References

  1. Anderson J.M. Bloch Functions: The Basic Theory. In: Power S.C. (Ed.) Operators and Function Theory. NATO ASI series, 153. Springer, Dordrecht, 1985. doi:10.1007/978-94-009-5374-1_1
  2. Aron R.M. Tensor products of holomorphic functions. Indag. Math. (N.S.) 1973, 35 (3), 192–202.
  3. Bougoutaia A., Belacel A., Djeribia O., Jiménez-Vargas A. \((p,\sigma)\)-Absolute continuity of Bloch maps. Banach J. Math. Anal. 2024, 18 (2), article 29. doi:10.1007/s43037-024-00337-x
  4. Cabrera-Padilla M.G., Jiménez-Vargas A., Ruiz-Casternado D. \(p\)-Summing Bloch mappings on the complex unit disc. Banach J. Math. Anal. 2024, 18 (2), article 9. doi:10.1007/s43037-023-00318-6
  5. Cabrera-Padilla M.G., Jiménez-Vargas A., Ruiz-Casternado D. Factorization of Bloch mappings through a Hilbert space. Ann. Funct. Anal. 2025, 16 (2), article 14. doi:10.1007/s43034-024-00404-2
  6. Chevet M.S. Sur certains produits tensoriels topologiques d’espaces de Banach. Z. Wahrscheinlichkeitstheorie verw Gebiete 1969, 11 (2), 120–138. (in French)
  7. Holub J.R. Compactness in topological tensor products and operator spaces. Proc. Amer. Math. Soc. 1972, 36 (2), 398–406. doi:10.1090/S0002-9939-1972-0326458-7
  8. Jiménez-Vargas A., Ruiz-Casternado D. Compact Bloch mappings on the complex unit disc. arXiv:2308.02461 [math.CV] doi:10.48550/arXiv.2308.02461
  9. Jiménez-Vargas A., Ruiz-Casternado D. New ideals of Bloch mappings which are \(\mathcal{I}\)-factorizable and Möbius-invariant. Constr. Math. Anal. 2024, 7 (3), 98–113. doi:10.33205/cma.1518651
  10. Megginson R.E. An introduction to Banach space theory. Springer-Verlag, New York, 1998.
  11. Paques O.T.W. Tensor products of Silva-holomorphic functions. In: North-Holland Math. Studies, 34. North-Holland, Amsterdam-New York, 1979, 629–700. doi:10.1016/S0304-0208(08)70778-3
  12. Quang T. Banach-valued Bloch-type functions on the unit ball of a Hilbert space and weak spaces of Bloch-type. Constr. Math. Anal. 2023, 6 (1), 6–21. doi:10.33205/cma.1243686
  13. Quang T., Huy D., Vy D.T. Tensor representation of spaces of holomorphic functions and applications. Complex Anal. Oper. Theory 2017, 11 (3), 611–626. doi:10.1007/s11785-016-0547-2
  14. Saphar P. Produits tensoriels d’espaces de Banach et classes d’applications linéaires. Studia Math. 1970, 38 (1), 71–100. (in French)
  15. Schatten R. A theory of cross-spaces. In: Ann. of Math. Stud., 26. Princeton University Press, Princeton, N.J., 1950.
  16. Zhu K. Operator theory in function spaces. 2nd ed. In: Math. Surveys Monogr., 138. Amer. Math. Soc., Providence, RI, 2007.