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Conjugation problem with initial-nonlocal conditions for
factorized higher order equations

Nytrebych Z.M.1, Savka I.Ya.2, , Shevchuk R.V.1, Symotiuk M.M.2

In this paper, we consider a problem in the cylindrical domain (−α, β)× (R/2πZ) separated

by the hyperplane {0} × (R/2πZ) into nonoverlapping cylindrical subdomains. In particular, this

problem can be interpreted as the problem of finding the solution of two factorized PDEs defined

in these subdomains respectively, which satisfies the conjugation conditions on the hyperplane as

well as the initial-nonlocal conditions on the bottom and top surfaces of the domain.

By the method of separation of variables, the solution can be represented formally as Fourier

series, but there is a question about the convergence of the given series in Sobolev spaces of periodic

functions with respect to the spatial variables. This convergence is related to the problem of small

denominators and may be unstable with respect to small variations of the coefficients of the problem

or the parameters of the domain.

We establish the estimates for the small denominators ensuring the convergence of the solutions,

from which we obtain the sufficient conditions for the solvability of the problem in Sobolev spaces.

The obtained results show that the solvability of the problem depends on the coefficients of the

differential equations.
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Introduction

The mixed type partial differential equations have applications in many fields of science,

for example in fluid mechanics [18], gas dynamics [8], electromagnetism [1], and transmission

problems [12, 16]. In addition, in the mathematical modeling of practical problems, conju-

gation conditions and boundary conditions are used together to specify the solutions of the

differential equations [4, 6, 9].

In the past years, the conjugation problems for equations of different types with various

boundary conditions have been studied by many authors. In particular, some boundary condi-

tions can be described as nonlocal when the data on the domain boundary cannot be measured

directly, or when the data on the boundary depends on the data inside the domain. The well-

posedness of various conjugation problems for such equations with nonlocal conditions has

been also studied in many publications (see [2, 3, 13, 15] and references therein). However, the

well-posedness of the problem for higher order equations is not well investigated. Generally
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speaking, in the case of a bounded domain, the problems with nonlocal conditions are ill-

posed in the sense of Hadamard and are related to the problem of small denominators [11,17].

In this paper, we study the solvability of the conjugation problem for two nonclassical PDEs

with the initial-nonlocal in a time variable t and periodic in a spatial variable x conditions. The

investigated higher order hyperbolic equations are considered in two different domains and

admit a factorization into first-order equations. In the paper [21], the problem with multipoint

conditions in the case of multiple nodes is studied by the method of separation of variables

with the use of the metric approach. The solution of the conjugation problem was constructed

in each subdomain, and its uniqueness and existence were studied.

This paper is organized as follows. In Section 1, we formulate the problem under consider-

ation and the definition of its solution. In Section 2, we formulate the conditions of uniqueness

for the conjugation problem formulated in Section 1 and construct its formal solution. Section 3

deals with the proof of the existence of the solution in Sobolev spaces. The metric approach is

used in Section 4 for estimating small denominators occurring while constructing the solution.

Finally, based on the obtained results, we establish sufficient conditions for the existence of a

unique solution of the problem.

1 Problem statement

Let Ω = R/2πZ be a unit circle and let D = (−α, β) × Ω be a cylindrical domain of

the variables (t, x), that is separated by the hyperplane {t = 0} × Ω into nonoverlapping

cylindrical subdomains D− = (−α, 0)× Ω and D+ = (0, β) × Ω, where α and β are positive

real numbers. The problem is to find a pair of functions u1 = u(t, x) and u2 = u2(t, x), defined

in subdomains D− and D+, respectively, which satisfy the following differential equations




L1u ≡
n

∏
j=1

( ∂

∂t
− λj

∂

∂x

)
u1 = 0, (t, x) ∈ D−, n ∈ N,

L2u ≡
m

∏
j=1

( ∂

∂t
− µj

∂

∂x

)
u2 = 0, (t, x) ∈ D+, m ∈ N,

(1)

with conjugation conditions on the hyperplane t = 0

lim
t→0−

∂j−1u1

∂tj−1
= lim

t→0+

∂j−1u2

∂tj−1
, j = 1, . . . , m, x ∈ Ω, (2)

nonlocal conditions

∂j−1u1

∂tj−1

∣∣∣
t=−α

− νj
∂j−1u2

∂tj−1

∣∣∣
t=β

= ϕj(x), j = 1, . . . , m, x ∈ Ω, (3)

and initial conditions

∂m+j−1u1

∂tm+j−1

∣∣∣
t=−α

= ϕm+j(x), j = 1, . . . , n − m, x ∈ Ω, (4)

where 1 ≤ m ≤ n, λ1, . . . , λn, µ1, . . . , µm ∈ R\{0}, ν1, . . . , νm ∈ C\{0}, ϕ1(x), . . . , ϕn(x) are

given functions. Moreover, we suppose that numbers λ1, . . . , λn as well as µ1, . . . , µm are pair-

wise different, respectively.

Below, we use the following functional spaces.

Hq = Hq(Ω), q ∈ R, is the Sobolev space of all trigonometric series ϕ(x) = ∑k∈Z ϕkeikx,

where ϕk ∈ C, with the finite norm ‖ϕ; Hq‖ =
√

∑k∈Z(1 + |k|)2q |ϕk|2.
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Cn([a, b]; Hq), n ∈ Z+, q ∈ R, is the space of all series of the form u(t, x) = ∑k∈Z uk(t)e
ikx,

where uk ∈ Cn[a, b] and, for any fixed point t ∈ [a, b], functions ∂ju(t,x)
∂tj ≡ ∑k∈Z u

(j)
k (t)eikx

belong to the space Hq−j for j = 0, 1, . . . , n, respectively, and, as the elements of this space, are

continuous in t on [a, b]; the norm in Cn([a, b]; Hq) is defined by

‖u; Cn([a, b]; Hq)‖ =
n

∑
j=0

max
t∈[a,b]

‖∂ju(t, ·)/∂tj ; Hq−j‖.

Note that C([a, b]; Hq) := C0([a, b]; Hq).

Definition 1. Let ϕj ∈ Hq−j+1, where j = 1, . . . , n, q is a fixed arbitrary real number. A pair of

functions (u1, u2) with the property (u1, u2) ∈ Cn([−α, 0]; Hq)× Cm([0, β]; Hq), satisfying the

conditions

‖L1u1; C([−α, 0]; Hq−n)‖ = 0, ‖L2u2; C([0, β]; Hq−m)‖ = 0, (5)

lim
ε→0+

∥∥∥∂j−1u1(−ε, ·)
∂tj−1

− ∂j−1u2(ε, ·)
∂tj−1

; Hq−j+1

∥∥∥ = 0, j = 1, . . . , m, (6)

∥∥∥∂j−1u1(t, ·)
∂tj−1

∣∣∣
t=−α

− νj
∂j−1u2(t, ·)

∂tj−1

∣∣∣
t=β

− ϕj; Hq−j+1

∥∥∥ = 0, j = 1, . . . , m, (7)

∥∥∥∂m+j−1u1(t, ·)
∂tm+j−1

∣∣∣
t=−α

− ϕm+j; Hq−m−j+1

∥∥∥ = 0, j = 1, . . . , n − m, (8)

is called the solution of the problem (1)–(4).

2 Uniqueness of the solution

We look for a solution (u1, u2) of the problem (1)–(4) in the form of a Fourier series

u1(t, x) = ∑
k∈Z

u1,k(t)e
ikx, t ∈ [−α, 0], u2(t, x) = ∑

k∈Z

u2,k(t)e
ikx, t ∈ [0, β]. (9)

From the conditions (5)–(8) it follows that for each vector k ∈ Z functions u1,k(t) and u2,k(t)

are solutions of the problem for ordinary differential equations




n

∏
j=1

( d

dt
− iλjk

)
u1,k(t) = 0, t ∈ (−α, 0),

m

∏
j=1

( d

dt
− iµjk

)
u2,k(t) = 0, t ∈ (0, β),

(10)

lim
t→0−

dj−1u1,k(t)

dtj−1
= lim

t→0+

dj−1u2,k(t)

dtj−1
, j = 1, . . . , m, (11)

dj−1u1,k(t)

dtj−1

∣∣∣
t=−α

− νj
dj−1u2,k(t)

dtj−1

∣∣∣
t=β

= ϕjk, j = 1, . . . , m, (12)

dm+j−1u1,k(t)

dtm+j−1

∣∣∣
t=−α

= ϕm+j,k, j = 1, . . . , n − m, (13)

where ϕjk are Fourier coefficients of the function ϕj, j = 1, . . . , n.

For each fixed k ∈ Z, we construct a solution of problem (10)–(13). There are two cases to

consider: k = 0 and k 6= 0.
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When k = 0, the solutions of the equation (10) are polynomials with unknown coefficients

As and Bs, namely u1,0(t) = ∑
n
s=1 Astn−s, t ∈ (−α, 0), u2,0(t) = ∑

m
s=1 Bstm−s, t ∈ (0, β). Then it

follows from (11) that Bs = An−m+s for s = 1, . . . , m, and u2,0(t) = ∑
n
s=n−m+1 Astn−s.

Using the conditions (12) and (13), the coefficients A1, . . . , An are solutions of the following

system of linear equations




n−m

∑
s=1

Aj−1
n−s(−α)n−s−j+1As +

n

∑
s=n−m+1

Aj−1
n−s((−α)n−s−j+1 − νjβ

n−s−j+1)As = ϕj,0,

j = 1, . . . , m,
n

∑
s=1

Am+j−1
n−s (−α)n−s−m−j+1As = ϕm+j,0, j = 1, . . . , n − m,

(14)

where

Aj−1
n−s =





(n − s)!

(n − s − j + 1)!
, n − s ≥ j − 1,

0, n − s < j − 1.

The determinant ∆0 of the system (14) has block structure and can be calculated as

∆0 = det
[ A B

C

]
= (−1)n

n−1

∏
j=1

j!
m

∏
j=1

(1 − νj),

where A is the rectangular m × (n − m) matrix, B is the square matrix of order m, C is the

rectangular (n − m)× n matrix, namely

A = [Aj−1
n−s(−α)n−s−j+1]m,n−m

j,s=1 , B = [Aj−1
m−s((−α)m−s−j+1 − νjβ

m−s−j+1)]m,m
j,s=1,

C = [Am+j−1
n−s (−α)n−s−m−j+1]n−m,n

j,s=1 .

If we have ∆0 6= 0, then for k = 0, the solutions of the problem (10)–(13) can be uniquely

determined by the formulas

u1,0(t) =
1

∆0

n

∑
i=1

n

∑
j=1

∆
ij
0 tn−jϕi,0, t ∈ (−α, 0),

u2,0(t) =
1

∆0

n

∑
i=1

m

∑
j=1

∆
i,n−m+j
0 tm−jϕi,0, t ∈ (0, β),

where ∆
ij
0 is the cofactor of (i, j)-element of the determinant ∆0.

For the case k 6= 0 solutions of the equations (10) are quasi-polynomials of the form

u1,k(t) =
n

∑
s=1

Askeiλskt, t ∈ (−α, 0), u2,k(t) = −
m

∑
s=1

Bskeiµskt, t ∈ (0, β). (15)

Substituting the obtained solutions (15) in conditions (11)–(13), we find that the coefficients

Ask, Bsk satisfy the system of linear n + m equations





n

∑
s=1

(iλs)
j−1Ask +

m

∑
s=1

(iµs)
j−1Bsk = 0, j = 1, . . . , m,

n

∑
s=1

(iλs)
j−1e−iλskα Ask + νj

m

∑
s=1

(iµs)
j−1eiµskβBsk = k1−j ϕjk, j = 1, . . . , m,

n

∑
s=1

(iλs)
m+j−1e−iλskα Ask = k1−m−j ϕm+j,k, j = 1, . . . , n − m.

(16)
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The (n + m)× (n + m) matrix Mk of the system (16) is given as follows

Mk =




1 . . . 1 1 . . . 1

(iλ1) . . . (iλn) (iµ1) . . . (iµm)

(iλ1)
2 . . . (iλn)2 (iµ1)

2 . . . (iµm)2

...
. . .

...
...

. . .
...

(iλ1)
m−1 . . . (iλn)m−1 (iµ1)

m−1 . . . (iµm)m−1

e−ikλ1α . . . e−ikλnα ν1eikµ1β . . . ν1eikµmβ

(iλ1)e
−ikλ1α . . . (iλn)e−ikλnα ν2(iµ1)e

ikµ1β . . . ν2(iµm)eikµmβ

(iλ1)
2e−ikλ1α . . . (iλn)2e−ikλnα ν3(iµ1)

2eikµ1β . . . ν3(iµm)2eikµmβ

...
. . .

...
...

. . .
...

(iλ1)
m−1e−ikλ1α . . . (iλn)m−1e−ikλnα νm(iµ1)

m−1eikµ1β . . . νm(iµm)m−1eikµmβ

(iλ1)
me−ikλ1α . . . (iλn)me−ikλnα 0 . . . 0

...
. . .

...
...

. . .
...

(iλ1)
n−1e−ikλ1α . . . (iλn)n−1e−ikλnα 0 . . . 0




.

Alternatively, it can be represented as a block matrix of the form

Mk =




Wλ Wµ

Eα
k

E
β
k

O


 ,

where O is the rectangular zero (n−m)×m matrix, Wλ = [(iλs)j−1]m,n
j,s=1, Wµ = [(iµs)j−1]mj,s=1,

Eα
k = [(iλs)j−1e−ikλsα]n,n

j,s=1, E
β
k = [νj(iµs)j−1eikµsβ]mj,s=1.

If ∆k := det Mk 6= 0, then by Cramer’s rule, we have

Ask =
1

∆k

n

∑
j=1

∆
j+m,s
k

ϕjk

kj−1
, s = 1, . . . , n, (17)

Bsk =
1

∆k

n

∑
j=1

∆
j+m,s+n
k

ϕjk

kj−1
, s = 1, . . . , m, (18)

where ∆is
k denotes the cofactor of (i, s)-element of the determinant ∆k obtained from ∆k delet-

ing its the ith row and the sth column and multiplying by (−1)i+s.

Substituting the coefficients (17)–(18) into formulas (15), we get the following solutions to

the problem (10)–(13) for k 6= 0:

u1,k(t) =
1

∆k

n

∑
s=1

n

∑
j=1

∆
j+m,s
k

ϕjk

kj−1
eikλst, u2,k(t) = − 1

∆k

m

∑
s=1

n

∑
j=1

∆
j+m,s+n
k

ϕjk

kj−1
eikµst. (19)

Theorem 1. The problem (1)–(4) cannot have two distinct solutions if and only if

∆k 6= 0 ∀ k ∈ Z. (20)

The proof follows from the uniqueness of the Fourier expansion for periodic functions

based on the orthogonal system {eikx}k∈Z. Thus, if the condition (20) is fulfilled, we have
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formal solution of the problem

u1(t, x) =
1

∆0

n

∑
s=1

n

∑
j=1

∆
sj
0 tn−jϕs,0 + ∑

k∈Z\{0}

n

∑
s=1

n

∑
j=1

∆
j+m,s
k ϕjk

kj−1∆k
eik(λst+x), t ≤ 0,

u2(t, x) =
1

∆0

n

∑
s=1

m

∑
j=1

∆
s,n−m+j
0 tm−jϕs,0 − ∑

k∈Z\{0}

m

∑
s=1

n

∑
j=1

∆
j+m,s+n
k ϕjk

kj−1∆k
eik(µst+x), t ≥ 0.

(21)

3 The conditions of existence of the solution

In what follows, we assume that condition (20) is satisfied. Then there exists a unique

solution of the problem (1)–(4), which admits a formal representation (21).

The existence of the solution u = (u1, u2) ∈ Cn([−α, 0]; Hq)× Cm([0, β]; Hq) of the problem

(1)–(4) is related to the so-called problem of small denominator [11], because the terms of the

sequence {∆k}k∈Z in the denominator of the formula (21), being different from zero by the

condition (20), can arbitrarily rapidly tend to zero if |k| → +∞. This can lead to a divergence

of series (21) in the spaces Cn([−α, 0]; Hq) and Cm([0, β]; Hq) respectively, therefore we get un-

solvable problem. The following example demonstrates this and shows that the solvability of

the problem depends on the Diophantine approximation of real numbers by rational numbers.

Example 1. Consider the problem (1)–(4) in the special case with n = 2 and m = 1:
( ∂

∂t
− ∂

∂x

)( ∂

∂t
+

∂

∂x

)
u1 = 0, (t, x) ∈ (−2π, 0)× Ω,

( ∂

∂t
− λ

∂

∂x

)
u2 = 0, (t, x) ∈ (0, π)× Ω, λ > 0,

(22)

u1|t=0− = u2|t=0+ , x ∈ Ω,

u1|t=−2π + u2|t=π = ∑
k∈Z\{0}

|k|−̺eikx, x ∈ Ω, ̺ > 0,

∂u1

∂t

∣∣∣
t=−2π

= 0, x ∈ Ω.

(23)

The formal solutions to the problem (22)–(23) are




u1(t, x) = ∑
k∈Z\{0}

|k|−̺ cos(kt)

1 + eiπkλ
eikx, (t, x) ∈ [−2π, 0]× Ω;

u2(t, x) = ∑
k∈Z\{0}

|k|−̺eikλt

1 + eiπkλ
eikx, (t, x) ∈ (0, π)× Ω.

From the equality for the denominator

|1 + eiπkλ| = 2
∣∣∣ sin

(πkλ

2
+

π

2

)∣∣∣ = 2
∣∣∣ sin

(πkλ

2
+

π

2
− πm

)∣∣∣, k ∈ Z\{0}, m ∈ Z,

and the inequality

2|k|
∣∣∣λ − 2m0 − 1

k

∣∣∣ ≤ 2
∣∣∣ sin

(πkλ

2
+

π

2

) ∣∣∣ ≤ π|k|
∣∣∣λ − 2m − 1

k

∣∣∣, k ∈ Z\{0}, m ∈ Z,

the two-sided estimate can be derived for the problem’s solution

C̃1

√√√√√ ∑
k∈Z\{0}

(1 + |k|)2(q−̺−1)

∣∣∣λ − 2m − 1

k

∣∣∣
2

≤ ‖u2; C1([0, π]; Hq)‖ ≤ C̃2

√√√√√ ∑
k∈Z\{0}

(1 + |k|)2(q−̺−1)

∣∣∣λ − 2m0 − 1

k

∣∣∣
2

, (24)
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where m ∈ Z, C̃1 > 0, C̃2 > 0 and integer m0 = m0(λ, k) such that

∣∣∣kλ

2
+

1

2
− πm0

∣∣∣ ≤ 1

2
.

The Thue-Siegel-Roth’s theorem [19] states that for any algebraic number λ and any

ǫ > 0, there exists a constant c = c(λ, ǫ) > 0 such that |λ − m/n| > c/n2+ǫ for all irreducible

rationals m/n. In this case, the series on the right hand side of the inequality (24) converges,

when ̺ = q + 3/2 + ǫ, and therefore u2 ∈ C1([0, π]; Hq) for any algebraic number λ.

Similar results in the metric theory of Diophantine approximation provide statements that

are valid for almost all numbers in the sense of the Lebesgue measure, i.e. for all numbers

outside a set of Lebesgue measure 0. Let A be defined as

A(ψ) =
{

λ ∈ [0, 1] :
∣∣∣λ − m

n

∣∣∣ < ψ(n)

n
for infinitely many pair (m, n) ∈ Z × N

}
,

where ψ : (0,+∞) → (0, 1). From the convergence case of Khinchin’s theorem on metric

Diophantine approximation [14], we get measRA(ψ) = 0, if ∑
+∞
n=1 ψ(n) < ∞.

In particular, if ψ(n) := n−(1+ǫ) and ̺ = q + 3/2 + ǫ for some positive ǫ > 0, then al-

most all λ ∈ [0, 1] are not very well ψ-approximable and the series on the right hand side of

the inequality (24) also converges for almost all (with respect to the Lebesgue measure in R)

numbers λ ∈ [0, 1].

However, there are irrational numbers that can be approximated arbitrarily well by a par-

ticular sequence of finite continued fractions (convergents). According to the Khinchin’s the-

orem (see [14, Theorem 22] or [20, Theorem 2.13]), for any function ψ(n) : N → R+ there

exist irrational number λ ∈ R, such that for infinitely many values n ∈ N the inequal-

ity |λ − m/n| < ψ(n)/n holds. It follows that there exists an irrational number λ = λ0

(ψ-approximable number by rationals) such that the inequality

∣∣∣λ0 −
2m − 1

k

∣∣∣ < ψ(k)

k
, ψ(k) :=

2−k

k
, (25)

has infinitely many solutions in integers m and k > 0.

For example, this number λ0 ∈ A(ψ) can be expressed uniquely as an infinite continued

fraction (see [20, Theorem 2.8]) λ0 = [0; a1, a2, . . . , an+1, . . .] with convergents pn/qn and re-

cursive transformation an+1 = 2qn + 2, qn = anqn−1 + qn−2, q0 = 1, q−1 = 0. All convergents

converge with rate k−22−k. The fast approximation (25) is associated with the growth of the

coefficients an, n ∈ N. In this case, the C1([0, π]; Hq)-norm of the solution u2 of the problem

(22)–(23) with λ = λ0 is not finite for all possible values of q and ̺ because the series on the

left hand side of the inequality (24) diverges. As you can see, the solvability of the problem

(22)–(23) depends on the Diophantine approximation of real number λ by rational numbers.

Therefore, to obtain the correct solvability of the given problem with the relevant restric-

tions on the functions ϕ1, . . . , ϕn, it is important to establish lower bounds for modules of the

quantities ∆k with respect to k ∈ Z. This is one of the objectives of this paper. Note that the

estimates of the small denominators ∆k, which have a nonlinear structure, have not yet been

considered in the scientific literature.
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Theorem 2. Let the condition (20) holds. Assume also that there exits some constants c0 > 0

and η ∈ R such that for all vectors k ∈ Z the following inequality

|∆k| ≥ c0(1 + |k|)−η (26)

is satisfied. If ϕj ∈ Hq+η+1−j, j = 1, . . . , n, then the problem (1)–(4) has a unique solution in

the space Cn([−α, 0]; Hq)× Cm([0, β]; Hq).

Proof. First, we need to estimate the coefficients u1,k(t) and u2,k(t) for every k ∈ Z. For this end,

let us start with the upper estimates of the determinants ∆
j+m,s
k , j = 1, . . . , n, s = 1, . . . , n + m,

in the formulas (21).

From Hadamard’s inequality for determinants we obtain that there exists some constant

c4 > 0 independent of the vector k and indices j and s such that for all determinants we have

|∆j+m,s
k | ≤ c4 = cn+m−1

3 (n + m − 1)(n+m−1)/2, s = 1, . . . , n + m, (27)

where c3 := max{c1, c2}, c1 := maxj,s∈{1,...,n}{|λs |j−1}, c2 := maxj,s∈{1,...,m}{|µs |j−1, |νjµs|j−1}.

Using the estimates (27) for the upper bound and the apriori condition (26), from formula (19)

and inequality |k| > (1 + |k|)/2, for k 6= 0 we get

|u(ℓ)
1,k (t)| ≤

1

|∆k|
n

∑
s=1

n

∑
j=1

|λsk|ℓ|∆j+m,s
k ||ϕjk|

|k|j−1
≤ nc4c5

c0

n

∑
j=1

2j−1(1 + |k|)ℓ+η+1−j|ϕjk|,

ℓ = 0, 1, . . . , n, t < 0,

|u(ℓ)
2,k (t)| ≤

1

|∆k|
m

∑
s=1

n

∑
j=1

|µsk|ℓ|∆j+m,s+n
k ||ϕjk|
|k|j−1

≤ mc4c6

c0

n

∑
j=1

2j−1(1 + |k|)ℓ+η+1−j|ϕjk|,

ℓ = 0, 1, . . . , m, t > 0,

where c5 := max
s∈{1,...,n},
ℓ∈{0,...,n}

{|λs|ℓ} > 0, c6 := max
s∈{1,...,m},
ℓ∈{0,...,m}

{|µs |ℓ} > 0.

It is easy to see that there exists constant c7 > 0 such that for k = 0 we have

|u(ℓ)
s,0 (t)| ≤ c7

n

∑
j=1

|ϕj,0|, s = 1, 2.

Then

‖u1; Cn([−α, 0]; Hq)‖ =
n

∑
ℓ=0

max
t∈[−α,0]

‖∂ℓu1/∂tℓ; Hq−ℓ‖ =
n

∑
ℓ=0

max
t∈[−α,0]

√
∑

k∈Z

(1 + |k|)2(q−ℓ)|u(ℓ)
1,k (t)|2

≤ (n + 1)max{n2nc4c5/c0, c7}
√√√√n

n

∑
j=1

∑
k∈Z

(1 + |k|)2(q+η+1−j)|ϕjk|2

≤ (n + 1)max{n2nc4c5/c0, c7}
√√√√n

n

∑
j=1

‖ϕj; Hq+η+1−j‖2

≤ c8

n

∑
j=1

‖ϕj; Hq+η+1−j‖, c8 := (n + 1)
√

n max{n2nc4c5/c0, c7};
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‖u2; Cm([0, β]; Hq)‖ =
m

∑
ℓ=0

max
t∈[0,β]

√
∑

k∈Z

(1 + |k|)2(q−ℓ)|u(ℓ)
2,k (t)|2

≤ (m + 1)
√

n max{m2nc4c6/c0, c7}
√√√√

n

∑
j=1

∑
k∈Z

(1 + |k|)2(q+η+1−j)|ϕjk|2

≤ c9

n

∑
j=1

‖ϕj; Hq+η+1−j‖, c9 := (m + 1)
√

n max{m2nc4c6/c0, c7}.

The proof of the theorem is complete.

4 The metric estimates of the small denominators

Now we study the conditions of validity of the inequalities (26). For this, we use Borel-

Cantelli lemma and the auxiliary assertion on the upper bound for the Lebesgue measures of

the exceptional set E( f , ε, [a, b]) of a smooth function defined as

E( f , ε, [a, b]) = {t ∈ [a, b] : | f (t)| < ε}.

Let {Ak}k∈N be a countable family of measurable subsets R
m and let measAk := measRm Ak

denotes the Lebesgue measure of a set Ak. The limit superior of {Ak}k∈N is the set

A =: lim sup
k→∞

Ak = {a : a ∈ Ak for infinitely many k} =
∞⋂

n=1

∞⋃

k=n

Ak.

Lemma 1 (Convergence Borel-Cantelli lemma [7, 10]). Let {Ak}k∈N be a sequence such that

∑
∞
k=1 measAk < ∞. Then the set of all elements that belong to infinitely many sets Ak has zero

Lebesgue measure in R
m, i.e. measA = 0.

Let R(λ) be a polynomial in the real variable λ of degree n of the form

R(λ) ≡ λn +
n

∑
j=1

ajλ
n−j, a1, . . . , an ∈ C, (28)

and let Q(t) be a quasi-polynomial of the form

Q(t) ≡
m

∑
j=1

ezjt pj(t), zj 6= zq, j 6= q, (29)

where z1, . . . , zm ∈ C and p1(t), . . . , pm(t) are polynomials of degrees n1 − 1, . . . , nm − 1, re-

spectively. Here n1, . . . , nm ∈ N. For R(t) and Q(t), we denote

AR = 1 + max
0≤j≤n−1

∣∣∣R(j)(0)

j!

∣∣∣
1/(n−j)

, MQ = 1 + max
1≤j≤m

|zj |, n0 ≡ n1 + . . . + nm.

Lemma 2 ([5]). Let R(λ) and Q(t) be the polynomial and the quasi-polynomial defined by

equalities (28) and (29), respectively. If there exists some constant δ ∈ R such that the condi-

tion ∀t ∈ [a, b] |R(d/dt)Q(t)| ≥ δ > 0 is fulfilled, then for any ε ∈ (0, δ
(2n+2)An

R
] the estimate

meas RE(Q, ε, [a, b]) ≤ C1 MQ(ε/δ)1/n holds, where C1 = C1(n, n0, b − a) > 0.

Let Πm = {~µ ≡ (µ1, . . . , µm) ∈ R
m : µ1 < . . . < µm}, W(a1, . . . , an) := det[a

j−1
i ]ni,j=1 deno-

tes the Vandermonde determinant constructed by the values of a1, . . . , an.
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Theorem 3. If η > 2m2 − m and C0 = |W(λ1, . . . , λn)| > 0, then for almost all (with respect

to Lebesgue measure in Rm) vectors ~µ ∈ Πm the inequality |∆k| ≥ C0|k|−η holds for all (except

for finitely many numbers) k ∈ Z.

Proof. Let Pm = ∏
m
j=1[aj, bj] be an arbitrary fixed parallelepiped such that Pm ⊂ Πm. In the

proof, we will assume that the determinant ∆k is a function of the variable ~µ, ∆k(~µ) := ∆k. For

each k 6= 0, we introduce the following sets Eη(k) = {~µ ∈ Pm : |∆k(~µ)| < C0|k|−η}. Let Eη be

the set of those vectors that belong to infinitely many sets Eη(k), k ∈ Z, namely

Eη = lim sup
|k|→+∞

Eη(k) =
+∞⋂

K=0

⋃

|k|≥K

Eη(k).

To prove the theorem, it suffices to show that meas Rm Eη =0 for any Pm ⊂ Πm. For this end, we

use the Borel-Cantelli lemma and establish the convergence of the series ∑k∈Z meas Rm Eη(k).

In particular, for its convergence, let us prove the estimate mes Rm Eη(k) ≤ C2|k|−1−ε for all

(except for, perhaps, finitely many numbers) k ∈ Z\{0}, where ε and C2 are some positive

constants independent of k.

Let us permute blocks in the matrix Mk so that

M̃k =


 Eα

k
E

β
k

O

Wλ Wµ


 ,

namely

M̃k =




e−ikλ1α . . . e−ikλnα ν1eikµ1β . . . ν1eikµmβ

(iλ1)e
−ikλ1α . . . (iλn)e−ikλnα ν2(iµ1)e

ikµ1β . . . ν2(iµm)eikµmβ

(iλ1)
2e−ikλ1α . . . (iλn)2e−ikλnα ν3(iµ1)

2eikµ1β . . . ν3(iµm)2eikµmβ

...
. . .

...
...

. . .
...

(iλ1)
m−1e−ikλ1α . . . (iλn)m−1e−ikλnα νm(iµ1)

m−1eikµ1β . . . νm(iµm)m−1eikµmβ

(iλ1)
me−ikλ1α . . . (iλn)me−ikλnα 0 . . . 0

...
. . .

...
...

. . .
...

(iλ1)
n−1e−ikλ1α . . . (iλn)n−1e−ikλnα 0 . . . 0

1 . . . 1 1 . . . 1

(iλ1) . . . (iλn) (iµ1) . . . (iµm)

(iλ1)
2 . . . (iλn)2 (iµ1)

2 . . . (iµm)2

...
. . .

...
...

. . .
...

(iλ1)
m−1 . . . (iλn)m−1 (iµ1)

m−1 . . . (iµm)m−1




.

It is obvious that ∆k(~µ) = (−1)(m+n−1)m det M̃k.

We denote by ∆jk the determinant obtained from det M̃k by crossing out last (n + m − j)

rows and last (n + m − j) columns, where j = n, . . . , n + m. Moreover, ∆jk = ∆jk(µ1, . . . , µj−n),

j = n, . . . , n + m, ∆nk ≡ det[Eα
k ] = W(iλ1 , . . . , iλn)e−iα(λ1+...+λn)k, |∆nk| = |W(λ1 , . . . , λn)|,

∆n+m,k = det M̃k.

For every k ∈ Z\{0}, consider the sets:

Fη(k) = {~µ ∈ Pm : |∆n+m,k(~µ)| < νn+m(k,~λ)},

Fη(j, k) = {~µ ∈ Pm : |∆jk(µ1, . . . , µj−n)| < νj(k,~λ),

|∆j−1,k(µ1, . . . , µj−n+1)| ≥ νj−1(k,~λ)}, j = n + 1, n + m,
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where νj(k,~λ),~λ = (λ1, . . . , λn), are defined as follows:

νn(k,~λ) = |∆nk| = |W(λ1 , . . . , λn)| 6= 0, νj(k,~λ) = νn(k,~λ)ξ j(k), j > n,

ξ j(k) =
ξ j−1(k)

|k|2(j−n−1+m)−m+ε j
, j > n, ξn(k) = 1,

ε j = ε0/2n+m−j+1(1 − 2−m), j = n + 1, . . . , n + m, the number ε0 > 0 is arbitrarily small.

Note that

Fη(k) ⊂
n+m⋃

j=n+1

Fη(j, k) ∀ k ∈ Z\{0}.

Indeed, let ~µ ∈ Fη(k). If ~µ 6∈ Fη(j, k) for all j ∈ {n + 1, . . . , n + m}, then one can obtain

the contradictory inequality νn(k,~µ) ≡ |∆nk| < νn(k,~µ), which contradicts the definition of

Fη(j, k), n + 1 ≤ j ≤ n + m. Therefore, ~µ ∈ Fη(j0, k) for some number j0 ∈ {n + 1, . . . , n + m},

and the required inclusion is true.

Thus,

measRm Fη(k) ≤
n+m

∑
j=n+1

measRm Fη(j, k). (30)

By Fubini’s theorem, for each of the sets Fη(j, k), n + 1 ≤ j ≤ n + m, we have

measRm Fη(j, k) =
∫

P j−n

measRFη(j, k,~µj−n)d~µj−n, (31)

where

Ps =
m

∏
q=1,q 6=s

[aq, bq], ~µs = (µ1, . . . , µs−1, µs+1, . . . , µm), s ∈ {1, . . . , m},

Fη(j, k,~µj−n) = {µj−n ∈ [aj−n, bj−n] : ~µ ∈ Fη(j, k)}, j = n + 1, . . . , n + m.

For upper estimates of the Lebesgue measures of sets Fη(j, k,~µj−n), we use Lemma 2. For

this end, we introduce the polynomials Rj(ξ, k) = ξ j−n−1(ξ − ikβ)m with n + 1 ≤ j ≤ n + m.

If we apply the differential operator Rj(
∂

∂µj−n
, k) to the expansion of the determinant

∆j(k, µ1, . . . , µj−n), j = n + 1, n + m, along the last column, then as a result, we get

Rj

( ∂

∂µj−n
, k
)

∆jk(µ1, . . . , µj−n) = (j − n − 1)!ij−n−1(−ikβ)m∆j−1,k(µ1, . . . , µj−n−1). (32)

If ~µ ∈ Fη(j, k), then from the formulas (32) and the definition of the set Fη(j, k), it follows

that ∣∣∣Rj

( ∂

∂µj−n
, k
)

∆jk(µ1, . . . , µj−n)
∣∣∣ ≥ βm|k|mνj−1(k,~λ), n + 1 ≤ j ≤ n + m. (33)

For fixed µ1, . . . , µj−n−1 the determinant ∆jk(µ1, . . . , µn−j) as a function of the variable µj−n

is a quasi-polynomial with M∆jk
= 1 + β|k|, where j = n + 1, . . . , n + m.

The degree of the polynomial Rj(ξ, k) in the variable ξ is equal to j − n − 1 + m,

deg Rj = j − n − 1 + m, and the value ARj
is calculated according to the formula

ARj
= 1 + max

0≤q≤deg Rj

∣∣∣
R
(q)
j (0,k)

q!

∣∣∣
1

deg Rj−q
, R

(q)
j (0, k) =

dqRj(ξ, k)

dξq

∣∣∣
ξ=0

.

Since

R
(q)
j

(
0, k

)
=

q

∑
ℓ=0

Cℓ
q[ξ

j−n−1](ℓ)[(ξ − ikβ)m ](q−ℓ)
∣∣∣
ξ=0

=
C

j−n−1
q (j − n − 1)!m!

(m + j − n − 1 − q)!
(−ikβ)deg Rj−q,



658 Nytrebych Z.M., Savka I.Ya., Shevchuk R.V., Symotiuk M.M.

we get ARj
≤ C3|k|, n + 1 ≤ j ≤ n + m, where C3 is some positive constant independent of

j and k. Based on the the estimates (33) and Lemma 2, we have the following inequalities for

j = n + 1, . . . , n + m and all |k| large enough:

measRFη(j, k,~µj−n)

≤ C1M∆jk

( νj(k,~λ)

βm|k|mνj−1(k,~λ)

) 1
deg Rj ≤ C1(1 + β|k|)

( ξ j(k,~λ)

βm|k|mξ j−1(k,~λ)

) 1
deg Rj

≤ C1(1 + β)|k|
( 1

βm|k|m|k|2(j−n−1+m)−m+ε j

) 1
deg Rj ≤ C1(1 + β)

( |k|deg Rj

βm|k|2 deg Rj+ε j

) 1
deg Rj

≤ C1(1 + β)
( 1

βm|k|deg Rj+ε j

) 1
deg Rj ≤ C4|k|−1−ε̃ j ,

(34)

where C1 = C1(deg Rj, deg Rj, bj−n − aj−n) > 0, |k|deg Rj > 2(deg Rj + 1)C
deg Rj

3 β−m, ε̃ j =

ε j/ deg Rj > 0, n + 1 ≤ j ≤ n + m, and constant

C4 = (1 + |β|) max
j=n+1,...,n+m

β−m/ deg Rj C1(deg Rj, deg Rj, bj−n − aj−n)

is independent of the values of k.

Integrating the estimates (34), from the equalities (31) we obtain

measRm Fη(j, k) ≤ C5|k|−1−ε̃, n + 1 ≤ j ≤ n + m, (35)

where C5 = C4 max
j=1,...,m

∏
m
q=1,q 6=j(bq − aq), ε̃ = minj=n+1,...,n+m ε̃ j. Then, from estimates (35) and

inequalities (30), for all large enough |k| we get

mesRm Fη(k) ≤ mC5|k|−1−ε̃. (36)

Note that εn+1 + . . . + εn+m = ε0,

νn+m(k,~λ) = νn(k,~λ)ξn+m(k) =
νn(k,~λ)

|k|∑
n+m
j=n+1(2(j−n−1+m)−m+ε j)

=
νn(k,~λ)

|k|2 ∑
m
s=1(s−1+m)−m2+ε0

=
νn(k,~λ)

|k|2(m−1)m/2+m2+ε0
=

|W(λ1 , . . . , λn)|
|k|η =

C0

|k|η ,

where η = 2m2 − m + ε0, ε0 > 0 can be arbitrarily small.

From the above, we get that for all (except for, perhaps, finitely many numbers) k ∈ Z the

inclusion Eη(k) ⊂ Fη(k) is true if η > 2m2 − m. Finally, it follows from (36) that the series

∑k∈Z\{0} meas Rm Eη(k) is convergent. This completes the proof.

The next theorem is similar to the previous one.

Theorem 4. If η > 2n2 − n and C0 = |W(µ1 , . . . , µm)| > 0, then for almost all (with respect to

Lebesgue measure in R
n) vectors ~λ = (λ1, . . . , λn) ∈ Πn the inequality |∆k| ≥ C0|k|−η holds

for all (except for finitely many numbers) k ∈ Z.

Proof. To prove this, we can use the representation of the determinant ∆k in the form

∆k = det Mk = (−1)(m+n−1)meik[(µ1+...+µm)β−(λ1+...+λn)α] det M̂k,
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where the matrix M̂k is obtained from Mk by permuting the right and left blocks and extracting

exponents eikµ1β, . . . , eikµmβ, e−ikλ1α, . . . , e−ikλnα from each column,

M̂k =




e−ikµ1β . . . e−ikµmβ eikλ1α . . . eikλnα

(iµ1)e
−ikµ1β . . . (iµm)e−ikµmβ (iλ1)e

ikλ1α . . . (iλn)eikλnα

(iµ1)
2e−ikµ1β . . . (iµm)2e−ikµmβ (iλ1)

2eikλ1α . . . (iλn)2eikλnα

...
. . .

...
...

. . .
...

(iµ1)
m−1e−ikµ1β . . . (iµm)m−1e−ikµmβ (iλ1)

m−1eikλ1α . . . (iλn)m−1eikλnα

1 . . . 1 1 . . . 1

(iµ1) . . . (iµm) (iλ1) . . . (iλn)
...

. . .
...

...
. . .

...

(iµ1)
m−1 . . . (iµm)m−1 (iλ1)

m−1 . . . (iλn)m−1

0 . . . 0 (iλ1)
m . . . (iλn)m

...
. . .

...
...

. . .
...

0 . . . 0 (iλ1)
n−1 . . . (iλn)n−1




.

Given this structure of the matrix M̂k, the proof of Theorem 4 is similar to that of Theorem 3

and is therefore omitted.
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У цiй статтi задача розглядається у цилiндричнiй областi (−α, β) × (R/2πZ), яка роздi-

ляється гiперплощиною {0} × (R/2πZ) на двi неперетиннi цилiндричнi пiдобластi. Зокрема,

дану задачу можна iнтерпретувати як пошук розв’язку для пари факторизованих рiвнянь iз

частинними похiдними зi сталими коефiцiєнтами, якi вiдповiдно визначенi в цих пiдобластях,

з умовами спряження на гiперплощинi та початково-нелокальними умовами на нижнiй i верх-

нiй поверхнi областi.

Формально розв’язок можна представити у виглядi рядiв Фур’є методом роздiлення змiн-

них, але виникає питання про збiжнiсть даного ряду в просторах Соболєва, перiодичних фун-

кцiй за просторовою змiнною. Ця збiжнiсть пов’язана з проблемою малих знаменникiв i може

бути нестiйкою щодо малих змiн коефiцiєнтiв задачi та параметрiв областi.

Встановлено метричнi оцiнки для малих знаменникiв, якi гарантують збiжнiсть розв’язкiв.

Таким чином, отримано достатнi умови розв’язностi задачi в просторах Соболєва. Результати

показали, що розв’язнiсть залежить вiд коефiцiєнтiв диференцiальних рiвнянь.

Ключовi слова i фрази: гiперболiчне рiвняння, задача спряження, початково-нелокальна

умова, малий знаменник.


