathbb{D}, X^*)$ be a Banach normalized Bloch space. The following statements are equivalent:*

(i) *there is a reasonable Bloch cross-norm α on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$ such that*

$$(B(\mathbb{D}, X^*), \|\cdot\|_B) = (\widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*), \rho_{\alpha}),$$

(ii) *if f is in $\widehat{\mathcal{B}}(\mathbb{D}, X^*)$ and $\{f_{\nu}\}$ is a bounded net in $B(\mathbb{D}, X^*)$ converging to f in the weak* Bloch topology of $\widehat{\mathcal{B}}(\mathbb{D}, X^*)$, then $f \in B(\mathbb{D}, X^*)$ and*

$$\|f\|_B \leq \sup \{\|f_{\nu}\|_B : \nu \in N\}.$$

Proof. (i) \Rightarrow (ii) Let f and $\{f_{\nu}\}$ be as in (ii). Put $M = \sup \{\|f_{\nu}\|_B : \nu \in N\}$.

If $\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$ and $\varepsilon > 0$, then we get

$$\left| \sum_{i=1}^n \lambda_i \langle f'(z_i), x_i \rangle - \sum_{i=1}^n \langle f'_{\nu_0}(z_i), x_i \rangle \right| = \left| \left(\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \right) (f - f_{\nu_0}) \right| < \varepsilon$$

for some $\nu_0 \in N$, and therefore

$$\begin{aligned} \left| \sum_{i=1}^n \lambda_i \langle f'(z_i), x_i \rangle \right| &< \left| \sum_{i=1}^n \lambda_i \langle f'_{\nu_0}(z_i), x_i \rangle \right| + \varepsilon \\ &\leq \rho_{\alpha}(f_{\nu_0}) \alpha \left(\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \right) + \varepsilon \\ &= \|f_{\nu_0}\|_B \alpha \left(\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \right) + \varepsilon \\ &\leq M \alpha \left(\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \right) + \varepsilon. \end{aligned}$$

Let us take the limit as $\varepsilon \rightarrow 0$. We obtain that $f \in \widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*)$ and $\rho_{\alpha}(f) \leq M$. Hence, $f \in B(\mathbb{D}, X^*)$ and $\|f\|_B \leq M$.

(ii) \Rightarrow (i) Take the reasonable Bloch cross-norm α on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$ and the linear isometry ι from $\text{lin}(\Gamma(\mathbb{D})) \otimes_{\alpha} X$ into $B(\mathbb{D}, X^*)^*$ defined in Lemma 3. In order to prove that $(B(\mathbb{D}, X^*), \|\cdot\|_B) = (\widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*), \rho_{\alpha})$, given $f \in B(\mathbb{D}, X^*)$, the definition of α yields

$$\left| \sum_{i=1}^n \lambda_i \langle f'(z_i), x_i \rangle \right| \leq \|f\|_B \alpha \left(\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \right)$$

for all $\sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$, and thus $f \in \widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*)$ with $\rho_{\alpha}(f) \leq \|f\|_B$.

Conversely, take $f \in \widehat{\mathcal{B}}_{\alpha}(\mathbb{D}, X^*)$ and define the functional $S(f): \iota(\text{lin}(\Gamma(\mathbb{D})) \otimes X) \rightarrow \mathbb{C}$ by

$$\langle S(f), \iota(\gamma) \rangle = \sum_{i=1}^n \lambda_i \langle f'(z_i), x_i \rangle$$

for $\gamma = \sum_{i=1}^n \lambda_i \gamma_{z_i} \otimes x_i \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$. The injectivity of ι guarantees that $S(f)$ is well defined. The linearity of $S(f)$ follows easily. Since

$$|\langle S(f), \iota(\gamma) \rangle| = |\gamma(f)| \leq \rho_{\alpha}(f) \alpha(\gamma) = \rho_{\alpha}(f) \|\iota(\gamma)\|$$

for all $\gamma \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$, it follows that $S(f)$ is continuous and $\|S(f)\| \leq \rho_{\alpha}(f)$. Since $\iota(\text{lin}(\Gamma(\mathbb{D})) \otimes X)$ is a linear subspace of $B(\mathbb{D}, X^*)^*$, the Hahn-Banach theorem gives a functional $\widetilde{S}(f) \in B(\mathbb{D}, X^*)^{**}$ such that

$$\langle \widetilde{S}(f), \iota(\gamma) \rangle = \gamma(f)$$

for all $\gamma \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$, and

$$\|\widetilde{S}(f)\| = \|S(f)\|.$$

Let κ_B be the canonical injection from $B(\mathbb{D}, X^*)$ into $B(\mathbb{D}, X^*)^{**}$. By Goldstein's theorem, there exists a net $\{f_{\nu}\}$ in $B(\mathbb{D}, X^*)$ for which

$$\sup \{ \|f_{\nu}\|_B : \nu \in N \} \leq \|\widetilde{S}(f)\|$$

and $\{\kappa_B(f_{\nu})\} \rightarrow \widetilde{S}(f)$ in $(B(\mathbb{D}, X^*)^{**}, w^*)$. This means that

$$\langle \kappa_{B^*}(\varphi), \kappa_B(f_{\nu}) \rangle = \langle \kappa_B(f_{\nu}), \varphi \rangle \rightarrow \langle \kappa_{B^*}(\varphi), \widetilde{S}(f) \rangle = \langle \widetilde{S}(f), \varphi \rangle$$

for every $\varphi \in B(\mathbb{D}, X^*)^*$. Since $\iota(\text{lin}(\Gamma(\mathbb{D})) \otimes X) \subseteq B(\mathbb{D}, X^*)^*$, it follows that for each $\gamma \in \text{lin}(\Gamma(\mathbb{D})) \otimes X$, we have

$$\{ \langle \kappa_B(f_{\nu}), \iota(\gamma) \rangle \} \rightarrow \langle \widetilde{S}(f), \iota(\gamma) \rangle,$$

that is, $\{\gamma(f_{\nu})\} \rightarrow \gamma(f)$. Hence $\{f_{\nu}\} \rightarrow f$ in $(\widehat{\mathcal{B}}(\mathbb{D}, X^*), w^* \mathcal{B})$ by Remark 3. Then, by hypothesis, $f \in B(\mathbb{D}, X^*)$ and $\|f\|_B \leq \sup \{ \|f_{\nu}\|_B : \nu \in N \} \leq \rho_{\alpha}(f)$. \square

Theorem 5 admits the following useful reformulation that can be compared to the result by J.R. Holub (see [7, Corollary, p. 400]).

Corollary 6. *Let $B(\mathbb{D}, X^*)$ be a Banach normalized Bloch space. Then the following statements are equivalent:*

(i) *there exists a reasonable Bloch cross-norm α on $\text{lin}(\Gamma(\mathbb{D})) \otimes X$ such that*

$$(B(\mathbb{D}, X^*), \|\cdot\|_B) = (\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*), \rho_\alpha),$$

(ii) *the closed unit ball of $B(\mathbb{D}, X^*)$ is compact in the weak* Bloch topology of $\widehat{\mathcal{B}}(\mathbb{D}, X^*)$.*

Proof. (i) \Rightarrow (ii) Recall that $(\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*), \rho_\alpha)$ is a dual Banach space by Theorem 3. Then, by (i), Alaoglu's theorem asserts that the closed unit ball of $B(\mathbb{D}, X^*)$ is compact in $(\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*), w^*)$ and therefore in $(\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*), w^* \mathcal{B})$ by Corollary 4. Since $\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$ is a linear subspace of $\widehat{\mathcal{B}}(\mathbb{D}, X^*)$, this last topology agrees with the relative $w^* \mathcal{B}$ -topology of $\widehat{\mathcal{B}}(\mathbb{D}, X^*)$ on $\widehat{\mathcal{B}}_\alpha(\mathbb{D}, X^*)$ by Remark 3, and then (ii) follows easily.

(ii) \Rightarrow (i) Let $f \in \widehat{\mathcal{B}}(\mathbb{D}, X^*)$ and let $\{f_\nu\}$ be a bounded net in $B(\mathbb{D}, X^*)$ such that $\{f_\nu\} \rightarrow f$ in $(\widehat{\mathcal{B}}(\mathbb{D}, X^*), w^* \mathcal{B})$. Let $M = \sup\{\|f_\nu\|_B : \nu \in N\}$. By (ii), the closed unit ball of $B(\mathbb{D}, X^*)$ is closed in $(\widehat{\mathcal{B}}(\mathbb{D}, X^*), w^* \mathcal{B})$. Hence, the limit f/M of the net $\{f_\nu/M\}$ exists in $(\widehat{\mathcal{B}}(\mathbb{D}, X^*), w^* \mathcal{B})$, that is, f/M is in the closed unit ball of $B(\mathbb{D}, X^*)$. Hence, $f \in B(\mathbb{D}, X^*)$ and $\|f\|_B \leq M$. Then the statement (ii) of Theorem 5 holds and we obtain (i). \square

References

- [1] Anderson J.M. Bloch Functions: The Basic Theory. In: Power S.C. (Ed.) Operators and Function Theory. NATO ASI series, **153**. Springer, Dordrecht, 1985. doi:10.1007/978-94-009-5374-1_1
- [2] Aron R.M. *Tensor products of holomorphic functions*. Indag. Math. (N.S.) 1973, **35** (3), 192–202.
- [3] Bougoutaia A., Belacel A., Djeribia O., Jiménez-Vargas A. *(p, σ)-Absolute continuity of Bloch maps*. Banach J. Math. Anal. 2024, **18** (2), article 29. doi:10.1007/s43037-024-00337-x
- [4] Cabrera-Padilla M.G., Jiménez-Vargas A., Ruiz-Casternado D. *p-Summing Bloch mappings on the complex unit disc*. Banach J. Math. Anal. 2024, **18** (2), article 9. doi:10.1007/s43037-023-00318-6
- [5] Cabrera-Padilla M.G., Jiménez-Vargas A., Ruiz-Casternado D. *Factorization of Bloch mappings through a Hilbert space*. Ann. Funct. Anal. 2025, **16** (2), article 14. doi:10.1007/s43034-024-00404-2
- [6] Chevet M.S. *Sur certains produits tensoriels topologiques d'espaces de Banach*. Z. Wahrscheinlichkeitstheorie verw Gebiete 1969, **11** (2), 120–138. (in French)
- [7] Holub J.R. *Compactness in topological tensor products and operator spaces*. Proc. Amer. Math. Soc. 1972, **36** (2), 398–406. doi:10.1090/S0002-9939-1972-0326458-7
- [8] Jiménez-Vargas A., Ruiz-Casternado D. *Compact Bloch mappings on the complex unit disc*. arXiv:2308.02461 [math.CV] doi:10.48550/arXiv.2308.02461
- [9] Jiménez-Vargas A., Ruiz-Casternado D. *New ideals of Bloch mappings which are \mathcal{I} -factorizable and Möbius-invariant*. Constr. Math. Anal. 2024, **7** (3), 98–113. doi:10.33205/cma.1518651
- [10] Megginson R.E. An introduction to Banach space theory. Springer-Verlag, New York, 1998.
- [11] Paques O.T.W. Tensor products of Silva-holomorphic functions. In: North-Holland Math. Studies, **34**. North-Holland, Amsterdam-New York, 1979, 629–700. doi:10.1016/S0304-0208(08)70778-3

- [12] Quang T. *Banach-valued Bloch-type functions on the unit ball of a Hilbert space and weak spaces of Bloch-type*. *Constr. Math. Anal.* 2023, **6** (1), 6–21. doi:10.33205/cma.1243686
- [13] Quang T., Huy D., Vy D.T. *Tensor representation of spaces of holomorphic functions and applications*. *Complex Anal. Oper. Theory* 2017, **11** (3), 611–626. doi:10.1007/s11785-016-0547-2
- [14] Saphar P. *Produits tensoriels d'espaces de Banach et classes d'applications linéaires*. *Studia Math.* 1970, **38** (1), 71–100. (in French)
- [15] Schatten R. *A theory of cross-spaces*. In: *Ann. of Math. Stud.*, **26**. Princeton University Press, Princeton, N.J., 1950.
- [16] Zhu K. *Operator theory in function spaces*. 2nd ed. In: *Math. Surveys Monogr.*, **138**. Amer. Math. Soc., Providence, RI, 2007.

Received 15.11.2024

Revised 18.02.2025

Хіменес-Варгас А., Руїс-Кастернадо Д. *Про банахові простори нормалізованих Блох-образів* // Карпатські матем. публ. — 2025. — Т.17, №2. — С. 717–734.

Застосовуючи теорію тензорних добутків банахових просторів, ми досліджуємо банахові простори нормалізованих Блох-образів із \mathbb{D} (відкритого однічного круга комплексної площини) у X^* (спряжений простір до комплексного банахового простору X), які можуть бути канонічно подані як спряжений простір до поповнення тензорного добутку $\text{lin}(\Gamma(\mathbb{D})) \otimes_{\alpha} X$, де $\text{lin}(\Gamma(\mathbb{D}))$ позначає простір X -значних Блох-молекул на \mathbb{D} , а α є Блох-кроснормою на $\text{lin}(\Gamma(\mathbb{D})) \otimes X$. Показано, що простори нормалізованих Блох-образів, p -сумовні Блох-образи, а також Блох-образи, які факторизуються через гільбертів простір, допускають таке подання. У зворотній задачі охарактеризовано умови, за яких банахів простір нормалізованих Блох-образів $B(\mathbb{D}, X^*)$ є ізометрично ізоморфним до $(\text{lin}(\Gamma(\mathbb{D})) \widehat{\otimes}_{\alpha} X)^*$ для деякої Блох-кроснорми α , зокрема в термінах компактності його однічної кулі відносно слабкої* Блох-топології.

Ключові слова і фрази: векторнозначне Блох-відображення, тензорний добуток, p -сумовний оператор, двоїстість.