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On existence and continuation of mild solutions of
functional-differential equations of neutral type in Banach

spaces

Perehuda O.V.1, Stanzhytsky A.O.2, Martynyuk O.V.3,

The main object of research of this work is infinite-dimensional functional-differential equations

of neutral type in Banach spaces. The conditions for the existence of a mild solution to the initial

problem and its extension to the boundary of the domain are established. The presence of a delay

in the derivative leads to the appearance of singular terms. The research methods are related to

the technique of strong semigroups and fractional powers of the operator. The existence proof is

based on the representation of the initial problem in abstract operator form with the further use

of Krasnoselsky’s theorem on a fixed point. For this purpose, the original operator is represented

as the sum of the compression operator and the compact operator. The obtained abstract result is

applied to the functional-differential equation in partial derivatives of the reaction-diffusion type.
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Introduction

We consider the initial value problem







d

dt
(u(t) + g(t, ut)) = Au + f (t, ut),

u(t) = ϕ(t), t ∈ [−h, 0],
(1)

for the functional-differential equation of neutral type in a Banach space X. The designation ut

will be shown below. For some h > 0 let C = C([−h, 0]; X) be the space of continuous functions

ϕ : [−h, 0] → X with the norm ‖ϕ‖C = supt∈[−h,0] ‖ϕ(t)‖X . Throughout the article, ‖ϕ(t)‖X is

the norm in X. Let A be the infinitesimal generator of an analytic semigroup S(t), t ≥ 0, in X,

ut = u(t + θ) ∈ C for any t ∈ [0, T], θ ∈ [−h, 0]. Let D be some domain in [−h, T] × C, ∂D be

its boundary in the sense of [8, p. 18], and D = D ∪ ∂D. Mappings f and g act from D to X. In

the sequel, a solution of the problem (1) we will understand in the mild sense.
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Definition 1. A function u : [0, T] 7→ X is called a mild solution of the initial value problem (1)

on [0, T] if:

1) u(t) = ϕ(t), t ∈ [−h, 0];

2) u ∈ C([0, T], X);

3) u(t) satisfies the integral equation

u(t) = S(t)(ϕ(0) + g(0, ϕ))− g(t, ut)

−
∫ t

0
AS(t − s)g(s, us) ds +

∫ t

0
S(t − s) f (s, us) ds.

(2)

We will study the local existence of a mild solution of (1) on interval [−h, t1). The latter

means that if (t, ϕ) ∈ D for t ∈ [−h, 0], then (t, ut) ∈ D for t ∈ [0, t1).

A similar question in the finite-dimensional case was considered in [5]. The author pays

detailed attention to the functional-differential equation of the ordinary type. Regarding equa-

tions of the neutral type, similar results were obtained there for atomic mappings. Regarding

equations in infinite-dimensional spaces, it is worth pointing to the paper [7] for the mild re-

solvability of differential equations, and the monograph [16], where for functional-differential

equations of the ordinary type conditions for the local existence of mild solutions were ob-

tained under the condition of continuity of the right-hand sides. However, cases are often

encountered, for example, in optimal control problems [9, 10, 12, 13], when the conditions

for the continuity of the right-hand sides are unnatural. Therefore, it is important to obtain

the conditions for the existence and continuation of solutions under the conditions of the

t-measurability of the coefficients of the equation (such as the Carathédory conditions). For

functional-differential equations of the ordinary type, such conditions were obtained in [9].

Note, that even in the finite-dimensional case the solution cannot always be extended to the

boundary of the domain (see the example of A. Myshkis [5, p. 60]).

The aim of this work is to obtain similar results for equations of neutral type. Note that the

neutral type of the equation causes the presence in the formula (2) of two new terms g(t, ut)

and
∫ t

0
AS(t − s)g(s, us) ds,

which significantly complicates the study of (1). The work consists of an introduction and

three parts. The introduction describes the problem statement and a literature review. Sec-

tion 2 presents the necessary concepts and formulates the main results. Section 3 is devoted

to the proof of the main results. Section 4 gives an example of the obtained results for partial

differential equations of parabolic type.

1 Problem statement and main results

Let X be a reflexive Banach space, A : X → X be a linear operator with domain D(A),

σ(−A) be a spectrum of (−A).
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1.1 Assumptions on the operator A

Assumption (H1). Re(σ(−A)) > δ > 0 and A−1 is compact operator in X.

Then for every α ∈ [0, 1] we can define fractional power (−A)α, which is a closed linear

operator with domain D((−A)α (see [14] for details). Let us denote by Xα the Banach space

D((−A)α) supplied with the norm ‖u‖α := ‖(−A)αu‖, which is equivalent to the graph norm

of (−A)α. Let us denote X0 = X. From [6, Section 1.4] we deduce that if A−1 is a com-

pact operator, then the semigroup S(t) is compact for t > 0. Then under assumption (H1)

[14, Theorem 3.2] implies that the semigroup S(t) is continuous in the uniform operator topol-

ogy for t > 0. Thus, due to [14, Theorem 3.3], we can conclude that the operator A has compact

resolvent. The last property guarantees the following result (see [6, Theorem 1.4.8]).

Lemma 1. Under assumption (H1) the embedding Xα ⊂ Xβ is compact for 0 ≤ β < α ≤ 1.

Lemma 2 ([6, Theorem 1.4.3]). Under assumption (H1) for every α ≥ 0 there exists Cα > 0 such

that ‖(−A)αS(t)‖ ≤ Cαt−αe−δt, t > 0.

In particular, ‖S(t)‖ ≤ C0e−δt, t > 0.

1.2 Assumptions on nonlinear terms

Let U be an open subset of C and f : [0, T]× U → X.

Assumption (H2):

1) for every t ∈ [0, T] the mapping f is continuous with respect to ϕ;

2) for every ϕ ∈ U the mapping f is measurable with respect to t;

3) for any R > 0 there exists integrable function mR(t) ∈ Lp(0, T), p > 1, such that

‖ f (t, ϕ)‖ ≤ mR(t), if ‖ϕ‖ ≤ R.

Assumption (H3):

1) there exist α ∈ [0, 1] and Mg ∈ (0, 1) such that g : [0, T]× U → Xα;

2) ‖g(t, ϕ1)− g(t, ϕ2)‖α ≤ Mg‖ϕ1 − ϕ2‖C;

3) function g is continuous with respect to t in Xα uniformly over ϕ ∈ U.

Theorem 1 (Local Existence). Suppose that assumptions (H1)–(H3) hold. Then for every ϕ ∈ U

there exist t1 = t1(ϕ) ∈ [0, T] and continuous function u ∈ [−h, t1] → X such that u(t) is a

mild solution of (1) on [0, t1] with the initial function ϕ.

Note that this theorem takes place for every initial point t0 ∈ (0, T). So, we can continue

the solution on the maximal interval [t0 − h, t0].

We consider D = (0, T)× U, its boundary ∂D, and its closure D = D
⋃

∂D.

Theorem 2 (Continuation). Assume that conditions of Theorem 1 are valid. Then the solution

with initial data (t0, ϕ) ∈ D, i.e. on the interval [t0 − h, t0], exists on the maximal interval

[t0, τ), τ > t0, and (τ, uτ) ∈ ∂D.

Further, we will use the following fixed point theorem.
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Theorem 3 (Krasnoselskii’s Theorem [1]). Let M be a non-empty closed convex subset of a

Banach space (S, ‖ · ‖). Assume that operators A and B act from M into S such that:

(i) Ax + By ∈ M ∀ x, y ∈ M;

(ii) A is a continuous operator and AM belongs to a compact set;

(iii) B is a contraction operator with the constant α < 1.

Then there exists y ∈ M such that Ay + By = y.

2 Proofs of the main results

The proof of Theorem 1. We want to apply the Krasnoselskii fixed point theorem. It should be

noted that due to assumptions on A there exists M > 0 such that ‖S(t)‖ ≤ M ∀ t ∈ [0, T].

We choose β > 0 such that Bβ = {ψ ∈ C : ‖ϕ − ψ‖C ≤ β} ⊂ U. Analogously to [5, 16], we

introduce closed convex bounded set

A(δ, β) =
{

y ∈ C([−h, δ]; X) : y0 = ϕ, yt ∈ Bβ, t ∈ [0, δ]
}

,

where δ is sufficiently small. On this set we consider the operator

G(y)(t) =



















ϕ(t), t ∈ [−h, 0],

S(t)(ϕ(0) + g(0, ϕ))− g(t, yt)

−
∫ t

0
AS(t − s)g(s, ys) ds +

∫ t

0
S(t − s) f (s, ys) ds, t ∈ [0, δ].

We split this mapping as G(y) = Φ(y) + Ψ(y), where

Φ(y)(t) =



















ϕ(t), t ∈ [−h, 0],

S(t)(ϕ(0) + g(0, ϕ))

−
∫ t

0
AS(t − s)g(s, ys) ds +

∫ t

0
S(t − s) f (s, ys) ds, t ∈ [0, δ].

(3)

and

Ψ(y)(t) =

{

0, t ∈ [−h, 0],

−g(t, yt), t ∈ [0, δ].

Let us check for the given mappings whether the conditions of the Krasnoselskii theorem

are fulfilled.

Let us show the continuity of Φ(y). Let y(n)(t) ∈ A(δ, β) and supt∈[0,δ] ‖y(n)(t)− y(t)‖ → 0

as n → ∞.

Then

Φ(y(n))(t) =



















ϕ(t), t ∈ [−h, 0],

S(t)(ϕ(0) + g(0, ϕ))

−
∫ t

0
AS(t − s)g(s, y

(n)
s ) ds +

∫ t

0
S(t − s) f (s, y

(n)
s ) ds, t ∈ [0, δ].
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So,

sup
t∈[−h,δ]

‖Φ(y(n)(t)− Φ(y)(t)‖ ≤ sup
t∈[0,δ]

∥

∥

∥

∫ t

0
AS(t − s)(g(s, y

(n)
s − g(s, ys)) ds

∥

∥

∥

+ sup
t∈[0,δ]

∥

∥

∥

∫ t

0
S(t − s)( f (s, y

(n)
s − f (s, ys)) ds

∥

∥

∥
.

For the first summand we have
∥

∥

∥

∥

∫ t

0
AS(t − s)(g(s, y

(n)
s − g(s, ys)) ds

∥

∥

∥

∥

≤
∫ t

0

∥

∥(−A)1−αS(t − s)
∥

∥

∥

∥(−A)α(g(s, y
(n)
s − g(s, ys))

∥

∥ ds

≤
∫ t

0

∥

∥(−A)1−αS(t − s)
∥

∥ ds sup
s∈[0,δ]

∥

∥g(s, y
(n)
s − g(s, ys

∥

∥

Xα

≤
∫ t

0
C1−αtα−1dsMg sup

s∈[0,δ]

∥

∥y
(n)
s − ys

∥

∥

= C1−α sup
s∈[0,δ]

∥

∥y
(n)
s − ys

∥

∥ → 0 as n → +∞.

It should be noted that supt∈[0,δ] ‖y
(n)
t − yt‖C ≤ supt∈[0,δ] ‖y

(n)
t − yt‖ as n → +∞. Then for

every t ∈ [0, δ] we get f (t, y
(n)
t ) → f (t, yt) as n → +∞ due to the continuity of ϕ 7→ f (t, ϕ).

Then the definition of A(δ, β) and Lebesgue’s dominated convergence theorem yield

sup
t∈[0,δ]

∥

∥

∥

∥

∫ t

0
S(t − s)( f (s, y

(n)
s )− f (s, ys)) ds

∥

∥

∥

∥

≤
∫ δ

0
M
∥

∥ f (s, y
(n)
s )− f (s, ys)

∥

∥ ds → 0.

Let us prove that Φ(A(δ, β)) is contained in a compact set. To this end, we will use the

following statements.

Proposition 1 ([2, Proposition 8.4]). If S(t), t > 0, is a compact operator, then for any p ≥ 1 the

mapping

F( f )(t) =
∫ t

0
S(t − s) f (s) ds, f ∈ Lp(0, T; X), t ∈ [0, T],

is a compact operator from Lp(0, T; X) to C([0, T]; X).

Proposition 2 ([15]). Under assumptions on the operator A the mapping

(Bz)(t) =
∫ t

0
AS(t − s)z(s) ds

is a compact operator from C([0, T], Xα) to C([0, T], X).

Further, we will use the infinite dimensional analogous of the Arzela-Askoli theorem. We

need to prove that

1) for every t ∈ [0, δ] the set {Φ(y)(t) : y ∈ A(δ, β)} is precompact in X;

2) the family of functions Φ(y)(t) is equicontinuous, i.e. for any ε > 0 there exists σ > 0

such that ‖Φ(y)(t1)− Φ(y)(t2)‖ ≤ ε, if y ∈ A(δ, β), |t1 − t2| < σ, t1, t2 ∈ [0, δ].
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Note that from (H3) we get

sup
t∈[0,δ]

‖g(t, yt)‖α ≤ sup
t∈[0,δ]

‖(g(t, y
(n)
t )− g(t, ϕ))‖α + ‖g(t, ϕ)‖α ≤ Mgβ + ‖g(t, ϕ)‖α ≤ C1 (4)

for t ∈ [0, δ]. Then the compactness of the first integral summand in (3) is the consequence of

Proposition 2.

Further, due to the definition of A(δ, β), we get

sup
t∈[0,δ]

‖y(t)‖C ≤ sup
t∈[0,δ]

‖yt − ϕ‖C + ‖ϕ‖C ≤ β + ‖ϕ‖C.

Using condition 3) from (H2), we obtain that ‖ f (t, yt)‖ ≤ mR(t) for R = β + ‖ϕ‖C. Then

the set f (t, yt) is bounded in Lp(0, T; X). Therefore, Proposition 1 yields the compactness of

the second integral summand in (3). Thus, property 1) is proved.

Now let us prove the equicontinuity property. Let us fix an arbitrary ε. We note that the

continuity of S(t)(ϕ(0) + g(0, ϕ)), t ∈ [0, δ], implies its uniform continuity on [0, δ]. Therefore,

there exists σ1 such that for all t1, t2 ∈ [0, δ] with |t1 − t2| < σ1 we have

∥

∥(S(t1)− S(t2))(ϕ(0) + g(0, g(0, ϕ))
∥

∥ <
ε

3
. (5)

After that, using Lemma 2 and estimate (4), we get
∥

∥

∥

∥

∫ t2

t1

AS(t − s)g(s, ys) ds

∥

∥

∥

∥

≤
∫ t2

t1

∥

∥(−A)1−αS(t − s)
∥

∥ ds sup
t∈[0,δ]

‖g(s, ys‖

≤
C1−α

α
|t2 − t1|C1 <

ε

3
,

(6)

if |t1 − t2| < σ2.

Due to the absolutely continuity of Lebesgue’s integral we deduce that
∥

∥

∥

∥

∫ t2

t1

S(t − s) f (s, ys) ds

∥

∥

∥

∥

≤ M
∫ t2

t1

mR(t) <
ε

3
, (7)

if |t2 − t1| < σ3 and R = β + ‖ϕ‖C. Then, choosing σ = min{σ1, σ2, σ3}, from (5)–(7) we de-

duce equicontinuity of the family Φ(y)(t). As Φ(A(δ, β)) is a compact set in C([−h, 0], X), so

we have that assumption (ii) of the Krasnoselskii theorem is fulfilled. Let us verify assump-

tion (iii). For every y(1)(t) and y(2)(t), which belongs to A(δ, β), we have

sup
t∈[−h,δ]

‖Φ(y(1)(t))− Φ(y(2)(t))‖ = sup
t∈[0,δ]

‖g(t, y
(1)
t )− g(t, y

(2)
t )‖

≤ sup
t∈[0,δ]

‖g(t, y
(1)
t )− g(t, y

(2)
t )‖α ≤ Mg sup

t∈[0,δ]

‖y
(1)
t − y

(2)
t ‖ = Mg sup

t∈[−h,δ]

‖y
(1)
t − y

(2)
t ‖.

Because of the inequality Mg < 1 we get (iii).

Let us prove (i). For arbitrary y ∈ A(δ, β) and z ∈ A(δ, β) we get

Φ(y)(t) + Ψ(z)(t) =



















ϕ(t), t ∈ [−h, 0],

S(t)(ϕ(0) + g(0, ϕ))− g(t, zt)

−
∫ t

0
AS(t − s)g(s, ys) ds +

∫ t

0
S(t − s) f (s, ys) ds, t ∈ [0, δ].
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Then for every t ∈ [0, δ] we have

‖Φ(y)t + Ψ(z)t − ϕ0‖ = sup
θ∈[−h,0]

‖Φ(y)t + Ψ(y)t − ϕ(θ)‖

≤ sup
θ∈[−h,−t]

‖Φ(y)(t + θ) + Ψ(y)(t + θ)− ϕ(θ)‖

+ sup
θ∈[−t,0]

‖Φ(y)(t + θ) + Ψ(y)(t + θ)− ϕ(θ)‖.

(8)

From the uniform continuity of ϕ we deduce

sup
θ∈[−h,−t]

‖Φ(y)(t + θ) + Ψ(y)(t + θ)− ϕ(θ)‖ = sup
θ∈[−h,−t]

‖ϕ(t + θ)− ϕ(θ)‖ ≤
β

k
(9)

for all t ∈ [0, δ] and for sufficiently small δ. Here k is some natural number, which we choose

latter, and δ = δ(k). Further, for t + θ ∈ [0, α] we get

Φ(y)(t + θ) + Ψ(z)(t + θ)− ϕ(θ) = S(t + θ)(ϕ(0) + g(0, ϕ))− g(t + θ, zt+θ)

−
∫ t+θ

0
AS(t + θ − s)g(s, ys)ds +

∫ t+θ

0
AS(t + θ − s) f (s, ys)ds − ϕ(θ)

= S(t + θ)ϕ(0)− ϕ(0)− ϕ(θ) + ϕ(0) + S(t + θ)g(0, ϕ)− g(t + θ, zt+θ)

−
∫ t+θ

0
AS(t + θ − s)g(s, ys)ds +

∫ t+θ

0
AS(t + θ − s) f (s, ys)ds.

(10)

Here θ ∈ [−α, 0]. Then

‖S(t + θ)ϕ(0)− ϕ(0)‖ ≤
β

k
, t ∈ [0, δ], δ = δ(k),

due to the C0-continuity of S(t).

Choosing δ (depending on k) sufficiently small, we get

‖ϕ(θ)− ϕ(0)‖ ≤
β

k
. (11)

Further,

S(t + θ)g(0, ϕ)− g(t + θ, zt+θ) = S(t + θ)g(0, ϕ)− g(0, ϕ) + g(0, ϕ)− g(t + θ, zt+θ). (12)

But

‖S(t + θ)g(0, ϕ)− g(0, ϕ)‖ ≤
β

k
, t ∈ [0, δ(k)]. (13)

We have

‖g(t + θ, zt+θ)− g(0, ϕ)‖ ≤ ‖g(t + θ, zt+θ)− g(t + θ, ϕ)‖α + ‖g(t + θ, ϕ)− g(0, ϕ)‖α

≤ Mg‖zt+θ − ϕ‖C + ‖g(t + θ, ϕ)− g(0, ϕ)‖α ≤ Mgβ +
β

k
.

(14)

The last estimate follows from the definition of A(δ, β) and continuity of the mapping g with

respect to t.
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Let us estimate the first integral summand in (10). We have

∥

∥

∥

∫ t+θ

0
AS(t + θ − s)g(s, ys)ds

∥

∥

∥

≤
∫ t+θ

0
C1−α(t + θ − s)α−1ds sup

s∈[0,t+θ]

(Mg‖ys − ϕ‖+ ‖ − g(s, ϕ)‖α)

≤
C1−α

α
(t + θ)α(Mgβ + sup

s∈[0,α]

‖g(s, ϕ)‖α) ≤
β

k

(15)

for sufficiently small δ = δ(k). To estimate the last integral in (10) we have

∥

∥

∥

∫ t+θ

0
S(t + θ − s) f (s, ys)ds

∥

∥

∥
≤ M

∫ δ

0
mβ(s) ≤

β

k
, (16)

due to the absolutely continuity of Lebesgue’s integral. Thus, from (8), (9), (11)–(16) we deduce

that

sup
t∈[0,δ(k)]

‖Φ(y)t + Ψ(z)t − ϕ0‖ ≤
7β

k
+ Mgβ. (17)

Now let us choose k such that 7/k + Mg < 1. Further, we choose δ such that inequalities

(9), (11)–(16) are fulfilled. Taking into account continuity of Φ and g(t, ϕ), we get from (17)

condition (i) of the Krasnoselskii theorem. After applying this theorem, we deduce that there

exists y ∈ A(δ, β) such that G(y) = y. Theorem 1 is proved.

The proof of Theorem 2. We need the following lemmas.

Lemma 3. Under conditions of Theorem 1 if W ⊂ D and W is a compact set, then there exists

δ > 0 such that for arbitrary initial data (t0, ϕ) ∈ W the solution of (1) exists on the interval

[t0, T0 + δ].

Proof. As W is a compact set, so there exists an open set V such that W ⊂ V ⊂ D. There-

fore, there exists a function m(t) such that the condition 3) from Assumption (H2) takes place

simultaneously for all (t0, ϕ) ∈ W.

Compactness of W implies the inequality (4) for all ϕ with (t0, ϕ) ∈ W. By standard con-

siderations related to the existence for every ε > 0 a finite ε-net in W, we can get that the in-

equalities (9), (11)–(16) take place uniformly over all ϕ with (t0, ϕ) ∈ W. So, there exists δ > 0

such that all mentioned above inequalities take place on [0, δ] uniformly over (t0, ϕ) ∈ W. The

rest of the proof is the consequence of Theorem 1.

Lemma 4. If u(t) is a non-continuing solution of (1) on [0, τ], then for every compact set

W ⊂ D there exists tW such that (t, ut) 6∈ W for t ∈ [tW , τ).

Proof. Since W is a compact set in D, Lemma 1 implies that for every point (c, ϕ) equation (1)

has a solution u(t) such that u(t) = ϕ(t) for t ∈ [c − h, c], which exists at least on the interval

[c, c + δ]. Arguing by contradiction, we can find a sequence tk → τ, k → ∞, and ψ ∈ C such

that (tk, utk
) ∈ W, (τ, ψ) ∈ W, (tk, utk

) → (τ, ψ) as k → ∞. The last statement is a consequence

of the compactness of W. So, for arbitrary ε ∈ (0, h) we have

lim
k→∞

sup
θ∈[−h,−ε]

‖u(tk + θ)− ψ(θ)‖ = 0.
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Therefore, u(tk − ε) → ψ(−ε) as k → +∞. Thus, u(τ − ε) = ψ(−ε) and we can conclude that

there exists lim
t→τ−0

u(t) and u(t) can be continued to continuous function on [−h, τ], if we put

u(τ) = ψ(0). But (τ, uτ) ∈ W. So, due to Lemma 1 there exists a solution with the initial data

(τ, uτ) on the interval [τ, τ + δ], which is a contradiction. Lemma is proved.

Now we are in position to prove Theorem 2. We have that the solution of (1) with initial

data (t0, ϕ) ∈ D exists on some interval [t0, t0 + δ]. Due to Zorn’s lemma this solution can be

continued on the maximal interval (t0, τ). Let K be a closed bounded set in D. Let us show

that there exists tk such that (t, ut) 6∈ K for t ∈ (tk, τ). Assume the contrary. Then there exists

a sequence tk → τ − 0 such that (tk, utk
) ∈ K for all k. Then for every ε > 0 the continuity of

the solution u(t) in the space X on [t0 − h, τ − ε] implies that uniform continuity of ut in the

space C for t ∈ [t0, τ − ε]. Then the set P = {(t, ut) : t ∈ [t0, τ)} is bounded. Indeed, if it is not

bounded, then there exists a sequence (sk, usk
) such that sk → τ − 0, and ‖usk

‖C → ∞, k → ∞.

But (tk, utk
) ∈ K, so utk

are bounded in C, which contradicts the uniform continuity of ut on

[t0, τ − ε]. Therefore, P is bounded and P belongs to K.

Let us show that P belongs to some compact set in D. It is sufficient to prove precompact-

ness of the set R = {ut, t ∈ [t0, τ)}. According to the Arzela-Askoli theorem we need to prove

that

1) for every θ ∈ [−h, 0] the set R(θ) = {u(t + θ), t ∈ [t0, τ)} is precompact in X;

2) the family of functions {u(t + θ), θ ∈ [−h, 0], t ∈ [t0, τ)} is equicontinuous.

For proving the precompactness of R(θ) we will construct a finite δ-net for every δ > 0.

Without loss of generality we assume that t0 = θ. Let us fix sufficiently small µ < τ. We

split the set R(θ) into two parts R(θ) = R1(θ) ∪ R1(θ), where

R1(θ) = {u(t + θ), t + θ ∈ [−h, µ]}, R2(θ) = {u(t + θ), t + θ ∈ (µ, τ)}.

Uniform continuity of u(t + θ) on [−h, µ] implies the existence of a finite δ-net for R1(θ).

Let us consider R2(θ). As t + θ > 0, then for elements of R2(θ) we have

u(t + θ) = S(t + θ)(ϕ(0) + g(0, ϕ))− g(t + θ, ut+θ)

−
∫ t+θ

0
AS(t + θ − s)g(s, us) ds +

∫ t+θ

0
S(t + θ − s) f (s, us) ds.

(18)

For every ε ∈ (0, µ) we consider the set Rε(θ), whose elements have the following repre-

sentation

u(ε)(t + θ) = S(t + θ)(ϕ(0) + g(0, ϕ))− g(t + θ, ut+θ)

−
∫ t+θ−ε

0
AS(t + θ − s)g(s, us) ds +

∫ t+θ−ε

0
S(t + θ − s) f (s, us) ds.

(19)

As P ⊂ K is bounded, so due to the condition 3) from Assumption (H2) there exists an inte-

grable function m(t) such that | f (t, ut)| ≤ m(t), t ∈ [0, τ) and

sup
s∈[0,τ)

‖g(s, us)‖α ≤ sup
s∈[0,τ)

‖g(s, us − g(s, ϕ)‖α + sup
s∈[0,T]

‖g(s, ϕ)‖α

≤ Mg( sup
s∈[0,τ)

‖us‖+ ‖ϕ‖) + sup
s∈[0,T]

‖g(s, ϕ)‖ ≤ C
(20)
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for some C > 0.

Applying the semigroup property, we get

u(ε)(t + θ) = S(ε)(ϕ(0) + g(0, ϕ))− g(t + θ, ut+θ)

− S(ε)
∫ t+θ−ε

0
AS(t + θ − ε − s)g(s, us) ds + S(ε)

∫ t+θ−ε

0
S(t + θ − s − ε) f (s, us) ds.

Since t + θ − ε > 0, we have ‖S(t + θ − ε)(ϕ(0) + g(0, ϕ))‖ ≤ M‖ϕ(0) + g(0, ϕ)‖. As

the set S(t + θ − ε)(ϕ(0) + g(0, ϕ)) is uniformly bounded for t ∈ [0, τ), then the set

S(ε)S(t + θ − ε)(ϕ(0) + g(0, ϕ)) is precompact in X.

Let us prove precompactness of the set {g(t + θ, ut+θ), t + θ ∈ [µ, τ)} in X. From (20) and

compact embedding Xα ⊂ X we derive that the set G(t1) = {g(t1, ut+θ), t + θ ∈ [µ, τ)} is

precompact in X for every t1 ∈ [0, T]. So, for every t1 ∈ [0, T] it has a finite ε-net {z1, . . . , zp}

with p = p(ε, t1).

Let us construct such a net for the set G = {g(s, ut+θ), t + θ ∈ [µ, τ), s ∈ [0, T]}. Due to the

continuity with respect to t ∈ [0, T] of the mapping g(t, ϕ), uniformly over ϕ ∈ U, we deduce

that for every ε > 0 there exist a finite set {t1(ε), . . . , tr(ε)}, r = r(ε), and δ > 0 such that if

|t − ti| < δ, then ‖g(t, ϕ)− g(ti, ϕ)‖ < ε. Since each set G(ti(ε)) is precompact, so it has a finite

ε-net. Therefore, the union over ti of these ε-nets will be 2ε-net for the set G. Then the set G is

precompact in X and we can conclude that the set {g(t + θ, ut+θ), t + θ ∈ [µ, τ)} is precompact

in X.

From (19) we get
∥

∥

∥

∥

∫ t+θ−ε

0
S(t + θ − ε − s) f (s, us) ds

∥

∥

∥

∥

≤
∫ t+θ−ε

0
‖S(t + θ − ε − s)‖‖ f (s, us)‖ ds

≤ M
∫ t+θ−s

0
m(s) ds ≤

∫ T

0
m(s) ds ≤ C1

for some positive constant C1.

Then, since S(ε) is a compact operator, we conclude that the set

{

S(ε)
∫ t+θ−s

0
S(t + θ − ε − s) f (s, us) ds, t + θ ∈ [µ, τ)

}

is precompact in X. In the same way, using (15) and (20), we show that the set

{

S(ε)
∫ t+θ−s

0
AS(t + θ − ε − s)g(s, us) ds, t + θ ∈ [µ, τ)

}

is precomapct in X. So, for every ε ∈ (0, µ) the set Rε(θ) is precompact in X, therefore, for

every δ > 0 it has a finite δ-net. Let us denote it by {u(ε)(t1 + θ), . . . , u(ε)(tp + θ)}, p = p(δ).

From (18) and (19) we get

∥

∥u(t + θ)− u(ε)(t + θ)
∥

∥ ≤

∥

∥

∥

∥

∫ t+θ

t+θ−ε
AS(t + θ − s)g(s, us) ds

∥

∥

∥

∥

+

∥

∥

∥

∥

∫ t+θ

t+θ−ε
S(t + θ − s) f (s, us) ds

∥

∥

∥

∥

.

Moreover,
∥

∥

∥

∥

∫ t+θ

t+θ−ε
AS(t + θ − s)g(s, us) ds

∥

∥

∥

∥

≤
∫ t+θ

t+θ−ε
C1−α(t + θ − s)α−1 ds sup

s∈[0,τ)

‖g(s, us‖

=
C1−α

α
εαC1 → 0 as ε → 0
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uniformly over t + θ. Analogously,
∥

∥

∥

∥

∫ t+θ

t+θ−ε
S(t + θ − s) f (s, us) ds

∥

∥

∥

∥

≤
∫ t+θ

t+θ−ε
m(s) ds → 0 as ε → 0 (21)

uniformly over t + θ. Finally,

sup
t+θ∈[µ,τ)

‖uε(t + θ)− u(t + θ)‖ → 0 as ε → 0.

Using the δ-net for Rε(θ), we can construct 3σ-net {u(t1 + θ), . . . , u(tp + θ)} for R2(θ),

where we choose elements u(ti + θ) from R2(θ) such that supt∈(0,τ) ‖u(t + θ)− uε(t + θ)‖ < δ

(it is possible due to (21)). Therefore, the finite δ-net both for R1(θ) and R2(θ) has been con-

structed. It means that R(θ) is precomapct in X, and property 1) is proved.

Let us show equicontinuity of the family {u(t + θ), θ ∈ [−h, 0], t ∈ [0, τ)}. We need to

prove that for any ε > 0 there exists δ > 0 such that ‖u(t + θ1)− u(t + θ2)‖ < ε for all t ∈ [0, τ)

and for all θ1, θ2 ∈ [−h, 0] with |θ1 − θ2| < δ. Let us put θ2 = θ1 + r. For sufficiently small

µ ∈ (0, τ) we consider three cases.

Case 1. t + θ2 ≤ µ. In this case equicontinuity of u(t + θ) follows from the uniform conti-

nuity of u(t) on [−h, µ].

Case 2. t + θ1 < µ, t + θ2 ≥ µ. In this case we have

‖u(t + θ2)− u(t + θ1)‖ ≤ ‖u(t + θ2)− u(µ)‖+ ‖u(t + θ1)− u(µ)‖.

Choosing sufficiently small δ we can guarantee that the points t + θ1 and t + θ2 belongs to

small left and right neighbourhoods of µ such that

‖u(t + θ2)− u(µ)‖ ≤
ε

2
, ‖u(t + θ1)− u(µ)‖ ≤

ε

2
.

So, in this case the required equicontinuity follows from the continuity of u(t) at µ.

Case 3. t + θ1 ≥ µ. In this case the semigroup S(t), t > 0, is compact. So, S(t) is continuous

in the uniform operator topology, and S(t) is uniformly continuous on [µ, T]. Then we get

‖u(t + θ1) − u(t + θ2)‖ ≤ ‖S(t + θ1)− S(t + θ1 + r)‖

×
(

‖ϕ(0)‖ + ‖g(0, ϕ)‖+ ‖g(t + θ1, ut+θ1
)− g(t + θ1 + r, ut+θ1+r)‖

)

+
∫ t+θ1

0
‖A(S(t + θ1 + r − s)− S(t + θ1 − s))g(s, us)‖ ds

+
∫ t+θ1+r

t+θ1

‖A(S(t + θ1 + r − s))g(s, us)‖ ds

+
∫ t+θ1

0
‖(S(t + θ1 + r − s)− S(t + θ1 − s))‖‖ f (s, us)‖ ds

+
∫ t+θ1+r

t+θ1

‖(S(t + θ1 + r − s))‖‖ f (s, us)‖ ds

= I1 + I2 + I3 + I4 + I5.

(22)

Uniform continuity implies that I1 → 0 as r → 0 uniformly over t + θ1. Let us estimate I2.

We get

‖g(t + θ1, ut+θ1
)− g(t + θ1 + r, ut+θ1+r)‖

≤ ‖g(t + θ1, ut+θ1
)− g(t + θ1 + r, ut+θ1

)‖+ ‖g(t + θ1 + r, ut+θ1
)− g(t + θ1 + r, ut+θ1+r)‖

≤ M‖ut+θ1
− ut+θ1+r‖C + ‖g(t + θ1, ut+θ1

)− g(t + θ1 + r, ut+θ1
)‖.
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The last summand in the above formula tends to zero as r → 0 uniformly over t, θ1 and ut+θ1

due to condition 3) from (H3).

Let us estimate ‖ut+θ1
− ut+θ1+r‖C. We have

‖ut+θ1
− ut+θ1+r‖ ≤ sup

θ∈[−h,0]

‖u(t + θ1 + θ)− u(t + θ1 + θ + r)‖. (23)

Again, we consider three cases.

Case 1. t + θ1 + θ + r < 0. In this case, uniform convergence to zero of (23) as r → 0 follows

from the uniform continuity of ϕ(t), t ∈ [−h, 0].

Case 2. t + θ1 + θ < 0, t + θ1 + θ + r > 0. Then uniform convergence to zero of (23) as r → 0

follows from the uniform continuity of ϕ(t) and u(t) in a neighbourhood of zero point.

Case 3. t + θ1 + θ > 0. Then

sup
θ∈[−h,0]

‖u(t + θ1 + θ)− u(t + θ1 + θ + r)‖ ≤ sup
t∈[µ,τ]

‖u(t)− u(t + r)‖. (24)

Let us estimate I3 in (22). As the semigroup S(t) is analytic, then for every x ∈ X we have

S(t)x ∈ D(A) (see [14, Lemma 4.2]) and AS(t1)S(t)x = S(t1)AS(t)x for t1 > 0, t2 > 0, x ∈ X.

Thus, we have

A(S(t + θ1 + r − s)− S(t + θ1 − s))g(s, us) = A
(

S
( t + θ1 − s

2
+ r

)

− S
( t + θ1 − s

2

))

,

S
( t + θ1 − s

2

)

g(s, us) =
(

S
( t + θ1 − s

2
+ r

)

− S
( t + θ1 − s

2

))

AS
( t + θ1 − s

2

)

g(s, us).

Therefore,

I3 ≤
∫ t+θ1

0

∥

∥

∥
S
( t + θ1 − s

2
+ r

)

− S
( t + θ1 − s

2

)
∥

∥

∥

∥

∥

∥
A1−αS

( t + θ1 − s

2

)
∥

∥

∥
‖Aαg(s, us)‖ ds

≤
∫ t+θ1

0

∥

∥

∥
S
( t + θ1 − s

2
+ r

)

− S
( t + θ1 − s

2

)
∥

∥

∥

∥

∥

∥
A1−αS

( t + θ1 − s

2

)
∥

∥

∥
ds sup

s∈[0,τ)

‖g(s, us‖.

Making a change of variables (t + θ1 − s)/2 = s1 and taking into account inequality (20),

we get

I3 ≤ 2
∫ τ

0
‖S(s1 + r)− S(s1)‖‖A1−αS(s1)‖ds1 · C. (25)

The continuity of S(t) in the uniform operator topology implies that the function under inte-

gral in (25) tends to zero as r → 0. Lemma 2 guarantees that the right-hand part of (25) is an

integrable function. So, applying the dominated convergence theorem, we get
∫ τ

0
‖S(s1 + r)− S(s1)‖‖A1−αS(s1)‖ds1 → 0, r → 0. (26)

Uniform over t + θ1 convergence of I4 to zero is a consequence of (20) and (15). To estimate I5,

we will use Holder’s inequality. We get

I5 ≤

(

∫ t+θ1

0
‖S(t + θ1 + r − s)− S(t + θ1 − s)‖q ds

)

1
q
(

∫ τ

0
mp(s) ds

)

1
p

≤

(

∫ τ

0
‖S(s + r)− S(s)‖q ds

)

1
q
(

∫ τ

0
mp(s) ds

)

1
p
→ 0, r → 0.

(27)
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Using uniform continuity of S(t) and the Lebesgue dominated convergence theorem, we get

I5 ≤ Mr
1
q

(

∫ τ

0
mp(s) ds

)

1
p
→ 0, r → 0. (28)

Combining (22)–(28) and using inequality Mg < 1, we get

sup
t+θ1∈[µ,τ)

‖u(t + θ1)− u(t + θ1 + r)‖ → 0, r → ∞,

which means the uniform continuity over θ of the family {u(t + θ), θ ∈ [−h, 0], t ∈ [0, τ)}.

Thus, the set P = {(t, ut) : t ∈ [t0, τ)} belongs to a compact set in D, which is a contradiction

with Lemma 4. Theorem 2 is proved.

3 Applications

Functional-differential equations of parabolic type.

Let Q be a bounded domain in R
d with sufficiently smooth boundary ∂D. We consider a

symmetric elliptic operator

A = A(x) =
d

∑
i,j=1

aij(x)
∂

∂xi∂xj
= div(a(x),∇),

where aij are Holder continuous functions with the Holder exponent β ∈ (0, 1), bounded, and

for some C0 we have
d

∑
i,j=1

aijηiηj ≥ C0‖η‖2, η ∈ R
d. (29)

We denote X = L2(Q) = H, D(A) = H2(Q)
⋂

H1
0(Q).

Consider the following initial boundary-value problem

d

dt

[

u(t, x) + b

(

t, x,
∫ 0

−h
‖u(t + θ)‖ dθ

)]

= div

[

a(x),∇xu(t, x) + f1

(

t, x,
∫ 0

−h
‖u(t + θ)‖ dθ

)]

,

u(t, x) = ϕ(t, x), t ∈ [t0 − h, t0], x ∈ Q, u(t, x) = 0, x ∈ ∂Q, t ∈ [0, T].

(30)

Here ϕ(t, ·) ∈ C([0, T], L2(Q)), t0 ∈ [0, T]. Real-valued functions b(t, x, y), f1(t, x, y) are given

for t ∈ [0, T], x ∈ Q, y ∈ [0, l], l > 0.

The set D ⊂ [0, T)× C is the set
{

(t, ϕ) : t ∈ [0, T), ϕ ∈ U
}

, where U consists of functions

ϕ ∈ C such that
∫ 0

−h
‖ϕ(θ, ·)‖ dθ ∈ (0, l),

and ∂U consists of ϕ ∈ C for which either
∫ 0
−h ‖ϕ(θ, ·)‖ dθ = l or ϕ(θ, x) = 0 a.e. We assume

that the initial function ϕ(t, x) in (29) also belongs to U. Then ∂D = ([0, T]× ∂U) ∪ {T} × U.

It is well-known that A−1 is a compact operator (see [3, Section 6.2]), eigenvalues λk of

A are real numbers with 0 > λ1 ≥ λ2 ≥ . . . (see [6, Section 1.4]), and the corresponding

semigroup S(t) is compact for t > 0 and analytic [11] (A is a sectorial self-adjoint operator).
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In the sequel, as in [4], we introduce the interpolation space DA(1/2, 2) = H1
0 . According

to [2, A.17], DA(1/2, 2) is isomorphic to D((−A))1/2 . It means that X1/2 = H1
0 .

Let us consider assumptions on b(t, x, y) and f1(t, x, y). Assume that b(t, x, y) is a continu-

ous function, and continuity on t is uniform with respect to x and y. Assume that there exist

constants L > 0, Mg > 0 such that

|∇xb(t, x, y)| ≤ L, |b(t, x, y1)− b(t, x.y2)|+ |∇xb(t, x, y1)−∇xb(t, x, y2)| ≤ Mg|y1 − y2|

for all t ∈ [0, T], x ∈ Q, y1, y2 ∈ [0, l], and 2hLM2
g meas(Q) < 1, here meas( · ) is a Lebesgue

measure in R
d. Assume that f1(t, x, y) is measurable with respect to t and continuous

with respect to x ∈ Q, y ∈ [0, l], and there exists m(t) ∈ Lp(0, T), p > 1, such that

| f1(t, x, y)|2 ≤ m(t)(1 + |x|p + |y|p). After introducing the mappings

g(t, ϕ)(x) := b

(

t, x,
∫ 0

−h
‖ϕ(θ, ·)‖ dθ

)

, (31)

f (t, ϕ)(x) := f1

(

t, x,
∫ 0

−h
‖ϕ(θ, ·)‖ dθ

)

, (32)

problem (30) can be rewritten in the abstract form (1). Let us verify for (31) and (32) conditions

of Theorem 1. From the definition of the uniform metric in C we get continuity of f (t, ϕ)

with respect to ϕ. Its measurability with respect to t is a consequence of t-measurability of f1.

Further,

‖ f (t, ϕ)‖2 =
∫

Q
f 2
1

(

t, x,
∫ 0

−h
‖ϕ(θ, ·)‖ dθ

)

dx ≤
∫

Q
m(t)

(

1 + |x|p + h sup
θ∈[−h,0]

‖ϕ(θ, ·)‖2
)

dx.

So, assumption (H2) holds.

Let us verify assumtions on g(t, ϕ). Its continuity with respect to t, uniformly over ϕ, is a

consequence of continuity of b. Further,

‖g(t, ϕ)‖2
1
2
= ‖g(t, ϕ)‖2

H1
2
=

∫

Q
|g(t, ϕ)(x)|2 dx +

∫

Q
|∇xg(t, ϕ)(x)|2 dx.

But
∫

Q
|g(t, ϕ)(x)|2 dx =

∫

Q
b2

(

t, x,
∫ 0

−h
‖ϕ(θ, ·)dθ‖

)

dx < ∞

for t ∈ [0, T], x ∈ Q, ϕ ∈ U, due to the continuity of b. So,

∫

Q
|∇x g(t, ϕ)(x)|2 dx =

∫

Q

∣

∣

∣

∣

∇xb

(

t, x,
∫ 0

−h
‖ϕ(θ, ·)dθ‖

)
∣

∣

∣

∣

2

dx < L2 meas(Q).
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Finally, we get

‖g(t, ϕ1) − g(t, ϕ2)‖
2
1/2

=
∫

Q
|(g(t, ϕ1)(x)− g(t, ϕ2)(x))|2 dx +

∫

Q
|(∇x g(t, ϕ1)(x)−∇xg(t, ϕ2)(x))|2 dx

=
∫

Q

∣

∣

∣

∣

b

(

t, x,
∫ 0

−h
‖ϕ1(θ, ·)‖ dθ

)

− b

(

t, x,
∫ 0

−h
‖ϕ2(θ, ·)‖ dθ

)∣

∣

∣

∣

2

+
∫

Q

∣

∣

∣

∣

∇x

(

b
(

t, x,
∫ 0

−h
‖ϕ(θ1, ·)‖ dθ

)

− b
(

t, x,
∫ 0

−h
‖ϕ(θ2, ·)‖ dθ

)

)
∣

∣

∣

∣

2

dx

≤ 2M2
g

∫

Q

(

∫ 0

−h

(

‖ϕ1(θ, ·)‖ − ‖ϕ2(θ, ·)‖
)

dθ

)2

≤ 2M2
g

∫

Q

(

∫ 0

−h

(

‖ϕ1(θ, ·)− ϕ2(θ, ·)‖
)

dθ

)2

≤ 2hM2
g meas(Q) sup

θ∈[−h,0]

‖ϕ1(θ, ·)− ϕ2(θ, ·)‖2.

So, all assumptions of Theorems 1, 2 are fulfilled.

(B) Parabolic equation with maximum.

Consider the following initial boundary-value problem

d

dt

(

u(t, x) + b
(

t, x, max
s∈I(t)

‖u(s)‖
))

= Au + f1(t, x, max
s∈I(t)

‖u(s)‖),

u(t, x) = ϕ(t, x), t ∈ [−h, 0], x ∈ Q, u(t, x) = 0, x ∈ ∂Q, t ∈ [0, T].

(33)

Here I(t) = [β(t), α(t)], β(t), α(t) are continuous functions on [0, T] such that β(t) ≤ α(t) ≤ t

and mint∈[−h,0](β(t)− t) = −h.

Assumptions on A, b, f1 are the same as in the previous example. Problem (33) can be

rewritten in the abstract form (1) if we put

g(t, x)(x) = b
(

t, x, max
θ∈[β(t)−t,α(t)−t]

‖ϕ(θ, ·)‖
)

, f (t, x)(x) = f1

(

t, x, max
θ∈[β(t)−t,α(t)−t]

‖ϕ(θ, ·)‖
)

.

The set U ⊂ C is the set of functions ϕ ∈ C such that ‖ϕ(θ, ·)‖ ∈ (0, l), θ ∈ [−h, 0], and

∂U consists of functions from C such that ‖ϕ(θ, ·)‖ ∈ (0, l) and either there exists a point

θ ∈ [−h, 0] such that ‖ϕ(θ, ·)‖ = l or ϕ(θ, x) = 0 for almost all x ∈ Q.

Using the inequality

∣

∣

∣
sup

θ

‖ϕ1(θ, ·)‖ − sup
θ

‖ϕ2(θ, ·)‖
∣

∣

∣
≤ sup

θ

‖ϕ1(θ, ·)− ϕ2(θ, ·)‖,

we can verify all assumptions of Theorems 1, 2.
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Перегуда О.В., Станжицький А.О., Мартинюк О.В. Про iснування та продовження м’яких роз-

в’язкiв функцiонально-диференцiальних рiвнянь нейтрального типу в банахових просторах // Кар-

патськi матем. публ. — 2025. — Т.17, №2. — C. 631–646.

Основним об’єктом дослiдження цiєї роботи є нескiнченновимiрнi функцiонально-дифе-

ренцiальнi рiвняння нейтрального типу в банахових просторах. Встановлено умови iснування

м’якого розв’язку початкової задачi та його продовження до межi областi визначення. Наяв-

нiсть запiзнення в похiднiй призводить до появи сингулярних доданкiв. Методи дослiджен-

ня пов’язанi з технiкою сильно неперервних напiвгруп та дробових степенiв оператора. До-

ведення iснування базується на поданнi початкової задачi в абстрактнiй операторнiй формi

з подальшим застосуванням теореми Красносельського про нерухому точку. Для цього ви-

хiдний оператор подається у виглядi суми оператора стискання та компактного оператора.

Отриманий абстрактний результат застосовано до функцiонально-диференцiального рiвнян-

ня в частинних похiдних типу “реакцiя-дифузiя”.

Ключовi слова i фрази: запiзнення, сильно неперервна напiвгрупа, компактнiсть, нерухома

точка, дробовий степiнь оператора.


