References
- Anderson J.M. Bloch Functions: The Basic Theory. In: Power S.C. (Ed.)
Operators and Function Theory. NATO ASI series, 153.
Springer, Dordrecht, 1985. doi:10.1007/978-94-009-5374-1_1
- Aron R.M. Tensor products of holomorphic functions. Indag.
Math. (N.S.) 1973, 35 (3), 192–202.
- Bougoutaia A., Belacel A., Djeribia O., Jiménez-Vargas A. \((p,\sigma)\)-Absolute continuity of Bloch
maps. Banach J. Math. Anal. 2024, 18 (2), article
29. doi:10.1007/s43037-024-00337-x
- Cabrera-Padilla M.G., Jiménez-Vargas A., Ruiz-Casternado D. \(p\)-Summing Bloch mappings on the complex
unit disc. Banach J. Math. Anal. 2024, 18 (2),
article 9. doi:10.1007/s43037-023-00318-6
- Cabrera-Padilla M.G., Jiménez-Vargas A., Ruiz-Casternado D.
Factorization of Bloch mappings through a Hilbert space. Ann.
Funct. Anal. 2025, 16 (2), article 14.
doi:10.1007/s43034-024-00404-2
- Chevet M.S. Sur certains produits tensoriels topologiques
d’espaces de Banach. Z. Wahrscheinlichkeitstheorie verw Gebiete
1969, 11 (2), 120–138. (in French)
- Holub J.R. Compactness in topological tensor products and
operator spaces. Proc. Amer. Math. Soc. 1972, 36
(2), 398–406. doi:10.1090/S0002-9939-1972-0326458-7
- Jiménez-Vargas A., Ruiz-Casternado D. Compact Bloch mappings on
the complex unit disc. arXiv:2308.02461 [math.CV]
doi:10.48550/arXiv.2308.02461
- Jiménez-Vargas A., Ruiz-Casternado D. New ideals of Bloch
mappings which are \(\mathcal{I}\)-factorizable
and Möbius-invariant. Constr. Math. Anal. 2024, 7
(3), 98–113. doi:10.33205/cma.1518651
- Megginson R.E. An introduction to Banach space theory.
Springer-Verlag, New York, 1998.
- Paques O.T.W. Tensor products of Silva-holomorphic functions. In:
North-Holland Math. Studies, 34. North-Holland,
Amsterdam-New York, 1979, 629–700. doi:10.1016/S0304-0208(08)70778-3
- Quang T. Banach-valued Bloch-type functions on the unit ball of a
Hilbert space and weak spaces of Bloch-type. Constr. Math. Anal.
2023, 6 (1), 6–21. doi:10.33205/cma.1243686
- Quang T., Huy D., Vy D.T. Tensor representation of spaces of
holomorphic functions and applications. Complex Anal. Oper. Theory
2017, 11 (3), 611–626.
doi:10.1007/s11785-016-0547-2
- Saphar P. Produits tensoriels d’espaces de Banach et classes
d’applications linéaires. Studia Math. 1970, 38
(1), 71–100. (in French)
- Schatten R. A theory of cross-spaces. In: Ann. of Math. Stud.,
26. Princeton University Press, Princeton, N.J.,
1950.
- Zhu K. Operator theory in function spaces. 2nd ed. In: Math. Surveys
Monogr., 138. Amer. Math. Soc., Providence, RI,
2007.