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Chebyshev polynomials involved in the Householder’s
method for square roots

Dijoux Y.

The Householder’s method is a root-find algorithm which is a natural extension of both the
Newton’s method and the Halley’s method. The current paper focuses on approximating the square
root of a positive real number based on these methods. The resulting algorithms can be expressed
using Chebyshev polynomials. An extension to the nth root is also proposed.
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1 The Householder’s method for square roots

The Householder’s method [20] is an extension of both the Newton’s method [28] and the
Halley’s method [18]. Considering a positive integer d and the function g(t) = 1/(t2 − x),
where x is a positive real number, the Householder’s method of order d for square roots is
provided by

H0 = r, Hn+1 = Hn + d
g(d−1)(Hn)

g(d)(Hn)
∀n ≥ 0, (1)

with initial guess r, positive constant satisfying the inequality r2 6= x. This iterative algorithm
is such that the sequence {Hn}n≥0 converges to

√
x with a rate of convergence of d + 1.

An explicit expression of the sequence is presented in Theorem 1 below. After deriving a
few elementary expressions in Lemma 1, a proof of Theorem 1 is presented. The sequence Hn

naturally depends on the order d, but d is omitted in the notation for the sake of simplicity.
The Newton’s method can be obtained with d = 1 while the Halley’s method can be obtained
with d = 2.

Theorem 1. Considering the Householder’s method of order d for
√

x with a starting point r,
the corresponding sequence {Hn}n≥0 can be expressed as follows:

H0 = r, Hn+1 =

[⌈d/2⌉
∑
k=0

(
d + 1

2k

)
Hd+1−2k

n xk

]/[⌊d/2⌋
∑
k=0

(
d + 1
1 + 2k

)
Hd−2k

n xk

]
∀n ≥ 0. (2)

Lemma 1. Considering the function G(t) = 1/(t2 − 1), its pth derivative is as follows:

G(p)(t) =
(−1)p p!

2(t2 − 1)p+1

(
(t + 1)p+1 − (t− 1)p+1). (3)
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In addition, the following equalities are verified for any real t and any integer p:

1
2

(
(t + 1)p+1 − (t− 1)p+1) =

⌊p/2⌋
∑
k=0

(
p + 1

1 + 2k

)
tp−2k,

1
2

(
(t + 1)p+1 + (t− 1)p+1) =

⌈p/2⌉
∑
k=0

(
p + 1

2k

)
tp+1−2k.

(4)

Proof. First, the expression of G(p) in Lemma 1 is derived. As G(t) = (t + 1)−1(t − 1)−1,
applying the Leibniz rule to G allows us to obtain

G(p)(t) =
(−1)p p!

(t2 − 1)p+1

p

∑
k=0

(t− 1)p−k(t + 1)k.

The previous expression is a geometric series with common ratio (t + 1)/(t− 1) an its
closed-formed formula is (3). Next, both equalities in (4) can be obtained using the binomial
expansion and elementary parity arguments. Finally, the expression (2) from Theorem 1 is
derived. By noticing that g(t) = x−1G(tx−1/2), expression (1) can be written as follows

Hn+1 = Hn + d
√

x
G(d−1)(Hnx−1/2)

G(d)(Hnx−1/2)
.

Using successively (3) and (4) from Lemma 1, the previous equality becomes:

Hn+1 = t
√

x−
√

x(t2 − 1)
(t + 1)d − (t− 1)d

(t + 1)d+1 − (t− 1)d+1

∣∣∣∣
t=Hnx−1/2

=
√

x
(t + 1)d+1 + (t− 1)d+1

(t + 1)d+1 − (t− 1)d+1

∣∣∣∣
t=Hnx−1/2

=
√

x

[(⌈d/2⌉
∑
k=0

(
d + 1

2k

)
td+1−2k

)/(⌊d/2⌋
∑
k=0

(
d + 1
1 + 2k

)
td−2k

)]∣∣∣∣
t=Hnx−1/2

=

( ⌈d/2⌉
∑
k=0

(
d + 1

2k

)
Hd+1−2k

n xk

)/(⌊d/2⌋
∑
k=0

(
d + 1
1 + 2k

)
Hd−2k

n xk

)
.

(5)

Before providing an explicit expression ofHn, the Chebyshev polynomials of the first kind
{Tn}n≥0, second kind {Un}n≥0, third kind {Vn}n≥0 and fourth kind {Wn}n≥0 are introduced
in (6), (7), (8) and (9), respectively, [1, 26], namely

T0(X) = 1, T1(X) = X, Tn+2(X) = 2XTn+1(X)− Tn(X) ∀n ≥ 0, (6)

U0(X) = 1, U1(X) = 2X, Un+2(X) = 2XUn+1(X)−Un(X) ∀n ≥ 0, (7)

V0(X) = 1, V1(X) = 2X − 1, Vn+2(X) = 2XVn+1(X)−Vn(X) ∀n ≥ 0, (8)

W0(X) = 1, W1(X) = 2X + 1, Wn+2(X) = 2XWn+1(X)−Wn(X) ∀n ≥ 0. (9)

The expression of Hn is presented in Theorem 2 either from Chebyshev polynomials or
from monomials while distinguishing whether the order is odd or even. A proof of Theorem 2
follows.
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Theorem 2. Considering the Householder’s method of order d for
√

x with a starting point r,
the corresponding sequence {Hn}n≥0 can be expressed in terms of Chebyshev polynomials as
follows:

1) if d is even and n greater or equal than 0, we obtain

Hn = r
(
W((d+1)n−1)/2(X)

)
/
(
V((d+1)n−1)/2(X)

)
|X=(x+r2)/(x−r2); (10)

2) if d is odd and n greater or equal than 1, we obtain

Hn = rT(d+1)n/2(X)/
(
(X − 1)U(d+1)n/2−1(X)

)
|X=(x+r2)/(x−r2). (11)

Furthermore, the sequence {Hn}n≥0 can be expressed in function of monomials of
X = (x + r2)/(x − r2) as follows:

1) if d is even, then

Hn = r
((d+1)n−1)/2

∏
k=1

(
X − cos

( 2kπ

(d + 1)n

))/(
X− cos

( (2k− 1)π
(d + 1)n

))∣∣∣
X=

x+r2

x−r2

; (12)

2) if d is odd, then

Hn = r
(d+1)n/2−1

∏
k=0

(
X − cos

( (2k + 1)π
(d + 1)n

))/(
X − cos

( 2kπ

(d + 1)n

))∣∣∣
X=

x+r2

x−r2

. (13)

Proof. The case for even d = 2p is first considered. Let us introduce the two following rational
functions

Ke(X) =

W(d+1)n−1
2

(X)

V(d+1)n−1
2

(X)
and Le(X) =

((d+1)n−1)/2

∏
k=1

X− cos
( 2kπ

(d + 1)n

)

X − cos
( (2k− 1)π

(d + 1)n

) .

Given an integer k, the degree of Vk and Wk is k, their leading coefficient is 2k, and their roots

are
{

cos
( 2jπ

2k+1

)}
1≤j≤k

and
{

cos
( (2j−1)π

2k+1

)}
1≤j≤k

, respectively [26]. Therefore Ke and Le are
identical and it implies that the expressions (10) and (12) are the same.

Next, we evaluate W(d+1)n−1
2

and V(d+1)n−1
2

at cos
( 2kπ
(d+1)n+1

)
and cos

( (2k−1)π
(d+1)n+1

)
, using the

identities Vk(cos(θ)) = cos((2k+1)θ/2)
cos(θ/2) and Wk(cos(θ)) = sin((2k+1)θ/2)

sin(θ/2) [26], namely

W(d+1)n−1
2

(
cos

( 2kπ

(d + 1)n+1

))
= sin

( kπ

d + 1

)/
sin

( kπ

(d + 1)n+1

)
,

V(d+1)n−1
2

(
cos

( 2kπ

(d + 1)n+1

))
= cos

( kπ

(d + 1)

)/
cos

( kπ

(d + 1)n+1

)
,

W(d+1)n−1
2

(
cos

( (2k− 1)π
(d + 1)n+1

))
= sin

( (2k− 1)π
2(d + 1)

)/
sin

( (2k− 1)π
2(d + 1)n+1

)
,

V(d+1)n−1
2

(
cos

( (2k− 1)π
(d + 1)n+1

))
= cos

( (2k− 1)π
2(d + 1)

)/
cos

( (2k− 1)π
2(d + 1)n+1

)
.

(14)
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We prove now by induction that the expressions (2) and (10) are identical. The base case
for n = 0 is immediate from the empty-product rule. Let us assume that both expressions are
identical for n > 0. Let us introduce a rational function Me as follows

Me(X) = Ke(X)

p

∑
j=0

(
2p + 1

2j

)
(X − 1)p−jKe(X)2p−2j(X + 1)j

p

∑
j=0

(
2p + 1
1 + 2j

)
(X − 1)p−jKe(X)2p−2j(X + 1)j

. (15)

As for Ke it is straightforward to see that Me is the ratio of two polynomials of degree
(d+1)n+1−1

2 and that the overall leading coefficient of Me is 1. The function Me can be expressed

directly in terms of a ratio of polynomials of degree (d+1)n+1−1
2 as follows

Me(X) =

p

∑
j=0

(
2p + 1

2j

)
(X − 1)p−j(X + 1)j

[
W(d+1)n−1

2

(X)
]2p+1−2j[

V(d+1)n−1
2

(X)
]2j

p

∑
j=0

(
2p + 1
1 + 2j

)
(X − 1)p−j(X + 1)j

[
W(d+1)n−1

2

(X)
]2p−2j[

V(d+1)n−1
2

(X)
]2j+1

.

We will prove now that the roots of Me(X) are
{

cos
( 2kπ
(d+1)n+1

)}
while the poles of Me(X)

are
{

cos
( (2k−1)π
(d+1)n+1

)}
for any k in

{
1, 2, . . . , (d+1)n+1−1

2

}
. The trigonometric identities of

cos(2θ)± 1 and the results from (14) are used and we obtain

Me

(
cos

2kπ

(d + 1)n+1

)
=

cos
( kπ

(d + 1)n+1

)

sin
( kπ

(d + 1)n+1

)

p

∑
j=0

(
2p + 1

2j

)
(−1)p−j sin

( kπ

d + 1

)2p+1−2j
cos

( kπ

d + 1

)2j

p

∑
j=0

(
2p + 1
1 + 2j

)
(−1)p−j sin

( kπ

d + 1

)2p−2j
cos

( kπ

d + 1

)2j+1

and
(

Me

(
cos

(2k− 1)π
(d + 1)n+1

))−1

=

sin
(2k− 1)π

2(d + 1)n+1

cos
(2k− 1)π

2(d + 1)n+1

p

∑
j=0

(
2p + 1
1 + 2j

)
(−1)p−j sin

( (2k− 1)π
2(d + 1)

)2p−2j
cos

( (2k− 1)π
2(d + 1)

)2j+1

p

∑
j=0

(
2p + 1

2j

)
(−1)p−j sin

( (2k− 1)π
2(d + 1)

)2p+1−2j
cos

( (2k− 1)π
2(d + 1)

)2j
.

(16)

Next, we apply the binomial expansion to
[

exp
(

ikπ
d+1

)]d+1 and
[

exp
( i(2k−1)π

2(d+1)

)]d+1:

[
exp

( ikπ

d + 1

)]d+1
=

2p+1

∑
j=0

(
2p + 1

j

)
cos

( kπ

d + 1

)j
sin

( kπ

d + 1

)2p+1−j
i2p+1−j = (−1)k

and
[

exp
( i(2k− 1)π

2(d + 1)

)]d+1
=

2p+1

∑
j=0

(
2p + 1

j

)
cos

( (2k− 1)π
2(d + 1)

)j
sin

( (2k− 1)π
2(d + 1)

)2p+1−j
i2p+1−j

= (−1)k+1i.
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Identifying the real and imaginary parts of the previous identities in (16) , it comes auto-

matically that Me

(
cos

( 2kπ
(d+1)n+1

))
= 0 and

[
Me

(
cos

( (2k−1)π
(d+1)n+1

))]−1
= 0. It implies that Me has

the following monomial factorization

Me(X) =
((d+1)n+1−1)/2

∏
k=1

(
X − cos

( 2kπ

(d + 1)n+1

))/(
X− cos

( (2k− 1)π
(d + 1)n+1

))
. (17)

Let us evaluate rMe(X) for X = x+r2

x−r2 . From (17), rMe(X) corresponds to the expression
developed in (12) at step n + 1 or equivalently to the expression developed in (10) at step n + 1.
Also rKe

(
x+r2

x−r2

)
is equal to Hn. Noting that X − 1 = 2r2

x−r2 and X + 1 = 2x
x−r2 , rMe(X) from (15)

can be assessed as follows

rMe

(x + r2

x− r2

)
= rKe(X)

p

∑
j=0

(
2p + 1

2j

)( 2r2

x− r2

)p−j
Ke(X)2p−2j

( 2x

x− r2

)j

p

∑
j=0

(
2p + 1
1 + 2j

)( 2r2

x− r2

)p−j
Ke(X)2p−2j

( 2x

x− r2

)j

=

p

∑
j=0

(
2p + 1

2j

)
(rKe(X))2p+1−2j xj

p

∑
j=0

(
2p + 1
1 + 2j

)
(rKe(X))2p−2j xj

=

⌈d/2⌉
∑
j=0

(
d + 1

2j

)
Hd+1−2j

n xj

⌊d/2⌋
∑
j=0

(
d + 1
1 + 2j

)
Hd−2j

n xj

and rMe

(
x+r2

x−r2

)
has the expression of Hn+1 provided in (2). We have proven that the expres-

sions in (2) and (10) are identical at the step n + 1, which ends the proof by induction when d

is even.
The case for odd d can be carried out similarly, first proving that equations (11) and (13) are

identical for n ≥ 1 and then establishing the equality between (13) and (2).

Additional expressions of {Hn} or of its residual sequence {Hn+1 −Hn} are presented in
Corollary 1, followed by a proof.

Corollary 1. When d is even (d = 2p), the sequence can be expressed as a product as follows

Hn = r

( n

∏
j=1

Wp

(
T(2p+1)j−1

(x + r2

x− r2

)))/( n

∏
j=1

Vp

(
T(2p+1)j−1

(x + r2

x− r2

)))
. (18)

Furthermore, the residual sequence can be expressed as follows

Hn+1 −Hn = 2Hn

[
Up−1

(
T(2p+1)n

(x + r2

x− r2

))]/[
Vp

(
T(2p+1)n

( x + r2

x− r2

))]
. (19)

If d is odd,Hn can be expressed as follows

Hn+1 = Hn
Td+1(Xn)

XnUd(Xn)

∣∣∣
Xn=T(d+1)n/2

(
x+r2

x−r2

) (20)

for n greater or equal than 1.
Finally, the residual sequence can be expressed as follows

Hn+1 −Hn = −Hn
Ud−1(Xn)

XnUd(Xn)

∣∣∣
Xn=T(d+1)n/2

(
x+r2

x−r2

). (21)
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Proof. Using their trigonometric definitions, it is easy to verify that

W(d+1)n−1
2

(X) =
n

∏
j=1

Wp(T(2p+1)j−1(X))

and

V(d+1)n−1
2

(X) =
n

∏
j=1

Vp(T(2p+1)j−1(X).

Therefore, equations (10) and (18) are identical. Equation (19) can be directly obtained from
(18) using the identity Vp −Wp = −2Up−1 [26]. Equation (20) can be obtained from (11) using
the two classical identities Tn ◦ Tm = Tn+m and Unm−1 = Um−1(Tn)Un−1 [26]. Equation (21) is
a direct consequence of (20) using the identity Td+1(X) = XUd(X)−Ud−1(X) [26].

An algorithm to compute Hn can be derived using the properties of Corollary 1. It is
implemented in Algorithm 1 with input x, the initialization r, the order d and the positive
index n and with output S. For an efficient numerical implementation of Algorithm 1, it can be

recommended to have a precise asymptotic expansion of either 2Ud/2−1(X)
Vd/2(X)

or −Ud−1(X)
XUd(X)

, further
discussed in Section 3.

Algorithm 1 S = H(x, r, d, n)

1: X ← x + r2

x− r2

2: if (mod(d, 2) == 0) then

3: S← r(1 + PHI(X))

4: T ← Td+1(X)

5: else

6: T ← T(d+1)/2(X)

7: S← rT

(X − 1)×U(d+1)/2−1(X)
8: end if

9: for i=2:n do

10: S← S(1 + PHI(T)) /*Hi*/
11: T ← Td+1(T)

12: end for

13: return S

14: function PHI(X)
15: if (mod(d, 2) == 0) then

16: return
2Ud/2−1(X)

Vd/2(X)
17: else

18: return
−Ud−1(X)

XUd(X)
19: end if

20: end function

The Babylonian method [21], also called Heron’s method [16], is a particular case of the
Newton’s method [28] and is derived in Corollary 2.
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Corollary 2. Let x be a real positive number and {un}n≥0 be the sequence

u0 = r, un+1 =
un

2
+

x

2un
∀n ≥ 0, (22)

associated to the Babylonian method reminded in (22), where r is a real positive number. An
explicit expression of un is presented as follows

u0 = r, un = r
T2n−1(X)

(X − 1)U2n−1−1(X)

∣∣∣
X=(x+r2)/(x−r2)

∀ n ∈ N
∗.

An explicit expression solely based on the Chebyshev polynomials of the first kind is proposed
for positive n as follows

un =
x + r2

2r
− x− r2

2r

n−1

∑
k=1

[
2k

k−1

∏
j=0

T2j

( x + r2

x− r2

)]−1
.

Alternately, the sequence {un}n≥0 can be expressed as a product of monomials, namely

un = r
2n−1−1

∏
k=0

(
X − cos

( (2k + 1)π
2n

))/(
X− cos

(2kπ

2n

))∣∣∣
X=

x+r2

x−r2

.

Corollary 3 presents the Halley’s method for square roots.

Corollary 3. Let x and r be real positive numbers and {un}n≥0 be the sequence

u0 = r, un+1 = un
un

2 + 3x

3un
2 + x

∀n ≥ 0, (23)

associated to the Halley’s method for square roots reminded in (23) The sequence {un}n≥0 can
be expressed using Chebyshev polynomials of the first kind as follows

un = r
n

∏
i=1

(
2T3i−1

(x + r2

x− r2

)
+ 1

)/(
2T3i−1

( x + r2

x− r2

)
− 1

)
∀n ≥ 0.

Finally, it is possible to express the general expression ofHn without the use of trigonomet-
ric-related functions as expressed in Theorem 3. A proof follows.

Theorem 3. Considering the Householder’s method of order d for
√

x with a starting point r,
the corresponding sequence {Hn}n≥0 can be expressed as follows

Hn =
√

x
(r +
√

x)(d+1)n
+ (r−

√
x)(d+1)n

(r +
√

x)(d+1)n − (r−
√

x)(d+1)n . (24)

The previous expression can be re-written as a rational function of (x, r) as follows

Hn = r

⌈((d+1)n−1)/2⌉
∑
k=0

(
(d + 1)n

2k

)
xkr(d+1)n−2k

⌊((d+1)n−1)/2⌋
∑
k=0

(
(d + 1)n

1 + 2k

)
xkr(d+1)n−2k

. (25)
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Proof. We prove by induction that equations (2) and (24) are identical. For the initialization,
both equations are equal to r. Let us assume the equality holds at step n ≥ 0. Let us denote
φn = (r +

√
x)(d+1)n

and ψn = (r −√x)(d+1)n
. Therefore Hn =

√
x

φn+ψn

φn−ψn
. The induction step

can be obtained using the same method as in (5), namely

Hn+1 =
√

x
(t + 1)d+1 + (t− 1)d+1

(t + 1)d+1 − (t− 1)d+1

∣∣∣
t=Hnx−1/2

=
√

x

(φn + ψn

φn − ψn
+ 1

)d+1
+

(φn + ψn

φn − ψn
− 1

)d+1

(φn + ψn

φn − ψn
+ 1

)d+1
−

(φn + ψn

φn − ψn
− 1

)d+1

=
√

x
(φn + ψn + φn − ψn)

d+1 + (φn + ψn − (φn − ψn))
d+1

(φn + ψn + φn − ψn)
d+1 − (φn + ψn − (φn − ψn))

d+1
=
√

x
φd+1

n + ψd+1
n

φd+1
n − ψd+1

n

=
√

x
φd+1

n + ψd+1
n

φd+1
n − ψd+1

n

=
√

x
(r +
√

x)(d+1)n+1
+ (r−

√
x)(d+1)n+1

(r +
√

x)(d+1)n+1 − (r−
√

x)(d+1)n+1 .

Equation (24) highlights that the (n + 1)th term of the Householder’s sequence of order d

is equal to the second term of the Householder’s sequence of order (d + 1)n − 1. Equation (25)
is simply obtained from (2) for n = 0 and the order (d + 1)n − 1. Similar functions to the ones
in equation (25) have been recently studied in [24] and are related to the tangent analog of the
Chebyshev polynomials.

We can notice that the sequence {An}n≥1 defined by

An =
√

x
(r +
√

x)n + (r−
√

x)n

(r +
√

x)n − (r−
√

x)n

is among the slowest sequence to converge to
√

x while at the same time it is featuring in its
subsequences all the sequences of the Householder’s method for

√
x at every order. This se-

quence has already been obtained by A.K. Yeyios [31] from continued fraction expansions. The
Newton’s method and more generally the Householder’s method for square roots of integer
numbers is intimately related to Pell’s equations [4, 27].

2 A note the Householder’s method for nth roots

Algorithms for the nth root computation have already been developed [14]. An introduc-
tion to the Householder’s method to obtain p

√
x is now discussed. Considering an integer p,

an order d and the function gp(t) =
1

tp−x , where x is a positive real number, the Householder’s
method of order d for pth root is provided by

H0 = r, Hn+1 = Hn + d
g
(d−1)
p (Hn)

g
(d)
p (Hn)

∀n ≥ 0, (26)

with initial guess r. The sequence {Hn}n≥0 converges to p
√

x with a rate of convergence of d+ 1.
Numerous expressions in the Householder’s method for square roots are based on bino-

mial coefficients. Considering the nth root extraction, we need to introduce the generalized
binomial coefficients (n

m)p
of order p [7, 8], which naturally appear in the development of

Bp(x) = ∑
p−1
k=0 xk at the power n as follows

Bp(x)n = (1 + x + · · ·+ xp−1)n =
(p−1)n

∑
m=0

(
n

m

)

p

xm.
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The generalized binomial coefficients of order p can be obtained from the binomial coeffi-
cients as follows [8] (

n

m

)

p

=
⌊m/p⌋
∑
k=0

(−1)k

(
n

k

)(
n + m− pk− 1

n− 1

)
.

In addition, the parity arguments are extended to their modular counterparts involving
series multisection [3, 5]. Given a function f and a radical p, let us denote the primitive root of
unity ξ = exp

( 2iπ
p

)
and we introduce p functions {[ f ]ℓ(t)}0≤ℓ≤p−1 as follows

[ f ]ℓ(t) =
1
p

p−1

∑
k=0

ξ−ℓk f (ξk t). (27)

It is straightforward to verify that if f has a power expansion of the type ∑n≥0 anxn, [ f ]ℓ is
expressed as ∑n≥0 apn+ℓxpn+ℓ. The functions are commonly referred as Roots of Unity Filters
and f can be reconstructed from their sums.

An explicit expression of the sequence {Hn}n≥0 is presented in Theorem 4. A proof follows.

Theorem 4. Considering the Householder’s method of order d for p
√

x with a starting point r,
the corresponding sequence {Hn}n≥0 can be expressed as follows

H0 = r, Hn+1 =
p
√

x
[Bd+1

p ]1−d[p](Hnx−1/p)

[Bd+1
p ]−d[p](Hnx−1/p)

∀n ≥ 0. (28)

The previous expression can be formulated as follows

H0 = r, Hn+1 =

⌊((p−1)d+1)/p⌋
∑
k=0

(
d + 1

p(k + 1)− 2

)

p

H
d(p−1)+1−pk
n xk

⌊(p−1)d/p⌋
∑
k=0

(
d + 1

p(k + 1)− 1

)

p

H
d(p−1)−pk
n xk

∀n ≥ 0. (29)

Proof. The partial fraction decomposition of 1
tp−1 is the following elementary result

1
tp − 1

=
1
p

p−1

∑
k=0

ξk

t− ξk
.

Therefore, its rth derivative has the next expression

dr 1
tp − 1
dtr

=
(−1)rr!

p

p−1

∑
k=0

ξk

(t− ξk)r+1 .

By noticing that gp(t) =
1
x

1
(tx−1/p)p−1

, expression (26) can be written as follows

Hn+1 =
p
√

x

[
t−

(p−1

∑
k=0

ξk

(t− ξk)d

)/(p−1

∑
k=0

ξk

(t− ξk)d+1

)]∣∣∣∣
t=Hnx−1/p

.

We can now notice that tξk

(t−ξk)d+1 = ξk

(t−ξk)d +
ξ2k

(t−ξk)d+1 , which implies

Hn+1 = p
√

x

[(p−1

∑
k=0

ξ2k

(t− ξk)d+1

)/(p−1

∑
k=0

ξk

(t− ξk)d+1

)]∣∣∣∣
t=Hnx−1/p

. (30)
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Let us now derive the function
[Bd+1

p ]l(t)

(tp−1)d+1 using the identity tp − 1 = (t − 1)B(t) and the
series multisection defined in (27) as follows

[Bd+1
p ]ℓ(t)

(tp − 1)d+1 =
1
p

p−1

∑
k=0

ξ−ℓkB(ξkt)d+1

(tp − 1)d+1 =
1
p

p−1

∑
k=0

ξ−ℓk

(ξkt− 1)d+1

=
1
p

p−1

∑
k=0

ξ−ℓk

ξk(d+1)(t− ξp−k)d+1
=

1
p

p−1

∑
k=0

ξk(ℓ+d+1)

(t− ξk)d+1 .

The previous function can match both the numerator and the denominator of (30). For the
numerator, we need to identify ℓ such that ℓ+ d+ 1 = 2[p] and for the denominator, to identify
ℓ such that ℓ+ d + 1 = 1[p]. Equation (28) ensues. To obtain (29), rather than using the explicit
expression of [Bd+1

p ]ℓ(t) using (27), we use the fact that it filters all powers except the ones
congruent to ℓ modulo p. The highest degree of the numerator is d(p− 1)+ 1 while the highest
degree of the denominator is d(p− 1). Therefore, we obtain

Hn+1 =
p
√

x
[Bd+1

p ]1−d[p](Hnx−1/p)

[Bd+1
p ]−d[p](Hnx−1/p)

= p
√

x

(p−1)(d+1)

∑
m=0

m+d−1=0[p]

(
d + 1

m

)

p

tm

(p−1)(d+1)

∑
m=0

m+d=0[p]

(
d + 1

m

)

p

tm

∣∣∣∣∣∣∣∣∣∣∣∣∣
t=Hnx−1/p

= p
√

x

⌊((p−1)d+1)/p⌋
∑
k=0

(
d + 1

d(p− 1) + 1− pk

)

p

td(p−1)+1−pk

⌊(p−1)d/p⌋
∑
k=0

(
d + 1

d(p− 1)− pk

)

p

td(p−1)−pk

∣∣∣∣∣∣∣∣∣∣∣
t=Hnx−1/p

= p
√

x

⌊((p−1)d+1)/p⌋
∑
k=0

(
d + 1

d(p− 1) + 1− pk

)

p

H
d(p−1)+1−pk
n xk−1/p

⌊(p−1)d/p⌋
∑
k=0

(
d + 1

d(p− 1)− pk

)

p

H
d(p−1)−pk
n xk

.

The radical values collapses and we obtain (29) using the identity (n
m)s

= ( n
(s−1)n−m)s

[8], which
ends the proof.

3 A note on the asymptotic expansion of Chebyshev functions

When considering the Householder’s method of order d for
√

x, Algorithm 1 identified the

need to have a precise asymptotic evaluation of Ud−1(X)
XUd(X)

and 2Ud/2−1(X)
Vd/2(X)

, when d is odd and even,
respectively. The goal of this section is to provide an asymptotic expansion of these functions
and to discuss the presence of these families of functions in the study of lattice paths.

Let us first denote fd(x) =
Ud−1(x)
xUd(x)

for d ≥ 1. It is straightforward from (7) to obtain the
following recurrence relation:

f1(x) =
1

2x2 , fd(x) =
1

x2(2− fd−1(x))
. (31)
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From (31), we can in particular explicit the pointwise limit of fd(x) for x > 1 which is
f (x) = 1 −

√
1− 1/x2. Before expressing fd as a power series, we define one of the most

common lattice path called Dyck path [22]. A Dyck path of semilength n and of maximum
height h is a lattice walk from (0, 0) to (2n, 0) with steps of the form (1, 1) and (1,−1) with
a height bounded in the interval [0, h]. The number of Dyck paths of semilength n and of
maximum height h is denoted ∆n,h. We can observe that ∆4,1 = 1, ∆4,2 = 8, ∆4,3 = 13
and ∆4,k = 14 for k ≥ 4. The natural initialization of the sequence is {∆0,h = 1}h≥0 and
{∆n,0 = 0}n≥1. Enumerating Dyck paths can be also found in ballot counting problems [6],
plane trees [11] or permutations [22]. It is well established that ∆n,h is equal to the Catalan
number Cn = (2n

n )/(n + 1), when h ≥ n [2].
An early reference to the sequence {∆n,h}{n,h≥0} can be traced back in the work of G. Krew-

eras [23] using Fibonacci polynomials, which are closely related to the Chebyshev polyno-
mials of the second kind. The relationship between Dyck paths and the ratio of Chebyshev
polynomials has been further established in [9, 17, 22], usually involving generating functions.
Theorem 5 presents an asymptotic expansion of fd expressed as a power series, followed by a
proof.

Theorem 5. We consider the family of functions
{

fd(x) =
Ud−1(x)
xUd(x)

}
d≥1 over the interval [1, ∞[

and ∆n,h as the number of Dyck paths of semilength n and of maximum height h. Then fd can
be expressed using power series as follows

fd(x) =
∞

∑
i=0

∆i,d−1

22i+1x2i+2 . (32)

Proof. Equation (32) is correct for d = 1, based on (31). Considering Dyck paths of semilength
n and maximum height h, a conditioning with respect to the last return to the x-axis leads
to [11]

∆n,h =
n−1

∑
k=0

∆k,h∆n−1−k,h−1. (33)

For d ≥ 2, given the parity of fd highlighted in (31), fd can be expressed as ∑
∞
i=0

αi,d
x2i+2 . Rewrit-

ting (31) as 2x2 fd(x)− x2 fd(x) fd−1(x) = 1 and using the Cauchy product, it leads to





2α0,d = 1,

2αi,d =
i

∑
k=0

αk,dαi−k,d−1, i ≥ 1.
(34)

Finally, αi,d =
∆i,d−1
22i+1 is the appropriate candidate for both the initialization and the general

case in (34), which ends the proof.

The approximation of fd through the sequence {∆n,d−1}{n≥0} can be obtained in multiple
ways. The sequence {∆n,h}{n,h≥0} corresponds to [30, sequence A080934] and the recurrence
relation presented in (33) [11] is a common identity to compute the sequence. Closed form ex-
pressions are presented in [19] and the sequence has also been studied through its differences
in [23].
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Let us now study the family of functions gd =
2Ud/2−1(X)

Vd/2(X)
. As for fd, it is interesting to

study gd for odd and even values of d. When d is odd, it is necessary to define Chebyshev
functions of half-integer order, which has been comonly studied over the interval [−1, 1] [29].
As we evaluate gd over the interval [1, ∞[ in Algorithm 1, the Chebyshev functions of half
integer order are proposed in Lemma 2 over the interval [1, ∞[. The proof is simply obtained
from the hyperbolic definition of the Chebyshev polynomial over the interval [1, ∞[ (see, for
example, [26]).

Lemma 2. The Chebyshev polynomials of the four kinds can be defined at half-integer orders
using the following identities

Up−1/2 =
√

1/(2(1 + z))Wp(z), Tp+1/2 =
√
(1 + z)/2Vp(z)

for p ≥ 0.

Based on the identities of Lemma 2, the family of functions gd is defined as follows

gd(x) =

{
2Ud/2−1(x)/Vd/2(x), if d is even,

W(d−1)/2(x)/T(d+1)/2(x), if d is odd.

In order to express gd as a power series, Lemma 3 presents an alternate expression of gd

along with a recurrence relation involving both fd and gd. A proof follows.

Lemma 3. The family of functions {gd(x)}d≥1 can be expressed using only Chebyshev poly-
nomials of the second kind as follows

gd(x) = 2
d−1

∑
k=0

Uk(x)

Ud(x)
. (35)

In addition, fd and gd obey to the following recurrence relation

g1(x) = 1/x, gd(x) = x fd(x)(2 + gd−1(x)), d ≥ 1. (36)

Proof. The proof of establishing equation (35) is mainly based on Lagrange’s trigonometric
identity

n

∑
k=0

sin(kθ) = sin
( (n + 1)θ

2

)
sin

(nθ

2

)(
sin

(θ

2

))−1
.

Therefore, we obtain

2
d−1

∑
k=0

Uk(cos(θ))
Ud(cos(θ))

=
2 sin

( (d + 1)θ
2

)
sin

(dθ

2

)

sin((d + 1)θ) sin
(θ

2

) =
sin

(dθ

2

)

cos
( (d + 1)θ

2

)
sin

(θ

2

) .

Using the trigonometric definitions of the Chebyshev polynomials of the four kinds [26]
and based on the parity of d, equation (35) can be established over the interval [−1, 1], except
for the isolated singularities. The equality can be extended to [1, ∞[ by analytic continuation.
Equation (36) is a direct consequence of equation (35).
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From (36), it is possible to derive the pointwise limit of gd(x) for x > 1, which is
g(x) =

√
(x + 1)/(x − 1)− 1. Before expressing gd as a power series, we introduce the con-

cept of Symmetric Dyck path [12, 13, 25]. A Symmetric Dyck path of semilength n and of
maximum height h is a Dyck path of semilength n and of maximum height h, which is sym-
metrical from the line x = n. The number of Symmetric Dyck paths of semilength n and of
maximum height h is denoted ∆S

n,h. For example, ∆S
4,1 = 1, ∆S

4,2 = 4, ∆S
4,3 = 5 and ∆S

4,k = 6 for
k ≥ 4. The initialization of the sequence is similar to the previous sequence with {∆S

0,h = 1}h≥0

and {∆S
n,0 = 0}n≥1. It is well known [13], that ∆S

n,h is equal to the central binomial coefficient
Dn = ( n

⌊n/2⌋), when h ≥ n [15]. A Symmetric Dyck path of semilength n and of maximum
height h can be commonly decomposed in the following way: given k ≤ ⌊n/2⌋, a path is
composed of a Dyck path of semilength k and of maximum height h, a step (1, 1), a (shifted)
Symmetric Dyck path of semilength n− 1− 2k and of maximum height h− 1, a step (1,−1)
and finally the symmetric of the initial Dyck path of semilength k. The notable exception is
the existence, when n is even, of Symmetric Dyck paths of semilength n and of maximum
height h composed of two symmetric Dyck paths of semilength ⌊n/2⌋. Given the convention
{∆S
−1,h = 1}h≥0 and conditioning with respect to the last return to the x-axis before n, we

finally obtain the following identity ∆S
n,h = ∑

⌊n/2⌋
k=0 ∆k,h∆S

n−1−2k,h−1 [13, 17].
The relationship between Symmetric Dyck paths and Chebyshev polynomials has been

discussed in [10, 17]. Theorem 6 presents an asymptotic expansion of gd expressed as a power
series, followed by a proof.

Theorem 6. We consider the family of functions

gd(x) =

{
2Ud/2−1(x)/Vd/2(x), if d is even,

W(d−1)/2(x)/T(d+1)/2(x), if d is odd.

Let ∆S
n,h be the number of Symmetric Dyck paths of semilength n and of maximum height h.

Over the interval [1, ∞[, gd can be expressed using power series as follows

gd(x) =
∞

∑
i=0

∆S
i,d−1

2ixi+1 .

Proof. A similar approach using involutions, generating functions and equation (35) has been

presented in [17]. Let us denote ĝd(x) = ∑
∞
i=0

∆S
i,d−1

2ixi+1 . We will prove by induction that ĝd = gd.
The case d = 1 is immediate. Let us assume ĝd = gd for d greater or equal than 1 and we
develop equation (36) using the Cauchy product, namely

gd+1 = x fd+1(x)(2 + gd(x)) = x
( ∞

∑
i=0

∆i,d

22i+1x2i+2

)(
2 +

∞

∑
i=0

∆S
i,d−1

2ixi+1

)

= x
( ∞

∑
i=0

∆i,d

22i+1x2i+2

)( ∞

∑
i=−1

∆S
i,d−1

2ixi+1

)
=

1
x

( ∞

∑
i=0

∆i,d

22ix2i

)( ∞

∑
i=0

∆S
i−1,d−1

2ixi

)

=
1
x

( ∞

∑
i=0

⌊i/2⌋
∑
k=0

∆k,d

22k

∆S
i−1−2k,d−1

2i−2k
x−i

)
=

∞

∑
i=0

∆S
i,d

2ixi+1 = ĝd+1.

The sequence {∆S
n,h}{n,h≥1} corresponds to [30, sequence A94718]. Closed form expressions

are presented in [10, 13].
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Дiжу Й. Застосування полiномiв Чебишева до методу Хаусхолдера для квадратних коренiв // Кар-
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Метод Хаусхолдера – це алгоритм знаходження коренiв, який є природним розширенням
як методу Ньютона, так i методу Галлея. У цiй статтi основна увага придiляється наближенню
квадратного кореня з додатного дiйсного числа на основi цих методiв. Отриманi алгоритми
можна виразити за допомогою полiномiв Чебишева. Також пропонується розширення до n-го
кореня.

Ключовi слова i фрази: полiном Чебишева, метод Хаусхолдера, метод Ньютона.


