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Chebyshev polynomials involved in the Householder’s
method for square roots

Dijoux Y.

The Householder’s method is a root-find algorithm which is a natural extension of both the
Newton’s method and the Halley’s method. The current paper focuses on approximating the square
root of a positive real number based on these methods. The resulting algorithms can be expressed
using Chebyshev polynomials. An extension to the nth root is also proposed.
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1 The Householder’s method for square roots

The Householder’s method [20] is an extension of both the Newton’s method [28] and the
Halley’s method [18]. Considering a positive integer d and the function g(t) = 1/(t* — x),
where x is a positive real number, the Householder’s method of order d for square roots is
provided by

([@=1)(H,,
Ho=71r Hpt1=Hn+ dgig(d)(’;('-[n))
with initial guess , positive constant satisfying the inequality > # x. This iterative algorithm
is such that the sequence {H, },,>0 converges to \/x with a rate of convergence of d + 1.

An explicit expression of the sequence is presented in Theorem 1 below. After deriving a
few elementary expressions in Lemma 1, a proof of Theorem 1 is presented. The sequence H,
naturally depends on the order 4, but d is omitted in the notation for the sake of simplicity.
The Newton’s method can be obtained with d = 1 while the Halley’s method can be obtained
withd = 2.

Vn >0, (1)

Theorem 1. Considering the Householder’s method of order d for \/x with a starting pointr,
the corresponding sequence {1, },>o can be expressed as follows:

21 441 2l ra 1
_ _ d+1-2k k d—2k k >
Ho=r, Hyis [k§:0; < M )’H x ] / [kzzo <1+2k>H” x} Vn>0. (2

Lemma 1. Considering the function G(t) = 1/ (t*> — 1), its pth derivative is as follows:

GP(t) = %((tﬂ)p“ — (t—=1)P*h). 3)
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In addition, the following equalities are verified for any real t and any integer p:

Lp/2]
P+l _ (4 1\P+L) — pH1Y\,, 2
(et = 3 (1)

N[~

(4)

p+1 1+l e p+1Y 1 2%
(t+DPH +(t—1)Pth) = ) o )t
k=0

N —

Proof. First, the expression of G(P) in Lemma 1 is derived. As G(t) = (t+1)"1(t —1)"
applying the Leibniz rule to G allows us to obtain

p

G0 (1) = ZUPPL ek )

(tZ _ 1)p+1

The previous expression is a geometric series with common ratio (t +1)/(t — 1) an its
closed-formed formula is (3). Next, both equalities in (4) can be obtained using the binomial
expansion and elementary parity arguments. Finally, the expression (2) from Theorem 1 is
derived. By noticing that ¢(t) = x~1G(tx~1/2), expression (1) can be written as follows

Gd-1) (anxfl/Z)

Hur = Ho Vx5 Fii7)

Using successively (3) and (4) from Lemma 1, the previous equality becomes:

(t+1)%— (t—1)4
(t+1)d+1 — (¢ —1)d+1

Hpy1 = tVx — Vx(£* - 1)

t=Hpx—1/2

\/—(t + 1)d+1 + ( 1)d+1
(b 1) — (= 1)F ]y 1 -
- J/x d/z d + 1N 12k L%J A+ 1Y a-a
k=0 1+ 2k t=H,x—1/2
( 421 (d + 1) Jyé+1-2k k) / (L%J <d +1 )Hd—zkxk>
= = 1+ 2k n )
O

Before providing an explicit expression of H,, the Chebyshev polynomials of the first kind
{Ty}n>0, second kind {U, },>o, third kind {V}, },,>0 and fourth kind {W,, },,>¢ are introduced
in (6), (7), (8) and (9), respectively, [1,26], namely

To(X) =1, Ti(X) =X, Tu2(X)=2XTs41(X) = Tu(X) Vn =0, (6)
Up(X) =1, Ui(X) =2X, Ups2(X) =2XUp11(X) — Un(X) Vn =0, (7)
WX)=1 WX)=2X-1, Vyp(X)=2XVy1(X) = Va(X) Vn =0, (8)

Wo(X) =1, Wi(X) =2X+1, Wyia(X) = 2XWy41(X) — Wy (X) Vn > 0. )

The expression of H, is presented in Theorem 2 either from Chebyshev polynomials or
from monomials while distinguishing whether the order is odd or even. A proof of Theorem 2
follows.
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Theorem 2. Considering the Householder’s method of order d for \/x with a starting pointr,
the corresponding sequence {H, },>0 can be expressed in terms of Chebyshev polynomials as
follows:

1) ifd is even and n greater or equal than 0, we obtain

Hu = 1(Wiar1yr—1),2(X)) / (Vi @s1)n-1)72(X)) X (x112) / (x—r2)5 (10)
2) ifd is odd and n greater or equal than 1, we obtain

Hin = rT(gy1yn/2(X) /(X = DU(gr1yn/2-1(X)) [x= (12)  (x-12)- (11)

Furthermore, the sequence {H,}n,>0 can be expressed in function of monomials of
X = (x+7?)/(x —r?) as follows:
1) ifd is even, then

((d+1)"-1)/2

omr T (x—eos (0)) /(5 —eos ()t 02

k=1 2

2) ifd is odd, then

(d+1)1/2—1 . -
Hy =71 H <X—cos <%))/<X_COS((dz—ilfl)”)ﬂx_iﬂz' (13)

k=0 2

Proof. The case for even d = 2p is first considered. Let us introduce the two following rational
functions

2kt
W(d—i—lz)”—l (X) ((d+1)"-1)/2 X —cos ((d T 1)")
K. (X) = and L.(X
e(X) Viay1y-1(X) o(X) k=1 X — cos <(2k — 1)7-()
: (d+1)"

Given an integer k, the degree of Vi and W is k, their leading coefficient is 2, and their roots
2jmt
Tﬂ)}lgjgk )}1< i<k’
identical and it implies that the expressions (10) and (12) are the same.

are { cos ( and { cos <(2£k +11 respectively [26]. Therefore K, and L, are

(2k—1)7t

Next, we evaluate W, 1y»_1 and V(4,q)n_; at cos (( 2krt e

W) and cos (

), using the

2 .
identities Vi(cos(6)) = % and Wg(cos(0)) = % [26], namely

W(dﬂz)nq (cos <$)) = sin (dk )/sin (wl{%),
Vs (cos (rgyem)) = <o () /oo (g o)

(2 L 2k-Dn (2k — 1) (14)
s (cos (E5)) = sin () fom (ZD5),
V<d+12>" 1 (COS <((§+1 n+1)) :C°S<(z d+11)) )/ (2((fz+1)21+1)
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We prove now by induction that the expressions (2) and (10) are identical. The base case
for n = 0 is immediate from the empty-product rule. Let us assume that both expressions are
identical for n > 0. Let us introduce a rational function M, as follows

i <2p y 1) (X~ )P TKe(X)H (X + 1)

4 27
Mo(X) = Ko(x) 0 . (15)
S (2p+1 p=i 2p-2j j
) <1+2],>(X—1) K.(X) (X+1)
j=0

As for K, it is straightforward to see that M, is the ratio of two polynomials of degree

wgﬂ_l and that the overall leading coefficient of M, is 1. The function M, can be expressed
directly in terms of a ratio of polynomials of degree % as follows
Po/2p+1 » . 2p+1-2j 2j
3 (P ) =0 1) Wi 0] Vi1 (0]
(X) = j=0 / 2 2
N . . 2p—2 241"
p+ 1) ( _ P=2j j
Y (X =PI (X + 1) W) (X) d+1)—1 (X
= <1 +2j { CLR I } { @)1 }
We will prove now that the roots of M,(X) are { cos (%) } while the poles of M,(X)
are { cos (Z50%) ) for any k in {1,2,..., 2 The trigonometric identities of

cos(20) £+ 1 and the results from (14) are used and we obtain
p

e ol BT )R e

+
(d+1)n+t e kr P (2p+1 i krt \2r—2% krt \2i+1
i ) S 2 e ()

M, (cos

() o By o ()

Sty Xp: <2P + 1) (—1)P 77 sin <%)2p+1—2j cos <(22(kd_7_|_11);[)2j.

(16)

Next, we apply the binomial expansion to [exp (1% )] 1 and [exp (i(zz(];fl))")} L,

{exp <dil:—7tl)}d+1 _ 221 <2pj+ 1) cos <dkf1)jsin <dk—_|7_rl)2p+lji2p+lj T
i=

and

i — 1)\ 1d 2p+1 — D Ry - B
[exp <(22(1;7+11)))] 1 ];0 <2p'+1> os <%>] m<(22&7+1i)>2p+1 Japi1-

— (—1)k+1i.
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Identifying the real and imaginary parts of the previous identities in (16) , it comes auto-
matically that M, ( cos (%)) = 0and [M.( cos ( (2k—1)n )] ~' = 0. It implies that M, has

d+1) (d+1)n+l
the following monomial factorization
((@+1r2-1)/2 2%kt 2k —1)n
Let us evaluate rM,(X) for X = . From (17), rM,(X) corresponds to the expression

developed in (12) atstepn +1or equwalently to the express1on developed in (10) at step n + 1.
Also K, (”r ) is equal to #,,. Noting that X —1 = Zr 2 and X +1 = 25, rM,(X) from (15)

can be assessed as fOHOVVS
< ) < ) e( ) ] ( 2 )

2
x4 = xX—r x—r
Me(x—ﬂ) :rKe(X) p

filng

;(1—{—2])(3(—7’2) Ke(X) (x—r2>
P [d/2] .
3 (P ok ()
_j=0 =R
) ) . ld/2)
p+ 1) 2p-2 d+1\ . 42
X))2P 2]y i
;<1+2 K0) }_:0 <1+2]>H

and rM, (”r ) has the expression of #,.41 provided in (2). We have proven that the expres-
sions in (2) and (10) are identical at the step n + 1, which ends the proof by induction when d
is even.

The case for odd d can be carried out similarly, first proving that equations (11) and (13) are
identical for n > 1 and then establishing the equality between (13) and (2). O

Additional expressions of {#,} or of its residual sequence {H,+1 — Hn} are presented in
Corollary 1, followed by a proof.

Corollary 1. When d is even (d = 2p), the sequence can be expressed as a product as follows

Hn :r<jljwp<T(2p+1)“<x+r )))/(HV ( (2p+1)i~ 1<xt:§>)> (18)

Furthermore, the residual sequence can be expressed as follows

x + 12 x + 12
s = Mo = 20 [Up (Tepsne (=) ) | / [Vo(Teapr (5=52)) - 09
Ifd is odd, H, can be expressed as follows
Tdﬂ (Xn)
H =Hi—————= 20
e anud(Xn) X":T(d+1)"/2(%:§) 20)

for n greater or equal than 1.
Finally, the residual sequence can be expressed as follows

Ug_1(Xn)

Hys1 — Hn = —Hnm

(21)

x+r2
Xn=T(as1)n/2 ( x,rz)
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Proof. Using their trigonometric definitions, it is easy to verify that

Wiy ( HW 2p+1)i-1(X))
2
and
V(g a( HVP (2p+1)i-1 (X).
2

Therefore, equations (10) and (18) are identical. Equation (19) can be directly obtained from
(18) using the identity V), — W, = —2U,,_1 [26]. Equation (20) can be obtained from (11) using
the two classical identities T,, 0 Ty, = Tyt and Uyyy—1 = Uy—1(Ty)U,—1 [26]. Equation (21) is
a direct consequence of (20) using the identity Ty, 1(X) = XUy (X) — Uy_1(X) [26]. O

An algorithm to compute H, can be derived using the properties of Corollary 1. It is
implemented in Algorithm 1 with input x, the initialization r, the order d and the positive

index n and with output S. For an efficient numerical implementation of Algorithm 1, it can be

2Ug/5-1(X) Uy—1(X)
‘j’d//zz(lx) or Xfl(l) further

recommended to have a precise asymptotic expansion of either
discussed in Section 3.

Algorithm1 S = H(x,r,d,n)

2
1: X X+ 1’2
X—r

2: if (mod(d,2) == 0) then

3: S < r(1+PHI(X))

4: T < Ty.1(X)

5: else

6: T+ Tigy1y2(X)

7: S+ T

. (X = 1) X Uggg1)/2-1(X)
8: end if

9: fori=2:n do
10 S+« S(1+PHIT)) /*H*/
11: T < T4.1(T)
12: end for

13: return S
14: function PHI(X)
15: if (mod(d,2) == 0) then

2U4/,5_1(X

16: return 221 (X)
Va2 (X)

17: else

18: return 7;&;(1)(5)

19: end if

20: end function

The Babylonian method [21], also called Heron’s method [16], is a particular case of the
Newton’s method [28] and is derived in Corollary 2.
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Corollary 2. Let x be a real positive number and {u, },>0 be the sequence

Uy X
Ho =T, Une1 =5t o)
n

Vn >0, (22)

associated to the Babylonian method reminded in (22), where r is a real positive number. An
explicit expression of u, is presented as follows

Vn e IN*.

Up=r, uUp=r T (X) )
T (X = D Ugne1 1 (X) [ X=(x12) / (x—12)

An explicit expression solely based on the Chebyshev polynomials of the first kind is proposed
for positive n as follows

x+r2 x—rzn_ x + 72
=, 2[2"HTzf< )]

k=

Alternately, the sequence {uy },>0 can be expressed as a product of monomials, namely

=1 H (x- cos (P 3)) /(%o () | _sur

Corollary 3 presents the Halley’s method for square roots.

Corollary 3. Let x and r be real positive numbers and {u, },,>0 be the sequence

uy% + 3x

3uy? +x v

v

Ug =7, Upp1 = Uy 0, (23)

associated to the Halley’s method for square roots reminded in (23) The sequence {uy, },>0 can
be expressed using Chebyshev polynomials of the first kind as follows

o= [0 (222 43/ (20 (22 1) ez

Finally, it is possible to express the general expression of H, without the use of trigonomet-
ric-related functions as expressed in Theorem 3. A proof follows.

Theorem 3. Considering the Householder’s method of order d for \/x with a starting pointr,
the corresponding sequence {1, },>o can be expressed as follows

(r+ VRV + (= )

Hy = \/E(r—k \/})(dle)n _ (1’— \/E)(dle)n‘ (24)
The previous expression can be re-written as a rational function of (x, r) as follows
d+1)"—
R (R VAP
x'r
2k

1+ 2k

D

k=
d+1)"—1)/2 '
R <<d+1>">xkr<d+l>n_2k

k=
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Proof. We prove by induction that equations (2) and (24) are identical. For the initialization,
both equations are equal to r. Let us assume the equality holds at step n > 0. Let us denote
¢n = (r + X)) and y, = (r — /x)@D", Therefore H, = ﬁ% The induction step
can be obtained using the same method as in (5), namely

<4)n + P N 1)d+1 n <¢n + P B 1>d+1

1)L 4 (1) Ty Ty
Huy1 = \/;Et—F 1;d+1 _ Et _ 1;d+1 ‘t:mrl/z = vX <z;n n in N 1)d+1 - <£n +$n - 1>d+1
4’” - 1/’" 4)n l/)n
(@ Yt ou — )"+ (Pn+ P — (G —9) e+t
(‘Pn + Yn + Pn — n)dH — (¢ + Y — (P — )" B ZH — 't
4)d+1 +l[Jd+1 (1’+ \/})(d+1)n+1 i (1’ _ ﬁ)(d+1)?1+1
=V d+1 d+1 - (r+ \/E)(dﬂ)nﬂ —(r— \/;)(d+1)n+1'

Equation (24) highlights that the (# 4 1)th term of the Householder’s sequence of order 4
is equal to the second term of the Householder’s sequence of order (d +1)" — 1. Equation (25)
is simply obtained from (2) for n = 0 and the order (d + 1)" — 1. Similar functions to the ones
in equation (25) have been recently studied in [24] and are related to the tangent analog of the
Chebyshev polynomials. O

We can notice that the sequence { A, },>1 defined by

ﬁ(r +Vx)" 4+ (r — Vx)"

(r+ V3" — (= %)
is among the slowest sequence to converge to /x while at the same time it is featuring in its
subsequences all the sequences of the Householder’s method for /x at every order. This se-
quence has already been obtained by A.K. Yeyios [31] from continued fraction expansions. The
Newton’s method and more generally the Householder’s method for square roots of integer
numbers is intimately related to Pell’s equations [4, 27].

An:

2 A note the Householder’s method for nth roots

Algorithms for the nth root computation have already been developed [14]. An introduc-
tion to the Householder’s method to obtain {/x is now discussed. Considering an integer p,
an order d and the function g, (t) = =—, where x is a positive real number, the Householder’s
method of order d for pth root is provided by

(d—=1)
Hy=r H,. =H, +dg’7()ﬂ
gy (Hy)
with initial guess r. The sequence {H,, },>0 converges to {/x with a rate of convergence of d + 1.

Numerous expressions in the Householder’s method for square roots are based on bino-
mial coefficients. Considering the nth root extraction, we need to introduce the generalized
binomial coefficients (Z)p of order p [7, 8], which naturally appear in the development of

Vn >0, (26)

By(x) = Zf;é xk at the power 7 as follows

(p—DL)n n
T A I M G
p

m=0



624 Dijoux Y.

The generalized binomial coefficients of order p can be obtained from the binomial coeffi-

cients as follows [8]
Lm/p]
ny k() (nt+m—pk—1
(), = & @)

In addition, the parity arguments are extended to their modular counterparts involving
series multisection [3,5]. Given a function f and a radical p, let us denote the primitive root of
unity ¢ = exp (217”) and we introduce p functions {[f],(t) }o<¢<p—1 as follows

S
==Y & ). (27)

P =0

It is straightforward to verify that if f has a power expansion of the type 3~ a,x", [f]/ is
expressed as } ;>0 4pn+ xP"+t The functions are commonly referred as Roots of Unity Filters
and f can be reconstructed from their sums.

An explicit expression of the sequence {Hj, },,>¢ is presented in Theorem 4. A proof follows.

[£1e(t)

Theorem 4. Considering the Householder’s method of order d for {/x with a starting pointr,
the corresponding sequence {H,, },>¢ can be expressed as follows

[By 1 _gpp) (Hux™/P)

Hy=r, H,=Vx Vn > 0. (28)
! [BS ] gy (Hpx=1/7)

The previous expression can be formulated as follows

L((p=1)d+1)/p] ( d+1 ) (P D+1-pk k
p( »

= k+1)—2) "
HO =7, Hn+1 = Vn > 0. (29)
L(p—1)d/p] d+1 d(p—1)—pk
( > 2 )Pk Kk
k=0 p(k + 1) -1 p

Proof. The partial fraction decomposition of ;1 is the following elementary result

1 1?7*1 gk
th—1  pi=t—gk

Therefore, its rth derivative has the next expression

1
w1 (-yni
dt - p = (i’ _ ék)rJrl :

r

1 1
X (tx1/pyp—17

tgk gk ng . . .
(—eqaT = (—eh + (tfgk)dﬂ,whlch implies

s~ ] (5 =) /(G =)

By noticing that g, (t) = expression (26) can be written as follows

t=H,x~1/p

We can now notice that

(30)

t=H,x~1/p



Chebyshev polynomials involved in the Householder’s method for square roots 625

d+1
Let us now derive the function ([ 11)10,( +)1 using the identity t# —1 = (t — 1)B(t) and the

series multisection defined in (27) as follows

pfl
—lk k \d+1
R =

_ é’ lk
(tp _ 1)d+1 o ; (tp _ 1)d+1 Z th _ 1 d+1
1Pl gtk 1 p-1 gk(6+d+1)

- Ek:o gk(d+1) (¢ — gp—kyd+1 ;k:O (t — @kyd+1”
The previous function can match both the numerator and the denominator of (30). For the
numerator, we need to identify ¢ such that £ +d + 1 = 2[p] and for the denominator, to identify
¢ such that £ +d + 1 = 1[p|. Equation (28) ensues. To obtain (29), rather than using the explicit
expression of [Bg“] ¢(t) using (27), we use the fact that it filters all powers except the ones
congruent to  modulo p. The highest degree of the numeratoris d(p — 1) + 1 while the highest
degree of the denominator is d(p — 1). Therefore, we obtain

(p=1)(d+1)
L (W)
— m=0 p
H,1= {/E[Bzﬂ]l—d[i’](H”x n) kol
[Bg—i-l]_d[p](l_lnxfl/p) (p—1)(d+1) d+1 .
t
m=0 m p
m-+d=0]p] t=H,x~1/r
- )X: v < d+1 ) pd(p=1)+1-pk
_ v = dip—1)+1-pk/,
L(p—D)d/p] d+1
Z ( > pd(p—1)—pk
k=0 d(p - 1) - pk p t=H,x—1/»
—1)d
Y DZH)/W( d+1 > (=D +1=pk -1/
_ s = dlp—1)+1—pk
-1)d/
L i 7 < d+1 ) USRI
= \dlp—1)—pk/,
The radical values collapses and we obtain (29) using the identity (), = (( s—lgln— m)s [8], which
ends the proof. O

3 A note on the asymptotic expansion of Chebyshev functions

When considering the Householder’s method of order d for y/x, Algorithm 1 identified the

. : : Uy—1(X) 2Ug/51(X) :
need to have a precise asymptotic evaluation of XU, (%) and Via(X) 7 when d is odd and even,

respectively. The goal of this section is to provide an asymptotic expansion of these functions
and to discuss the presence of these families of functions in the study of lattice paths.

Let us first denote f;(x) = Yo 1(( )) for d > 1. It is straightforward from (7) to obtain the

xU
following recurrence relation:

filx) = %/ fa(x) = xz(z_jlfd_l(x))'

(31)
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From (31), we can in particular explicit the pointwise limit of f;(x) for x > 1 which is
f(x) = 1—+/1—1/x2. Before expressing f; as a power series, we define one of the most
common lattice path called Dyck path [22]. A Dyck path of semilength n and of maximum
height  is a lattice walk from (0,0) to (2n,0) with steps of the form (1,1) and (1, —1) with
a height bounded in the interval [0, /]. The number of Dyck paths of semilength n and of
maximum height / is denoted A, ;. We can observe that Ay; = 1, Ayp = 8, Ay3 = 13
and Ayr = 14 for k > 4. The natural initialization of the sequence is {Ay; = 1},>¢ and
{Ano = 0},>1. Enumerating Dyck paths can be also found in ballot counting problems [6],
plane trees [11] or permutations [22]. It is well established that A, j, is equal to the Catalan
number C, = (2")/(n + 1), when h > n [2].

An early reference to the sequence {A,,}, } {, 5>0y can be traced back in the work of G. Krew-
eras [23] using Fibonacci polynomials, which are closely related to the Chebyshev polyno-
mials of the second kind. The relationship between Dyck paths and the ratio of Chebyshev
polynomials has been further established in [9,17,22], usually involving generating functions.
Theorem 5 presents an asymptotic expansion of f; expressed as a power series, followed by a
proof.

Theorem 5. We consider the family of functions { f(x) = Li‘&*d 1((;)) } 451 oOver the interval [1, oo
and A, , as the number of Dyck paths of semilength n and of maximum height h. Then f; can
be expressed using power series as follows

o Dig1
fa(x) = ;W (32)
1=

Proof. Equation (32) is correct for d = 1, based on (31). Considering Dyck paths of semilength
n and maximum height #, a conditioning with respect to the last return to the x-axis leads
to [11]
n—1
Dpp =Y DenDy—1—kp-1- (33)
k=0

o &4

For d > 2, given the parity of f; highlighted in (31), f4 can be expressed as } ;" 7. Rewrit-
ting (31) as 2x?f;(x) — x®f4(x) f4—1(x) = 1 and using the Cauchy product, it leads to

Z‘XO,d = 1,
i . (34)
ig =Y Mpqiga—1, i>1.
k=0
Finally, a; y = g;ﬁf is the appropriate candidate for both the initialization and the general
case in (34), which ends the proof. O

The approximation of f; through the sequence {A,, 41} ;>0 can be obtained in multiple
ways. The sequence {A; j,} >0} corresponds to [30, sequence A080934] and the recurrence
relation presented in (33) [11] is a common identity to compute the sequence. Closed form ex-
pressions are presented in [19] and the sequence has also been studied through its differences
in [23].
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2Uy/2-1(X)
Viay2(X)
study g, for odd and even values of d. When d is odd, it is necessary to define Chebyshev

functions of half-integer order, which has been comonly studied over the interval [—1, 1] [29].
As we evaluate g; over the interval [1,c0] in Algorithm 1, the Chebyshev functions of half
integer order are proposed in Lemma 2 over the interval [1,00[. The proof is simply obtained
from the hyperbolic definition of the Chebyshev polynomial over the interval [1, o[ (see, for
example, [26]).

Let us now study the family of functions g; = . As for f;, it is interesting to

Lemma 2. The Chebyshev polynomials of the four kinds can be defined at half-integer orders
using the following identities

Up-1/2 =1/1/2(1 +2))Wp(z), Tpp12=1/(1+2)/2Vp(2)
forp > 0.

Based on the identities of Lemma 2, the family of functions g, is defined as follows

2a(x) {ZUd/zl (x)/Va2(x), if d is even,
d\r) = e g
W(d—l)/Z(x) /T(d+1)/2(JC), if d is odd.

In order to express g; as a power series, Lemma 3 presents an alternate expression of g,
along with a recurrence relation involving both f; and g;. A proof follows.

Lemma 3. The family of functions {g;(x)}4>1 can be expressed using only Chebyshev poly-
nomials of the second kind as follows

d—1
Uy(x)
x) =2 . (35)
In addition, f; and g, obey to the following recurrence relation
81(x) =1/x,  ga(x) = xfa(x)(2+ga-1(x)), d=1. (36)
Proof. The proof of establishing equation (35) is mainly based on Lagrange’s trigonometric
identity
L L ((m+1)0y . mByN . O\ L
k;)sm(kf)) = sin < 5 ) sin <7> (sm <§)> :
Therefore, we obtain
. (d+1)8y . do . (do
5§ Ur(cos(9)) _ 2sin 2 )Sm<2> _ Sm(z)
— U, (cos(6)) . . (0 (d+1)0y . /0N
k=0 — —
sin((d +1)0) s1n<2> cos( 5 )sm <2)

Using the trigonometric definitions of the Chebyshev polynomials of the four kinds [26]
and based on the parity of d, equation (35) can be established over the interval [—1, 1], except
for the isolated singularities. The equality can be extended to [1, oo[ by analytic continuation.
Equation (36) is a direct consequence of equation (35). O



628 Dijoux Y.

From (36), it is possible to derive the pointwise limit of g;(x) for x > 1, which is
g(x) = /(x+1)/(x — 1) — 1. Before expressing g, as a power series, we introduce the con-
cept of Symmetric Dyck path [12,13,25]. A Symmetric Dyck path of semilength n and of
maximum height & is a Dyck path of semilength 7 and of maximum height &, which is sym-
metrical from the line x = n. The number of Symmetric Dyck paths of semilength n and of
maximum height & is denoted Aﬁ,h' For example, Az =1, Azz =4, Az 5 = band AS = 6 for

k > 4. The initialization of the sequence is similar to the previous sequence with {Ao,h =1}i>0
and {Aﬁ/o = 0},>1. It is well known [13], that Ai,h is equal to the central binomial coefficient
D, = (Ln’}z J), when h > n [15]. A Symmetric Dyck path of semilength n and of maximum
height /1 can be commonly decomposed in the following way: given k < |[n/2], a path is
composed of a Dyck path of semilength k and of maximum height &, a step (1,1), a (shifted)
Symmetric Dyck path of semilength n — 1 — 2k and of maximum height & — 1, a step (1, —1)
and finally the symmetric of the initial Dyck path of semilength k. The notable exception is
the existence, when 7 is even, of Symmetric Dyck paths of semilength n and of maximum
height h composed of two symmetric Dyck paths of semilength [1/2]. Given the convention
{AS = 1}4>0 and conditioning with respect to the last return to the x-axis before n, we

finally obtain the following identity An b= an/ 2| Ak,hAi—l—Zk,h—l [13,17].

The relationship between Symmetric Dyck paths and Chebyshev polynomials has been
discussed in [10,17]. Theorem 6 presents an asymptotic expansion of g; expressed as a power
series, followed by a proof.

Theorem 6. We consider the family of functions

e {2ud/2 (%) / Vg o (), if d is even,
d(x) = L
Wia-1)/2(%)/ T(ay1)/2(x), ifdis odd.

Let Ag , be the number of Symmetric Dyck paths of semilength n and of maximum height h.
Over the interval [1, 0], g; can be expressed using power series as follows

S
OoAzdl

gd(x) - 1_;) iyi+1’

Proof. A similar approach using involutions, generating functions and equation (35) has been

o]

presented in [17]. Let us denote g;(x) = Yi gx, —. We will prove by induction that ¢; = g,.
The case d = 1 is immediate. Let us assume §; = g for d greater or equal than 1 and we
develop equation (36) using the Cauchy product, namely

i1 = i (92 + 2409 = (L ) (24 2 25;&)

s S
= Ay i Az‘,d—l 1/ & Aig 2 A i
= x( Z 22i+1x2i+2) <i;1 2ixi+1> T3 < Z 22ix2i) <§) iy )

oo |i/2] A ) AS

Z Z k,d z 1-2k,d— 1x71 o Z —
= 22k 2i—2k - 21x1+1 = 8d+1-

i=

0

The sequence {A, } {nh>1} corresponds to [30, sequence A94718]. Closed form expressions
are presented in [10,13].
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Mertoa Xaycxoaaepa — Ile aATOPUTM 3HAXOAXKEHHSI KOPEeHiB, SIKMI € IPMPOAHMM PO3IIMPEHHSIM
sk MeToaAy HpfoToHa, Tak i MeToay 'aanest. Y 1il cTaTTi OCHOBHA yBara IPMAIASETHCS HaOAVIKEHHIO
KBaApPaTHOTO KOPEHSI 3 AOAATHOTO AiMICHOTO uMcAa Ha OCHOBi X MeTOAiB. OTpMMaHi arTOpUTMM
MO>KHA BMpPasUTH 3a AOIIOMOT 00 IOAiHOMiB YebnireBa. TakoX MPOIOHY€EThCST PO3ILIVIPEHHS AO 1-TO
KOpeHsI.

Kntouosi cnosa i ¢ppasu: morirom Yebmriesa, meTon Xaycxoasepa, meToa HeroTona.



