References
- Aghigh K., Masjed-Jamei M., Dehghan M. A survey on third and
fourth kind of Chebyshev polynomials and their applications. Appl.
Math. Comput. 2008, 199 (1), 2–12.
doi:10.1016/j.amc.2007.09.018
- Aigner M. Catalan and other numbers: a recurrent theme. Springer,
Milan, 2001.
- Balaich M., Ondrus M. A generalization of even and odd
functions. Involve J. Math. 2011, 4 (1), 91–102.
doi:10.2140/involve.2011.4.91
- Barbeau E. Pell’s equation. Problem books in mathematics. Springer,
New York, 2003.
- Beauregard R.A., Dobrushkin V.A. Multisection of series.
Math. Gaz. 2016, 100 (549), 460–470. doi:10.1017/mag.2016.111
- Bertrand J. Solution d’un problème. C. R. Acad. Sci. Sér. I
(Math.) 1887, 105, 369.
- Bollinger R.C. Extended Pascal triangles. Math. Mag. 1993,
66 (2), 87–94. doi:10.2307/2691114
- Bondarenko B.A. Generalized Pascal triangles and pyramids, their
fractals, graphs and applications. The Fibonacci Association, Santa
Clara, 1993.
- Chow T., West J. Forbidden subsequences and Chebyshev
polynomials. Discrete Math. 1999, 204 (1),
119–128. doi:10.1016/S0012-365X(98)00384-7
- Cigler J. Some remarks and conjectures related to lattice paths
in strips along the \(x\)-axis.
arXiv:1501.04750 [math.CO] doi:10.48550/arxiv.1501.04750
- de Bruijn N.G., Knuth D.E., Rice S.O. The average height of
planted plane trees. Graph Theory & Comput. 1972,
1972, 15–22. doi:10.1016/B978-1-4832-3187-7.50007-6
- Deng L.H., Deng Y.P., Shapiro L.W. The Riordan group and
symmetric lattice paths. J. Shandong Univ. Nat. Sci. 2015,
50 (4), 82–89.
doi:10.6040/j.issn.1671-9352.0.2014.196
- Dershowitz N. Between Broadway and the Hudson: A bijection of
corridor paths. J. Integer Seq. 2021, 24 (2),
article 21.2.8.
- Dubeau F. Newton’s method and high-order algorithms for the \(n\)th root computation. J. Comput.
Appl. Math. 2009, 224 (1), 66–76.
doi:10.1016/j.cam.2008.04.014
- Ferrari L. Some combinatorics related to central binomial
coefficients: Grand-Dyck paths, coloured noncrossing partitions and
signed pattern avoiding permutations. Graphs Combin. 2010,
26 (1), 51–70. doi:10.1007/s00373-010-0895-z
- Fowler D., Robson E. Square Root Approximations in Old Babylonian
Mathematics: YBC 7289 in Context. Hist. Math. 1998,
25 (4), 366–378. doi:10.1006/hmat.1998.2209
- Guibert O., Mansour T. Restricted 132-involutions. Sémin.
Lothar. Comb. 2002, 48, B48a.
- Hasan M.A. New families of higher order iterative methods for solving
equations. In: Proc. of the 45th IEEE Conference on Decision and
Control, San Diego, CA, USA, December 13–15, 2006. IEEE, 2007,
6379–6384.
- Hein N., Huang J. Variations of the Catalan numbers from some
nonassociative binary operations. Discrete Math. 2022,
345 (3), 112711. doi:10.1016/j.disc.2021.112711
- Householder A. The numerical treatment of a single nonlinear
equation. McGraw-Hill, New-York, 1970.
- Kosheleva O. Babylonian method of computing the square root:
justifications based on fuzzy techniques and on computational
complexity. In: NAFIPS 2009 – 2009 Annual Meeting of the North American
Fuzzy Information Processing Society, Cincinnati, OH, USA , June 14–17,
2009. IEEE, 2009, 1–6.
- Krattenthaler C. Permutations with restricted patterns and Dyck
paths. Adv. Appl. Math. 2001, 27 (2–3), 510–530.
doi:10.1006/aama.2001.0747
- Kreweras G. Sur les éventails de segments. Cah. Bur. Univ.
Rech. Opérationnelle 1970, 15, 3–41.
- Lima J.B., Campello de Souza R.M. Tangent function and
Chebyshev-like rational maps over finite fields. IEEE Trans.
Circuits Syst. II, Exp. Briefs 2020, 67 (4), 775–779.
doi:10.1109/TCSII.2019.2923879
- Lipton R.J., Zalcstein Y. Word problems solvable in
logspace. J. ACM 1977, 24 (3), 522–526. doi:10.1145/322017.322031
- Mason J. Handscomb D. Chebyshev polynomials. CRC Press LLC, Boca
Raton, 2002.
- McBride A. Remarks on Pell’s equation and square root
algorithms. Math. Gaz. 1999, 83 (496), 47–52. doi:10.2307/3618682
- Polyak B. Newton’s method and its use in optimization. Eur.
J. Oper. Res. 2007, 181 (3), 1086–1096. doi:10.1016/j.ejor.2005.06.076
- Ricci P.E. A survey on pseudo-Chebyshev functions. 4open
2020, 3, 2. doi:10.1051/fopen/2020001
- Sloane N.J.A. The on-line encyclopedia of integer sequences (OEIS).
https://oeis.org/
- Yeyios A.K. On two sequences of algorithms for approximating
square roots. J. Comput. Appl. Math. 1992, 40 (1),
63–72. doi:10.1016/0377-0427(92)90042-V