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On existence and continuation of mild solutions of
functional-differential equations of neutral type in Banach
spaces

Perehuda O.V.}, Stanzhytsky A.O.2, Martynyuk O.V.>>

The main object of research of this work is infinite-dimensional functional-differential equations
of neutral type in Banach spaces. The conditions for the existence of a mild solution to the initial
problem and its extension to the boundary of the domain are established. The presence of a delay
in the derivative leads to the appearance of singular terms. The research methods are related to
the technique of strong semigroups and fractional powers of the operator. The existence proof is
based on the representation of the initial problem in abstract operator form with the further use
of Krasnoselsky’s theorem on a fixed point. For this purpose, the original operator is represented
as the sum of the compression operator and the compact operator. The obtained abstract result is
applied to the functional-differential equation in partial derivatives of the reaction-diffusion type.
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the operator.
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Introduction

We consider the initial value problem

d

2 ((t) + gt ) = Au+ f(t,w),

u(t) =¢(t), te|-h0],

(1)

for the functional-differential equation of neutral type in a Banach space X. The designation u;
will be shown below. For someh > 0let C = C([—h,0]; X) be the space of continuous functions
¢ : [=h,0] — X with the norm ||¢[|c = sup;¢_ ¢ |¢(t)[|x- Throughout the article, [[¢(t)]|x is
the norm in X. Let A be the infinitesimal generator of an analytic semigroup S(t),t > 0, in X,
ur =u(t+6) € Cforany t € [0,T], 8 € [—h,0]. Let D be some domain in [—h, T] x C, 9D be
its boundary in the sense of [8, p. 18], and D = D U dD. Mappings f and g act from D to X. In
the sequel, a solution of the problem (1) we will understand in the mild sense.
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Definition 1. A function u : [0, T] — X is called a mild solution of the initial value problem (1)
on [0, T] if:

1) u(t) = (), t € [=h,0);
2) u € C([0,T], X);
3) u(t) satisfies the integral equation

u(t) = 5(t)(9(0) +8(0, ) — g(t, u)

t t )
_/0 As(t_s)g(s,us)ds+/0 S(t—s)f(s,us)ds.

We will study the local existence of a mild solution of (1) on interval [—h, t1). The latter
means that if (t,¢) € D for t € [—h,0], then (t,u;) € D fort € [0, 7).

A similar question in the finite-dimensional case was considered in [5]. The author pays
detailed attention to the functional-differential equation of the ordinary type. Regarding equa-
tions of the neutral type, similar results were obtained there for atomic mappings. Regarding
equations in infinite-dimensional spaces, it is worth pointing to the paper [7] for the mild re-
solvability of differential equations, and the monograph [16], where for functional-differential
equations of the ordinary type conditions for the local existence of mild solutions were ob-
tained under the condition of continuity of the right-hand sides. However, cases are often
encountered, for example, in optimal control problems [9, 10, 12, 13], when the conditions
for the continuity of the right-hand sides are unnatural. Therefore, it is important to obtain
the conditions for the existence and continuation of solutions under the conditions of the
t-measurability of the coefficients of the equation (such as the Carathédory conditions). For
functional-differential equations of the ordinary type, such conditions were obtained in [9].
Note, that even in the finite-dimensional case the solution cannot always be extended to the
boundary of the domain (see the example of A. Myshkis [5, p. 60]).

The aim of this work is to obtain similar results for equations of neutral type. Note that the
neutral type of the equation causes the presence in the formula (2) of two new terms g(¢, 1)
and

/Ot AS(t —s)g(s,us)ds,

which significantly complicates the study of (1). The work consists of an introduction and
three parts. The introduction describes the problem statement and a literature review. Sec-
tion 2 presents the necessary concepts and formulates the main results. Section 3 is devoted
to the proof of the main results. Section 4 gives an example of the obtained results for partial
differential equations of parabolic type.

1 Problem statement and main results

Let X be a reflexive Banach space, A : X — X be a linear operator with domain D(A),
o(—A) be a spectrum of (—A).
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1.1 Assumptions on the operator A
Assumption (H1). Re(c(—A)) > 6 > 0and A~! is compact operator in X.

Then for every a € [0,1] we can define fractional power (—A)*, which is a closed linear
operator with domain D((—A)* (see [14] for details). Let us denote by X, the Banach space
D((—A)%) supplied with the norm ||u|| := ||(—A)*u||, which is equivalent to the graph norm
of (—A)*. Let us denote Xo = X. From [6, Section 1.4] we deduce that if A~! is a com-
pact operator, then the semigroup S(t) is compact for + > 0. Then under assumption (H1)
[14, Theorem 3.2] implies that the semigroup S(t) is continuous in the uniform operator topol-
ogy for t > 0. Thus, due to [14, Theorem 3.3], we can conclude that the operator A has compact
resolvent. The last property guarantees the following result (see [6, Theorem 1.4.8]).

Lemma 1. Under assumption (H1) the embedding X, C Xg is compact for0 < p <a < 1.

Lemma 2 ([6, Theorem 1.4.3]). Under assumption (H1) for every « > 0 there exists C, > 0 such
that || (—A)*S(t)|| < Cut~ %%, t > 0.

In particular, ||S(t)|| < Coe™%, t > 0.

1.2 Assumptions on nonlinear terms
Let U be an open subset of Cand f : [0, T] x U — X.
Assumption (H2):

1) forevery t € [0, T| the mapping f is continuous with respect to ¢;
2) for every ¢ € U the mapping f is measurable with respect to t;

3) for any R > 0 there exists integrable function mg(t) € LP(0,T), p > 1, such that
1f(t, @)l < mg(t),if ||| <R.

Assumption (H3):

1) there exista € [0,1] and Mg € (0,1) such that g : [0, T] x U — X,;

2) llg(t, @1) — g(t, 2)[la < Mgll@1 — @allc;

3) function g is continuous with respect to t in X, uniformly over ¢ € U.

Theorem 1 (Local Existence). Suppose that assumptions (H1)-(H3) hold. Then for every ¢ € U
there exist t1 = t1(¢) € [0, T] and continuous function u € [—h,t;] — X such that u(t) is a
mild solution of (1) on [0, t;] with the initial function ¢.

Note that this theorem takes place for every initial point ty € (0,T). So, we can continue
the solution on the maximal interval [ty — , to].
We consider D = (0, T) x U, its boundary oD, and its closure D =DaD.

Theorem 2 (Continuation). Assume that conditions of Theorem 1 are valid. Then the solution
with initial data (ty, ¢) € D, ie. on the interval [ty — h, to], exists on the maximal interval
[to, T), T > to, and (T, ur) € 9D.

Further, we will use the following fixed point theorem.
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Theorem 3 (Krasnoselskii’'s Theorem [1]). Let M be a non-empty closed convex subset of a
Banach space (S, || - ||). Assume that operators A and B act from M into S such that:

(i) Ax+Bye M Vx,yeM;
(ii) A is a continuous operator and AM belongs to a compact set;
(iii) B is a contraction operator with the constant o < 1.

Then there existsy € M such that Ay + By = y.

2 Proofs of the main results

The proof of Theorem 1. We want to apply the Krasnoselskii fixed point theorem. It should be
noted that due to assumptions on A there exists M > 0 such that ||S(t)|| < MVt € [0, T].
We choose B > 0 such that Bg = {¢p € C : ||¢ — ¢[|c < B} C U. Analogously to [5,16], we
introduce closed convex bounded set

A(6,B) = {y € C([-1,d];X) : yo = @,y: € Bg,t € [0,4]},

where J is sufficiently small. On this set we consider the operator

p(t), te[-h0,
Gy)(t) = S(t)((p(O)t+g(O, ) —8(t, yt) t
_/O AS(t—S)g(S,ys)ds+/() S(t—s)f(s,ys)dsl te [0’5].

We split this mapping as G(y) = ®(y) + ¥(y), where

o(t),  te[-h0],
d(y)(t) = { S(H)(@(0) +2(0,9)) 3)

—/0 AS(t—s)g(s,ys)ds%—/0 S(t—s)f(s,ys)ds, t € [0,9].

and
0, t € [—h,0],

—g(t,yt), t €[0,9].

Let us check for the given mappings whether the conditions of the Krasnoselskii theorem
are fulfilled.

Let us show the continuity of ®(y). Lety")(t) € A(J, B) and SUPc(0,6] ly™ (t) —y(t)] — 0
asn — 0.

Then

Fy)(t) = {

o(t),  te[-h0],
(M) (t) = { S(t)(¢(0) + (0, 9))

—/OtAS(t—s)g(s,yg(,n))ds~|—/OtS(t—s)f(s,y§n))ds, t € [0,9].



On existence and continuation of mild solutions ... 635

So,

sup 20/ (1) ~ @) (1) < sup | [ As(t~)(gls5” — g5,9:)) s
te[—h,d) t€(0,0]

41$%HASU—@U&%”—f&%»%H

For the first summand we have

< [y =) (-4 (a1~ g5,36)) s

S/ I(=Aes(e 3] ds sup (558" 6.

t
/OAS(t—S>(g(S/y§") (s,s))

< [ cratasmy sup [~y

s€[0,9]

= Cy_4 sup Hys —ysH —0 as n— +oo.
s€[0,4]

It should be noted that sup, ||y§n) —ytllc < supsepy Hyfn) — y¢]| as n — 4o0. Then for

every t € [0,6] we get f(t,yf”)) — f(t,y¢) as n — +oo due to the continuity of ¢ — f(t, ¢).
Then the definition of A(J, B) and Lebesgue’s dominated convergence theorem yield

sup

6 S "y — S ds
s < [ Mlf ) - fls,p0)]|ds 0.

[ 8= 9)(F5.41")  fls, ) s

Let us prove that ®(.A(J, B)) is contained in a compact set. To this end, we will use the
following statements.

Proposition 1 ([2, Proposition 8.4]). If S(t),t > 0, is a compact operator, then for any p > 1 the
mapping
t
FAW® = [ St=s)fs)ds, fel’OTx), telT],
0
is a compact operator from L¥(0, T; X) to C([0, T]; X).

Proposition 2 ([15]). Under assumptions on the operator A the mapping

:/0 AS(t —s)z(s)ds

is a compact operator from C([0, T], X, ) to C([0, T], X).

Further, we will use the infinite dimensional analogous of the Arzela-Askoli theorem. We
need to prove that

1) forevery t € [0, 6] the set {®(y)(t) : y € A(J, B)} is precompact in X;

2) the family of functions ®(y)(f) is equicontinuous, i.e. for any ¢ > 0 there exists ¢ > 0
such that || ®(y)(t1) — P(y) (k)| <& ify € A(S,B), |1 —ta| <0, t1,t2 € [0,4].
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Note that from (H3) we get

sup [[g(t,ye)lle < sup [1(2(Lyi") = &(t @) la + 18(t @)la < MgB+1Ig(t @) ]a < C1 - (&)
te[0,9] te[0,9]

for t € [0,4]. Then the compactness of the first integral summand in (3) is the consequence of
Proposition 2.
Further, due to the definition of A(J, B), we get

sup |ly(t)llc < sup [ly: — ¢llc + llollc < B+ llollc.
te[0,0] te[0,0]

Using condition 3) from (H2), we obtain that || f(t,y;)|| < mg(t) for R = B+ | ¢||c. Then
the set f(t,y:) is bounded in LP(0, T; X). Therefore, Proposition 1 yields the compactness of
the second integral summand in (3). Thus, property 1) is proved.

Now let us prove the equicontinuity property. Let us fix an arbitrary e. We note that the
continuity of S(t)(¢(0) 4+ g(0, ¢)), t € [0, ], implies its uniform continuity on [0, é]. Therefore,
there exists o such that for all t1,t, € [0, 6] with |t; — f]| < 07 we have

€
1(5(t1) = S(£2)) (9(0) +8(0,8(0,9)) || < 3. (5)
After that, using Lemma 2 and estimate (4), we get
f2 f2 1—a
| [ aste=s)gs v < [ A0St =5 ds sup lsts, vl
f f te[0,0] (6)
C
< == lx|f2—f1|C1 < 3
if ’tl — tz’ < 03.
Due to the absolutely continuity of Lebesgue’s integral we deduce that
ty €
‘/ S(t—s)f(s,ys)ds <M/ mg(t <§ (7)
t

if [tp — t1] < o3 and R = B+ ||¢||c. Then, choosing ¢ = min{cy, 02,03}, from (5)-(7) we de-
duce equicontinuity of the family ®(y)(t). As ®(.A(J, B)) is a compact set in C([—H, 0], X), so
we have that assumption (ii) of the Krasnoselskii theorem is fulfilled. Let us verify assump-
tion (iii). For every y!) (t) and y?) (t), which belongs to A(J, ), we have

sup_[[@(y™) (1) ~ @y ()] = sup [lg(ty;") - gt
te[=h] te[0,6]

< sup [g(t, 1) — g(t, ¥ ?) e < Mg sup [y —y? H—Mg sup [yt —yP.
te[0,6] t€0,6] te[—h,d)

Because of the inequality My < 1 we get (iii).
Let us prove (i). For arbitrary y € A(6, ) and z € A(6, B) we get

(1), € [~h,0]
D(y)(t) + ¥ (z)(t) = { S (o +g(0,qv)) 8(t zt)

/ AS(t—s)g(s, S)ds—l—/OtS(t—s)f(s,ys)ds, t €10,9].

4
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Then for every t € [0, ] we have
[P()e +¥(2) — ol = sup [[®(y)e + ¥ (y): — (0]
6e[—h,0]
< sup [[@()(E+6)+¥()(E+6)— p(0)] @
oe[—h,—t]
+ sup [|D(y)(t+0)+F(y)(t+6) —(6)].
oe[—t,0]
From the uniform continuity of ¢ we deduce
sup [|@(y)(t+0) +¥(y)(t+6) —B)| = sup |o(t+6)—9O)] < % 9)
fe[—h,—t] oe[—h,—t]

forall t € [0,6] and for sufficiently small J. Here k is some natural number, which we choose

latter, and 6 = (k). Further, for t + 6 € [0, a] we get

O(y)(t+0) +¥(z)(t+0) — 9(0) = S(t+0)(¢(0) +g(0,9)) — &t +0,z11p)
t+6 t+6
—/0+ AS(t+9—s)g(S,ys)ds+/0+ AS(t 46 — 5)f(s,ys)ds — ()
=S5(t+0)p(0) — ¢(0) — (6) + ¢(0) + S(t + 0)g(0, ) — g(t + 6, z¢10)

t+6 t+0
—/O AS(t+9—s)g(s,ys)ds+/0 AS(t 46 — )£ (s, ys )ds.

Here 0 € [—a,0]. Then

IS(+0)p(0) — 9O < £, tel08], =0

due to the Cy-continuity of S(t).
Choosing ¢ (depending on k) sufficiently small, we get

l9(6) ()] < £.

Further,

S(t+0)8(0,¢) —g(t+6,2ze10) = S(t+0)8(0, 9) — g(0,9) +8(0,9) — g(t +6,2149).
But
IS+ 0)3(0,9) ~ 80,9) < B, 0,600
We have
18(t+6,ze10) — 8(0, @) || < lIg(t +6,2140) — g(t+6,9)[la + [Ig(t +6,9) — (0, 9)la

< Mgllzrco — gllc + (¢ +6,9) — $(0,9) o < Mgp+ 2.

(10)

(11)

(12)

(13)

(14)

The last estimate follows from the definition of .A(4, ) and continuity of the mapping g with

respect to t.
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Let us estimate the first integral summand in (10). We have

H /Ot+9AS(t +60— s)g(s,ys)dsH

t+6
< [ Cia(t+0—5)"lds sup (Mglys —gll + ] —g(s,9)le) (15
0 s€[0,t+6]

=

Ciiayy , pa
< = (E+0) (Mg + sup [[g(s, 9)a) <
s€[0,a]

for sufficiently small & = §(k). To estimate the last integral in (10) we have

| [ stro-s)psyeas]| < [ mgts) < B, )

due to the absolutely continuity of Lebesgue’s integral. Thus, from (8), (9), (11)—(16) we deduce
that 78
sup [ @(y)t +¥(2)t — gol| < 7=+ Mg (17)
te[0,6(K)]

Now let us choose k such that 7/k + My < 1. Further, we choose J such that inequalities
(9), (11)—(16) are fulfilled. Taking into account continuity of ® and g(t, ¢), we get from (17)
condition (i) of the Krasnoselskii theorem. After applying this theorem, we deduce that there
exists y € A(J, B) such that G(y) = y. Theorem 1 is proved. O

The proof of Theorem 2. We need the following lemmas.

Lemma 3. Under conditions of Theorem 1if W C D and W is a compact set, then there exists
0 > 0 such that for arbitrary initial data (to, ¢) € W the solution of (1) exists on the interval
[to, To + 6].

Proof. As W is a compact set, so there exists an open set V such that W C V C D. There-
fore, there exists a function m(t) such that the condition 3) from Assumption (H2) takes place
simultaneously for all (tg, ¢) € W.

Compactness of W implies the inequality (4) for all ¢ with (ty, ¢) € W. By standard con-
siderations related to the existence for every ¢ > 0 a finite e-net in W, we can get that the in-
equalities (9), (11)—(16) take place uniformly over all ¢ with (tp, ¢) € W. So, there exists 6 > 0
such that all mentioned above inequalities take place on [0, ] uniformly over (to, ¢) € W. The
rest of the proof is the consequence of Theorem 1. O

Lemma 4. If u(t) is a non-continuing solution of (1) on [0, 7|, then for every compact set
W C D there exists ty such that (t,u;) ¢ W fort € [tw, T).

Proof. Since W is a compact set in D, Lemma 1 implies that for every point (c, ¢) equation (1)
has a solution u(t) such that u(t) = ¢(t) for t € [c — h, c], which exists at least on the interval
[c,c + 6]. Arguing by contradiction, we can find a sequence t; — T, k — oo, and ¢ € C such
that (f, uy,) € W, (t,¢) € W, (t, ur,) = (7,19) as k — oo. The last statement is a consequence
of the compactness of W. So, for arbitrary ¢ € (0, /) we have

lim sup |u(ty+6)— ()| =0.

k=00 g, —]
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Therefore, u(ty —e) — (—¢) as k — 4o0. Thus, u(t —¢) = (—¢) and we can conclude that
there exists t lim0 u(t) and u(t) can be continued to continuous function on [—4, T/, if we put
—T—

u(t) = ¥(0). But (t,ur) € W. So, due to Lemma 1 there exists a solution with the initial data
(7, ur) on the interval [7, T + J], which is a contradiction. Lemma is proved. O

Now we are in position to prove Theorem 2. We have that the solution of (1) with initial
data (to, ¢) € D exists on some interval [to, fp + 6]. Due to Zorn’s lemma this solution can be
continued on the maximal interval (#y, 7). Let K be a closed bounded set in D. Let us show
that there exists t; such that (f,u;) & K for t € (t, 7). Assume the contrary. Then there exists
a sequence tp — T — 0 such that (t,u,) € K for all k. Then for every ¢ > 0 the continuity of
the solution u(t) in the space X on [ty — h, T — ¢] implies that uniform continuity of u; in the
space C fort € [ty, T — ¢]. Then the set P = {(t,u¢) : t € [ty, T)} is bounded. Indeed, if it is not
bounded, then there exists a sequence (s, is,) such that sy — 7 — 0, and ||us,||c — 0,k — 0.
But (t,u,) € K, so uy, are bounded in C, which contradicts the uniform continuity of u; on
[to, T — €]. Therefore, P is bounded and P belongs to K.

Let us show that P belongs to some compact set in D. It is sufficient to prove precompact-
ness of the set R = {uy,t € [tg, T)}. According to the Arzela-Askoli theorem we need to prove
that

1) for every 6 € [—h,0] the set R(6) = {u(t+0),t € [to, T)} is precompact in X;
2) the family of functions {u(t +6),6 € [—h,0],t € [tp, T)} is equicontinuous.

For proving the precompactness of R(f) we will construct a finite J-net for every § > 0.
Without loss of generality we assume that ty) = 6. Let us fix sufficiently small y < 7. We
split the set R(6) into two parts R(0) = R1(0) U R1(0), where

Ri(0) ={u(t+0),t+06 € [—h,u]}, Ra0)={u(t+06),t+60¢c (u1)}.

Uniform continuity of u(t + 6) on [—h, ] implies the existence of a finite -net for Ry (6).
Let us consider Ry(0). As t + 6 > 0, then for elements of R, (6) we have

u(t+0) = S(t+0)(9(0) +8(0,9)) =t +0,ut1p)

t+0 t+0 (18)
—/0 AS(t+0—s)g(s,us)ds+/O S(E+ 0 — s)f(s, us) ds.

For every € € (0, ) we consider the set R.(0), whose elements have the following repre-
sentation

u) (£ 4+ 6) = S(t +8)(9(0) + g(0, @) — gt + 6, ur1¢)

t+6—e t+6—e (19)
—/ AS(t+9—s)g(s,us)ds~|—/ S(t+6 —s)f(s,us)ds.
0 0
As P C K is bounded, so due to the condition 3) from Assumption (H2) there exists an inte-
grable function m(t) such that |f(t, u;)| < m(t),t € [0,7) and

sup [|g(s, us)|la < sup |Ig(s,us —g(s, @)lla + sup [Ig(s, @)lla
s€0,7) s€[0,7) s€[0,T]

< Mg(sup lusl| +[l¢[]) + sup |g(s, )| <C
s€[0,7) s€[0,T]

(20)
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for some C > 0.
Applying the semigroup property, we get

) (t+6) = S(e)(9(0) + 8(0, 9)) — g(t +6,1u;49)
t+6—¢ t+0—¢
—5(8)/0 AS(t—|—9—e—s)g(s,us)ds+5(s)/0 S(t+6—s—e)f(sus) ds.

Since t +60 —¢ > 0, we have [|S(t + 6 —€)(¢(0) + g(0, ¢))|| < M| ¢(0) + g(0, ¢)||. As
the set S(t + 6 —¢)(¢(0) + g(0, ¢)) is uniformly bounded for + € [0,7), then the set
S(e)S(t+6—¢)(¢(0) + g(0,¢9)) is precompact in X.

Let us prove precompactness of the set {g(t + 0, 1;1¢9),t +6 € [, 7)} in X. From (20) and
compact embedding X, C X we derive that the set G(t1) = {g(t1, us19),t +6 € [u,7)} is
precompact in X for every t; € [0, T]. So, for every t; € [0, T] it has a finite e-net {z1,...,zp}
with p = p(e, t1).

Let us construct such a net for the set G = {g(s, u;1¢9),t +6 € [, 7),s € [0,T|}. Due to the
continuity with respect to t € [0, T| of the mapping g(t, ), uniformly over ¢ € U, we deduce
that for every ¢ > 0 there exist a finite set {f1(¢),...,t(¢)},r = r(¢), and § > 0 such that if
|t —t;| < 6, then ||g(t, ) — g(t;, ¢)|| < €. Since each set G(t;(¢)) is precompact, so it has a finite
e-net. Therefore, the union over t; of these e-nets will be 2e-net for the set G. Then the set G is
precompact in X and we can conclude that the set {g(t + 6, 1;.9),t +6 € [y, T)} is precompact
in X.

From (19) we get

for some positive constant Cj.
Then, since S(¢) is a compact operator, we conclude that the set

t+0—¢ t+0—¢
| stro—e=s)fls sl < [ S(t+0—c=s)If(s, )]l ds

t+0—s T
< M/ m(s)ds < / m(s)ds < Cq
0 0

{S(e) /()t+9_55(t+0—e—s)f(s,us)ds, t+0 € [pl,T)}

is precompact in X. In the same way, using (15) and (20), we show that the set

{S(s) /()t+9_SAS(t+9—e—s)g(s,us)ds, t+6 ¢ [y,T)}

is precomapct in X. So, for every € € (0, 1) the set R¢(0) is precompact in X, therefore, for
every 6 > 0 it has a finite 5-net. Let us denote it by {u(®)(t; +60),...,u)(t, +8)}, p = p(5).
From (18) and (19) we get

t+6
/f S(t+6 —s)f(s,us) ds

t+6
/ AS(t+60—s)g(s, us)ds
t +0—¢

+60—¢

|u(t+6) —u®(t+0)|| < ‘

a

Moreover,

t+6
< / Cialt+6—s)"ds sup [|g(s, us
t

t+6
/ AS(t+6 —s)g(s,us)ds
t +0—e s€[0,7)

+0—¢

:%e"‘Q%O as £¢—0
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uniformly over t 4- 6. Analogously,

t+0
/t S(t+6 —s)f(s,us)ds

t+0
</ m(s)ds -0 as e€—0 (21)
+0—¢ t

 Ji40—¢

uniformly over t 4 6. Finally,

sup ||u(t+0)—u(t+0)| -0 as e—0.
t+0€u,1)

Using the d-net for R¢(f), we can construct 3c-net {u(t; +6),...,u(t, + 6)} for Ry(6),
where we choose elements u(t; + 6) from R;(6) such that sup,¢ o ) [[u(t +6) —uc(t +0)[| <6
(it is possible due to (21)). Therefore, the finite J-net both for Ry (f) and R;(#) has been con-
structed. It means that R(6) is precomapct in X, and property 1) is proved.

Let us show equicontinuity of the family {u(t +0), 6 € [—h,0], t € [0,7)}. We need to
prove that for any € > 0 there exists 6 > 0 such that ||u(t +61) —u(t+62)| < € forallt € [0, 7)
and for all 61,6, € [—h,0] with |6; — 6| < é. Let us put 6, = 6; + r. For sufficiently small
1 € (0, 7) we consider three cases.

Case 1. t + 6, < p. In this case equicontinuity of u(t + 6) follows from the uniform conti-
nuity of u(t) on [—h, y].

Case 2. t + 01 < u,t + 6, > p. In this case we have

[t +02) —u(t+61) || < [Ju(t+62) —up)|| + [Ju(t+61) —u(p)]-

Choosing sufficiently small § we can guarantee that the points t + 6; and t + 6, belongs to
small left and right neighbourhoods of y such that

Jut+02) —u()ll < 5, Jlu(t+61) = u(p)l| <

N m

So, in this case the required equicontinuity follows from the continuity of u(t) at .
Case 3. t + 61 > p. In this case the semigroup S(t), t > 0, is compact. So, S(t) is continuous
in the uniform operator topology, and S(t) is uniformly continuous on [y, T|. Then we get
[u(t+61) —u(t+02)|| < [[S(t+61) = S(t+ 61 +7)|
< (L)l + 1180, @I + 1§ (¢t + 61, urro,) — 8(t+ 61+ 111110, )

t461
+/O IAGS(E+ 01 47— ) — S(E+ 01 — 5))g(s, us)|| ds
t+01+7

L A+ 8= 9)g(su)] ds )

t+01
+/0 [(S(t+61+7—5) = S(t+ 01— )l f(s,us)[| ds
t+01+r

+ [(S(t+ 61 +71—3s))[[lIf(s,us)| ds
t+6;

=hL+L+ L+ I+ Is.
Uniform continuity implies that I; — 0 as r — 0 uniformly over t + 0;. Let us estimate I,.
We get
18(t + 61, ury9,) — g(t+ 6147, s 6,4
< |\g(t 461, upr0,) — gt + 601+ 1,10 + |g(t+ 01 4+7, uprg) —g(E+ 0147, upp0, 1)
< Ml[usro, — usroirllc + [|g(t+ 01, urr9) — g(E+ 61 + 7, up14,)|]-
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The last summand in the above formula tends to zero as r — 0 uniformly over t,6; and u;¢,
due to condition 3) from (H3).
Let us estimate ||u;19, — ts19,+r||c. We have

[urro, — uero, o]l < sup [u(t +6146) —u(t+61+6+7). (23)
0e[—h,0]

Again, we consider three cases.

Case 1. t + 61 + 60 +r < 0. In this case, uniform convergence to zero of (23) as r — 0 follows
from the uniform continuity of ¢(t),t € [—h,0].

Case2. t+6,+6 <0,t+60; + 0 +r > 0. Then uniform convergence to zero of (23) asr — 0
follows from the uniform continuity of ¢(¢) and u(t) in a neighbourhood of zero point.

Case 3. t + 61 + 6 > 0. Then

sup [Ju(t+0y+0) —u(t+0y +0+7)| < sup [u(t) —u(t+7)]. (24)
0€[—h,0] telp,T]

Let us estimate I3 in (22). As the semigroup S(f) is analytic, then for every x € X we have
S(t)x € D(A) (see [14, Lemma 4.2]) and AS(#1)S(t)x = S(t1)AS(t)x fort; > 0,t, > 0, x € X.
Thus, we have

A(S(E+01+1—5) = S(t+61 —5))g(s,us) = A<S<t+9+_s+r) —s(t“?fl_s)»

(8t = (5 1) () (A o

Therefore,
13</t+91

0
</t+91

0

Making a change of variables (t + 61 —s)/2 = s and taking into account inequality (20),
we get

s(F5 ) =s(F s (5 st wotas

(2450 ~s(EE A4 o mp e

<2 [T 1S(s1 4 7) = SIS (1) s - C. (25)

The continuity of S(¢) in the uniform operator topology implies that the function under inte-
gral in (25) tends to zero as r — 0. Lemma 2 guarantees that the right-hand part of (25) is an
integrable function. So, applying the dominated convergence theorem, we get

/OHS(sl—i—r)—S(sl)HHAl”‘S(sl)|]dsl—>0, r— 0. (26)

Uniform over t + ; convergence of I4 to zero is a consequence of (20) and (15). To estimate I5,
we will use Holder’s inequality. We get
T
( / mP (s) ds)
0
1

< ([T1s+n=s@ias)"( [Tmweas)" =0 r=o

=
==

t461
I5§</ |\S(t+91+r—s)—S(t+91—s)|]‘7ds>
’ (27)

=
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Using uniform continuity of S(¢) and the Lebesgue dominated convergence theorem, we get

1 T »
I5§Mr‘7</ m”(s)ds)p —0, r—0. (28)
0

Combining (22)—(28) and using inequality M, < 1, we get

sup |lu(t+6;) —u(t+6,+r)]| -0, r— oo,
t+6,€p,7)

which means the uniform continuity over 6 of the family {u(t +6), 6 € [—h,0], t € [0,7)}.

Thus, the set P = {(t,u;) : t € [ty, T)} belongs to a compact set in D, which is a contradiction
with Lemma 4. Theorem 2 is proved. U

3 Applications

Functional-differential equations of parabolic type.
Let Q be a bounded domain in R? with sufficiently smooth boundary dD. We consider a
symmetric elliptic operator

d

d
A=A(x) = a;i(x)=——— = div(a(x), V),
( ) Z‘,]‘X_:l ]( )axiaxj ( ( ) )

where 4;; are Holder continuous functions with the Holder exponent g € (0,1), bounded, and

for some Cy we have
d

Y agnim; > Collyl?, 1 eR™ (29)
=1

We denote X = L2(Q) = H, D(A) = H*(Q) N H3(Q).
Consider the following initial boundary-value problem

% {u(t,X) + b(t, X, /Oh |u(t+0)] de)]

— div [a(x),qu(t,x) th <t,x,/0h u(t +0)| d@)],
u(t,x) = ¢@(t,x), telto—nhto, x€Q, u(t,x)=0, x€9Q, te€][0,T].

(30)

Here ¢(t,-) € C([0,T], L*(Q)), to € [0, T]. Real-valued functions b(t, x,y), f1(t, x,y) are given
fort €[0,T],x € Q,ye0,1],1>0.

Theset D C [0,T) x Cis theset {(t,¢):t € [0,T) ¢ € U}, where U consists of functions
¢ € C such that

[ lote,)l1d0 € 0.,

and oU consists of ¢ € C for which either fEh l@(6,-)]|d6 =1 or ¢(6,x) = 0 a.e. We assume
that the initial function ¢(t, x) in (29) also belongs to U. Then oD = ([0, T] x oU) U{T} x U.
It is well-known that A~! is a compact operator (see [3, Section 6.2]), eigenvalues Aj of
A are real numbers with 0 > Ay > Ay > ... (see [6, Section 1.4]), and the corresponding
semigroup S(t) is compact for ¢ > 0 and analytic [11] (A is a sectorial self-adjoint operator).
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In the sequel, as in [4], we introduce the interpolation space D4(1/2,2) = H}. According
to [2, A17], D4(1/2,2) is isomorphic to D((—A))!/2. It means that Xy, = H}.

Let us consider assumptions on b(t, x,y) and fi (¢, x,y). Assume that b(¢, x, y) is a continu-
ous function, and continuity on ¢ is uniform with respect to x and y. Assume that there exist
constants L > 0, Mg > 0 such that

[Vxb(t, x,y)| < L, [b(t,x,y1) = b(E, xy2)| + [Vib(t, %, 1) = Vab(E, %, y2)| < Mglyr — 12
forallt € [0,T], x € Q, y1,y2 € [0,1], and ZhLMz, meas(Q) < 1, here meas( - ) is a Lebesgue
measure in RY. Assume that fi(t,x,y) is measurable with respect to t and continuous

with respect to x € Q, y € [0,]], and there exists m(t) € LP(0,T), p > 1, such that
If1(t, x,y)|*> < m(t)(1+ |x|P + |y|P). After introducing the mappings

s =01 [ o] d0), @
£ = i (1% [ lpte, )l do), @)

problem (30) can be rewritten in the abstract form (1). Let us verify for (31) and (32) conditions
of Theorem 1. From the definition of the uniform metric in C we get continuity of f(¢, ¢)
with respect to ¢. Its measurability with respect to t is a consequence of t-measurability of f;.
Further,

w0 = [ (0w [ 0@l do) dx < [ m)(1+1x +h sup [lg(o,)|?) ax.

0e[—h,0]

So, assumption (H2) holds.

Let us verify assumtions on g(t, ¢). Its continuity with respect to ¢, uniformly over ¢, is a
consequence of continuity of b. Further,

I8t @)1 = lg(t @)lIF Z/Q\g(t, ¢)(X)!2dx+/Q\ng(t, @) (x)|* dx.

But

st o) Pax= [ 1 (tx, [ g6, a6l ) ax < oo
Q Q h

fort € [0,T], x € Q, ¢ € U, due to the continuity of b. So,

2
dx < L?meas(Q).

[ 19t pRax = [ |S.0(e [ loto, 1001 )
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Finally, we get

I8(t, 1) — fqu)lh/z
- / (30, 91)(x) — gt @) (P dx+ [ 1(Vasg(t,92)(x) = Taglt, ) () P

_/‘ (tx g1 (6, )Hd9>_b<t’x/ Lo, )”d9> 2

2
+/ ‘vx (b t,x,/_ lp(61, )1l de) — b(t,x,/_h (62, )| d@)) dx
2
<22 [ ([ (191061 = llgato, 1) )
2
<2 [ ([ (1on(6.) = gat6,)1) 0)
< 2hMgmeas(Q) sup [@1(6,) — 92(6, )|
fe[—h,0]
So, all assumptions of Theorems 1, 2 are fulfilled.
(B) Parabolic equation with maximum.
Consider the following initial boundary-value problem
d
%< u(t,x) + b<t X, max l|u(s )H)) = Au +f1(t,x,srgla}>t<) lu(s)|), (33)
u(t,x) = ¢(t, x), [—h,O], xe€Q, u(t,x)=0, x€9Q, te€][0,T].

Here I(t) = [B(t), a(t)], B(t), a(t) are continuous functions on [0, T] such that B(f) < a(t) <t
and miny[_p, o (B(f) —t) = —h.

Assumptions on A, b, f; are the same as in the previous example. Problem (33) can be
rewritten in the abstract form (1) if we put

g0 =b(tx,  max o lg@)]), fE0E =ik, max o lle©,)]),

The set U C C is the set of functions ¢ € C such that ||¢(6,-)| € (0,1), 6 € [—h,0], and
oU consists of functions from C such that ||¢(6,-)|| € (0,1) and either there exists a point
6 € [—h,0] such that ||¢(6,-)|| =1 or ¢(6,x) = 0 for almost all x € Q.

Using the inequality

sup l91(6, )l = sup l92(6, )| ‘ < sup [91(6,-) = ¢2(6, ),
we can verify all assumptions of Theorems 1, 2.
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OcHOBHMM 06’€KTOM AOCAIAXEHHS 1LIi€i po60oTH € HeCKiHUeHHOBUMIpPHI (PYHKITIOHaABHO-A(e-
PeHIliaAbHi piBHSIHHS HEMTPaABHOTO THITy B 6aHaXOBMX IIPOCTOpaXx. BcraHOBAEHO yMOBM icHyBaHHS
M'SIKOTO PO3B’sI3Ky ITOYATKOBOI 3aAadi Ta JIOTo MPOAOBXEHHS A0 MeXi obaacTi BusHaueHHs. Hasts-
HICTh 3alli3HeHHS B IOXiAHIV IIPM3BOAMTD AO IOSIBM CHMHTYASIPHMX AOAAHKiB. MeTOoAM AOCAiAXeH-
HSI TIOB'sI3aHi 3 TEXHIKOIO CMABHO HeTlepepBHMX HAIiBIPYII Ta APOOOBUX CTeleHiB omeparopa. Ao-
BeAeHHS iCHYBaHHsI 6a3yeThCsl Ha MIOAAHH] TI0YAaTKOBOI 3aAadi B abCTpaKTHIl ONepaTopHiit dpopmi
3 TIOAAABIIIMM 3aCTOCYBaHHSIM TeopeMy KpacHOCeABCBKOro IMpo HepyXoMy TOUKY. AAsl LIOTO BU-
XiAHMIA OIlepaToOp IOAAETLCS Y BULASIAL CyMH omepaTopa CTUCKAHHS Ta KOMIIAKTHOTO OIeparopa.
OTpumaHMit abCTPaKTHIMIA pe3yAbTAT 3aCTOCOBAHO A0 (PYHKITIOHAABHO-AVIdPepeHIIiaABHOTO PiBHSH-
HsI B YaCTMHHMX IOXiAHVMX THIY “peaKuis-anudpysist”.

Kontouosi cnoea i ¢ppasu: 3ami3HeHHsl, CMABHO HellepepBHa HaIliBrpyTia, KOMIIAKTHICTb, HepyXxoMa
TOUKa, APOOOBII CTETIHb OIlepaTopa.



