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Conjugation problem with initial-nonlocal conditions for
factorized higher order equations

Nytrebych Z.M.!, Savka .Ya.>®4, Shevchuk R.V.!, Symotiuk M.M.?

In this paper, we consider a problem in the cylindrical domain (—a, ) x (R/27Z) separated
by the hyperplane {0} x (R/27Z) into nonoverlapping cylindrical subdomains. In particular, this
problem can be interpreted as the problem of finding the solution of two factorized PDEs defined
in these subdomains respectively, which satisfies the conjugation conditions on the hyperplane as
well as the initial-nonlocal conditions on the bottom and top surfaces of the domain.

By the method of separation of variables, the solution can be represented formally as Fourier
series, but there is a question about the convergence of the given series in Sobolev spaces of periodic
functions with respect to the spatial variables. This convergence is related to the problem of small
denominators and may be unstable with respect to small variations of the coefficients of the problem
or the parameters of the domain.

We establish the estimates for the small denominators ensuring the convergence of the solutions,
from which we obtain the sufficient conditions for the solvability of the problem in Sobolev spaces.
The obtained results show that the solvability of the problem depends on the coefficients of the
differential equations.
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small denominator.
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Introduction

The mixed type partial differential equations have applications in many fields of science,
for example in fluid mechanics [18], gas dynamics [8], electromagnetism [1], and transmission
problems [12,16]. In addition, in the mathematical modeling of practical problems, conju-
gation conditions and boundary conditions are used together to specify the solutions of the
differential equations [4,6,9].

In the past years, the conjugation problems for equations of different types with various
boundary conditions have been studied by many authors. In particular, some boundary condi-
tions can be described as nonlocal when the data on the domain boundary cannot be measured
directly, or when the data on the boundary depends on the data inside the domain. The well-
posedness of various conjugation problems for such equations with nonlocal conditions has
been also studied in many publications (see [2,3,13, 15] and references therein). However, the
well-posedness of the problem for higher order equations is not well investigated. Generally
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speaking, in the case of a bounded domain, the problems with nonlocal conditions are ill-
posed in the sense of Hadamard and are related to the problem of small denominators [11,17].

In this paper, we study the solvability of the conjugation problem for two nonclassical PDEs
with the initial-nonlocal in a time variable ¢ and periodic in a spatial variable x conditions. The
investigated higher order hyperbolic equations are considered in two different domains and
admit a factorization into first-order equations. In the paper [21], the problem with multipoint
conditions in the case of multiple nodes is studied by the method of separation of variables
with the use of the metric approach. The solution of the conjugation problem was constructed
in each subdomain, and its uniqueness and existence were studied.

This paper is organized as follows. In Section 1, we formulate the problem under consider-
ation and the definition of its solution. In Section 2, we formulate the conditions of uniqueness
for the conjugation problem formulated in Section 1 and construct its formal solution. Section 3
deals with the proof of the existence of the solution in Sobolev spaces. The metric approach is
used in Section 4 for estimating small denominators occurring while constructing the solution.
Finally, based on the obtained results, we establish sufficient conditions for the existence of a
unique solution of the problem.

1 Problem statement

Let O = R/27Z be a unit circle and let D = (—a, ) x Q be a cylindrical domain of
the variables (t,x), that is separated by the hyperplane {t = 0} x Q) into nonoverlapping
cylindrical subdomains D_ = (—«,0) x Q and Dy = (0, 8) x ), where a and f§ are positive
real numbers. The problem is to find a pair of functions u; = u(t, x) and uy = uy(t, x), defined
in subdomains D_ and D, respectively, which satisfy the following differential equations

T R NN
Llu:jl;ll (E—Aja)ul_o, (tx) €D, neN,
Lu=T] <E —]/t]-£>u2 =0, (t,x)eDy, meN,

j=1
with conjugation conditions on the hyperplane t = 0

af*1u1 87*1u2
i . =1 - , i=1,...,m, €0, 2
Am oo = im m, X @

nonlocal conditions

aj_lul aj_luz .
oti—1 ‘f——R_VjW‘t_ﬁ_¢j(x)’ j=1,...,m x€Q, (3)
and initial conditions
am—l—j—lul )
W’t:7lx:q)m+]‘(x), ]:1,...,7’1—7’”, xGQ, (4)

where 1 < m < n, Ay,...,Au i1, ..., pm € R\{0}, v1,...,vm € C\{0}, ¢1(x),..., pu(x) are
given functions. Moreover, we suppose that numbers Ay, ..., A, as well as yj, ..., yy are pair-
wise different, respectively.

Below, we use the following functional spaces.

H, = H,(Q), q € R, is the Sobolev space of all trigonometric series ¢(x) = Yicz pre’*™,
where ¢ € C, with the finite norm ||@; Hg|| = \/LZrez (1 + [k])2 ] gk [2.
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C"([a,b];Hy), n € Z, q € R, is the space of all series of the form u(f,x) = Y 4z uk(t) ikx,
where u; € C"[a,b] and, for any fixed point t € [4,b], functions a”a% Ykez u ( )elkx
belong to the space H, ; forj =0,1,...,n, respectively, and, as the elements of this space, are

continuous in t on [a, b]; the norm in C"([a, b]; H,) is defined by

lu; C"([a, b]; Hy) | = Z max |0/u(t,-)/ot; H,_ .

Note that C([a, b]; Hy) := C°([a, b]; H,).

Definition 1. Let ¢; €Hy ji1, wherej =1,...,n,q is a tixed arbitrary real number. A pair of
functions (u1, up) with the property (u1,uz) € C"([—a,0];Hy) x C"([0, B]; Hy), satisfying the
conditions

[[L1u1; C([—a, 0]; Hg—n) || = 0, [[Lau2; C([0, Bl; Hg—m) | = 0, (5)
i af_lul(—e,-) o uy(e, -) )
Jim || =5 A H | =0, j=1.m, (6)
o luy (t,-) o luy(t, ) .
H at]'fl ‘t:ﬂx - Vj atjfl ’tZﬁ - q)]/ Hq*]‘ﬂ*lH - OI ] = 1/ .. -/m/ (7)

"y ()
H otm+j—1 ‘t:—

is called the solution of the problem (1)—(4).

- §9m+j} Hq—m—j-ﬁ-lH = OI ] = 1/ e, n—m, (8)

2 Uniqueness of the solution

We look for a solution (ul, uy) of the problem (1)—(4) in the form of a Fourier series

= Y ue()e™, te[-a0],  ua(t,x) =Y upi(t)e™, te[0p. (9

kez keZ

From the conditions (5)—(8) it follows that for each vector k € Z functions u x(t) and uy i (t)
are solutions of the problem for ordinary differential equations

nodo
'H1 <E — z)\jk) upi(t) =0, te(—«0),

h (10)
m s d
H (dt Zpl]k) u(t) =0, te(0,p),
dj Yug i (t) A Y (t)
T A ()

A ug g (t) A g ()

e N b s NP L -
A" (1) .
dtm—"'j_,l‘t:ﬂx = Pmtjkr ] = 1L...,n—m, (13)

where @jx are Fourier coefficients of the function ¢, j=1...,n
For each fixed k € Z, we construct a solution of problem (10)—=(13). There are two cases to
consider: k = 0 and k # 0.
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When k = 0, the solutions of the equation (10) are polynomials with unknown coefficients
Ag and B, namely uq(t) = Y0 Ast" 5, t € (—a,0), ugo(t) = Y01 Bst™ %, t € (0,B). Thenit
follows from (11) that Bs = Ay _mysfors =1,...,m,and upo(t) = Y0, .11 Ast" .

Using the conditions (12) and (13), the coefficients Aj, ..., A, are solutions of the following
system of linear equations

n—m

Y AT A Y A (et Vv ST Ay = g,
s=1 s=n—m-+1
j:1 (14)

i1 —m—j+1 '
ZA ] nSm]+AS:q)m+]-,O’ ]:1,...,n_m/

where
(n—s)!
_1 . 7
A = (n—s—j+1)
0, n—s<j—1L

n—s>j—1,

The determinant A of the system (14) has block structure and can be calculated as

A|B
:det{—(‘:—} H]'H 1-v),
where A is the rectangular m x (n — m) matrix, B is the square matrix of order m, C is the
rectangular (n — m) x n matrix, namely
1 i—1 s
= AT (e = (A () g

+71 —s—m—j — Iy,
C = [A?,S] (_“)n s—m ]+1]}1,S:n;n.

js=1

If we have Ay # 0, then for k = 0, the solutions of the problem (10)—(13) can be uniquely
determined by the formulas

1 A

uio(t) = Ao X; Z;Agt” lpio, te€(—a0),
i=1j=

oo (F) = — ff&”"”ﬂt'ﬂ*i 0, t€(0,p)

2,0 - AO 0 Pi0, /,B ’

N
Il
—_
~.
Il
—_

where Ag is the cofactor of (i, j)-element of the determinant Ay.
For the case k # 0 solutions of the equations (10) are quasi-polynomials of the form

n ) m )
ul,k(t) = Z AskeZASkt/ te (—Dé, 0)/ uZ,k(t) - Z Bskez‘uSkt/ te (O/ ﬁ) (15)
s=1 5=

Substituting the obtained solutions (15) in conditions (11)—(13), we find that the coefficients
Agk, B satisfy the system of linear n 4 m equations

™=

(iAs) ! k+21]/ls By =0, j=1,...,m,

s=1
Y (irg) ! e”)‘sk”‘ASk +vj 2 (ins )~ leitskPBy = K ow, j=1,...,m, (16)
s=1 s=1

™=

(i/\s)m—i-]—le—z)\skaASk _ kl_m_]§0m+j,k/ j=1...,n—m.

wn
Il
—_
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The (n + m) x (n + m) matrix My of the system (16) is given as follows

[ 1 e 1 1 e 1 1
(iA1) . (iAn) (ip1) . (iptm)
(iA)? . (idn)? (ip1)? . (ipm )?
(ir)m 1 " (iAg)" ! (ipg)" ! " (i)™
e~ kA . e~ tkAna vy etkrp . vy etkpmp
M, = (i)\l)e_ilf)‘l"‘ . (i)»n)e_i’f/\”“ vz(iyl)ei"‘”lﬁ . vz(iym)ei"‘”mﬁ
(iA)2e= M (iA,)2e kA va(ipg)2ekbB o g (iy ) 2eHmP
(i)\l)mfle;"/’\‘)‘l”‘ . (iAn)mfle;i)’\‘)‘”“ U (i )Lk B vy (i ) etk mP
(i) ™Me~tha o (iAy) e KA 0 . 0
| (iA) ek (A, ) e kA 0 o 0 |

Alternatively, it can be represented as a block matrix of the form

(@)

where O is the rectangular zero (n — m) x m matrix, W = [(iAs)/ 717", W, = [(iys)f_l]]’-’jszl,

js=1’
EY = [(iAs)]’le’lk)‘S“]Z’s’;y E’3 [vj (ips ) lk}’sﬁ] "

If Ay := detMj # 0O, then by Cramer’s rule, we have

1 A]er ,S (P]k

Ask = Ak k -1

=1,...,n, (17)

1 +m,s+n (P]k
Bsk ]

=1,... 18
Ak] k] 1/ ’ M, ( )

where A;{S denotes the cofactor of (i, s)-element of the determinant A obtained from A, delet-
ing its the ith row and the sth column and multiplying by (—1)*.

Substituting the coefficients (17)—(18) into formulas (15), we get the following solutions to
the problem (10)—(13) for k # 0:

n
_ ]+ms Pk ikAst _ j+m,s+n (P]k pikist
nalt) = - 3 A SN, ) =~ 1T a9
—1j=1 =

Theorem 1. The problem (1)—(4) cannot have two distinct solutions if and only if

A #0 VkeZ. (20)

The proof follows from the uniqueness of the Fourier expansion for periodic functions
based on the orthogonal system {eikx }kez- Thus, if the condition (20) is fulfilled, we have
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formal solution of the problem
A]+ms
S WITIETIRE o v s e )
Bo =i keznjoys=ij=1 KBk
A]—i—m ,S5+n

1 & & A m+j m—j Sk Pk otk (ust+x)
_A_;; " @s,0 Z ZZ K1 , 120

kGZ\{O} s=1j=1

3 The conditions of existence of the solution

In what follows, we assume that condition (20) is satisfied. Then there exists a unique
solution of the problem (1)—(4), which admits a formal representation (21).

The existence of the solution u = (u1,up) € C"([—a,0]; H;) x C"([0, B]; Hy) of the problem
(1)—(4) is related to the so-called problem of small denominator [11], because the terms of the
sequence {Aj}rez in the denominator of the formula (21), being different from zero by the
condition (20), can arbitrarily rapidly tend to zero if |k| — +oo. This can lead to a divergence
of series (21) in the spaces C"([—«, 0]; H;) and C™ ([0, B]; H;) respectively, therefore we get un-
solvable problem. The following example demonstrates this and shows that the solvability of
the problem depends on the Diophantine approximation of real numbers by rational numbers.

Example 1. Consider the problem (1)—4) in the special case withn =2 and m = 1:

G20 am=0 @aezmoxn

5 5 (22)
(E—)\a ) =0, (Lx)€(0,71)xQ, A>0,
utli=0. = u2|t:0+/ xeq,
U)i=—om +Uolt=n = ) k|=%*, xe0, 0>0,
keZ\ {0} (23)

8u1
Kt = Q.
ot ‘l‘:*ZT[ 0’ X e

The formal solutions to the problem (22)—(23) are

k|79 cos(kt)
ui(t,x) = Z HMLT(A)&"X, (t,x) € [-2m,0] x O;
kez\{0}

K| ~0e™ A
uz(t, x) = Z me , (t,X) S (O, 7-() x Q.
kez\qoy + 1€

From the equality for the denominator

11+ ek :2’sin<%m+g)’ :Z‘Sin<%m+g—ﬂm> ,

ke Zz\{0}, meZ,

and the inequality

tkA m—1
2 k
the two-sided est1mate can be derived for the problem’s solution

21’710

Z]k\‘}\— )<2)sm( %) )gn\ky)A—z

, kezZ\{0}, meZ,

~ (1 + [k])2la—e—D) 1 ~ (1 + |k[)2—e~1)
Cl Z — = ”1/[2,C ([0/ n]qu)” S C2 Z — 2/ (24)
kezqoy |a— 2" 1) keZ {0} \A—MO 1\
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where m € Z, C; > 0, C, > 0 and integer my = mg(A, k) such that

A1 ]
2 2 ol =72
The Thue-Siegel-Roth’s theorem [19] states that for any algebraic number A and any
€ > 0, there exists a constant ¢ = c(A, €) > 0 such that |A — m/n| > ¢/n?*€ for all irreducible
rationals m/n. In this case, the series on the right hand side of the inequality (24) converges,
when ¢ = g +3/2 + ¢, and therefore u, € C'([0, 71]; Hy) for any algebraic number A.

Similar results in the metric theory of Diophantine approximation provide statements that
are valid for almost all numbers in the sense of the Lebesgue measure, i.e. for all numbers
outside a set of Lebesgue measure 0. Let A be defined as

A(yp) = {A €[0,1] : ‘)\ - %‘ < lp(nn) for infinitely many pair (m, n) € Z x ]N},
where ¢ : (0,+c0) — (0,1). From the convergence case of Khinchin’s theorem on metric
Diophantine approximation [14], we get measgA(y) = 0, if Y/ ¥(n) < oo.

In particular, if ¥(n) := n~(17€) and ¢ = g + 3/2 + € for some positive € > 0, then al-
most all A € [0,1] are not very well p-approximable and the series on the right hand side of
the inequality (24) also converges for almost all (with respect to the Lebesgue measure in R)
numbers A € [0,1].

However, there are irrational numbers that can be approximated arbitrarily well by a par-
ticular sequence of finite continued fractions (convergents). According to the Khinchin’s the-
orem (see [14, Theorem 22] or [20, Theorem 2.13]), for any function (n) : N — R there
exist irrational number A € R, such that for infinitely many values n € IN the inequal-
ity [A —m/n| < ¢(n)/n holds. It follows that there exists an irrational number A = A
(p-approximable number by rationals) such that the inequality

_ —k
2l <Oy =2, 25)

has infinitely many solutions in integers m and k > 0.

For example, this number Ay € A(¢) can be expressed uniquely as an infinite continued
fraction (see [20, Theorem 2.8]) Ag = [0;a1,42,...,4,41,...] with convergents p, /g, and re-
cursive transformation a,41 = 27" + 2, g, = angu—1 + gn—2, 90 = 1, g—1 = 0. All convergents
converge with rate k=227, The fast approximation (25) is associated with the growth of the
coefficients a,,n € IN. In this case, the C ([0, t]; H;;)-norm of the solution u; of the problem
(22)—(23) with A = Ay is not finite for all possible values of g and ¢ because the series on the
left hand side of the inequality (24) diverges. As you can see, the solvability of the problem
(22)—(23) depends on the Diophantine approximation of real number A by rational numbers.

Therefore, to obtain the correct solvability of the given problem with the relevant restric-
tions on the functions ¢y, ..., @, it is important to establish lower bounds for modules of the
quantities Ay with respect to k € Z. This is one of the objectives of this paper. Note that the
estimates of the small denominators Ay, which have a nonlinear structure, have not yet been
considered in the scientific literature.
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Theorem 2. Let the condition (20) holds. Assume also that there exits some constants cy > 0
and 1 € R such that for all vectors k € Z the following inequality

Akl = co(1+ [k[)~7 (26)

is satisfied. If ¢j € Hq+,7+1,]-,j = 1,...,n, then the problem (1)—(4) has a unique solution in
the space C"([—«, 0]; Hy) x C™ ([0, B]; Hy).

Proof. First, we need to estimate the coefficients 1 (t) and u; (t) for every k € Z. For this end,
let us start with the upper estimates of the determinants AR
in the formulas (21).

From Hadamard’s inequality for determinants we obtain that there exists some constant

c4 > 0 independent of the vector k and indices j and s such that for all determinants we have

,J=1...,n,s=1,...,n+m,

‘A{ﬁm,s < n—i—m—l)(ner*l)/z/ s=1,...,n+m, (27)

— ngmfl(

where ¢3 1= max{cy, c2}, 1 1= maxjser,_ny{IAs/ 1}, €2 1= maxjseqymp {Ipsl T sl
Using the estimates (27) for the upper bound and the apriori condition (26), from formula (19)
and inequality |k| > (1 + |k|)/2, for k # 0 we get

+m,s
¢ 1 & & Akl |A] nC4C5 - i Vi
RO S 3 LY e < S Y A k) g,
Kl s=1j=1 k| 0 j=1
{=0,1,...,n, t<0,
i+m,s+n
¢ 128 1 usklIAT™ o] meges i _i
e ()] < 37 ZZ S e LR gy,
s=1j=1 0 j=1
£=01,...,m, t>0,

where c5 := max {|As]‘} >0,c6:= max {|us|’} >0.
se{l,..n}, se{l,...m},

0€{0,...,n} 0e{0,...,m}
It is easy to see that there exists constant c; > 0 such that for k = 0 we have

n
V4
(O] < e Y |9iols
j=1

s=1,2.

Then

n

n
Ju2; € ([~ O Hy)l| = 3 max 31 /0t Hy-ol) = 3 m

4
e Y (14 kD20 ()2
=0

& 0} kez

n
< (n+1)max{n2"cycs/co, c7} Z Z (1 + |k|)2atn+1=)) ik
—1kezZ

n
< (n+1) max{n2"cses/co, 7}, |1 Y || Hopyi1—jl2
j=1

n
<cg ) o Horyi1-ll, cg := (n+1)vnmax{n2"cycs/co, c7};
j=1



Conjugation problem with initial-nonlocal conditions for factorized higher order equations 655

J1azs € ([0, B H) = 3 ma | Y (14 [k)20-0 ) (1)
=0 t€l0B] \ ez

n
< (m+1)\/ﬁmax{m2”C4c6/co,C7}J ) Z (1 + |k|)2(a+n+1=)) @il
=1keZ

n
<co ) llopHgiprill, co := (m + 1)v/nmax{m2"cscs/ o, c7}.
j=1
The proof of the theorem is complete. O

4 The metric estimates of the small denominators

Now we study the conditions of validity of the inequalities (26). For this, we use Borel-
Cantelli lemma and the auxiliary assertion on the upper bound for the Lebesgue measures of
the exceptional set E(f, ¢, [a,b]) of a smooth function defined as

E(f & [a,b]) = {t € [a,b] : [f(£)] <e}.

Let { A ke be a countable family of measurable subsets R™ and let meas Ay := measgm Ay
denotes the Lebesgue measure of a set Ay. The limit superior of { Ay }xen is the set

A =:limsup Ay = {a : a € Ay for infinitely many k} = (] | J Ak
k—ro0 n=1k=n

Lemma 1 (Convergence Borel-Cantelli lemma [7, 10]). Let {Ay}xen be a sequence such that
Y 7 measAy < co. Then the set of all elements that belong to infinitely many sets A has zero
Lebesgue measure in R™, i.e. measA = 0.

Let R(A) be a polynomial in the real variable A of degree n of the form
n .
RA) = A"+ Za]-)t”_], ai,...,a, € C, (28)
=1

and let Q(t) be a quasi-polynomial of the form
m
H=) e'pit), z#z, j#a, (29)
j=1

where z1,...,z, € C and py(t),..., pm(t) are polynomials of degrees ny —1,...,n, — 1, re-
spectively. Here ny, ..., n, € IN. For R(t) and Q(t), we denote

R(J')(o) 1/(n—j)
.
Lemma 2 ([5]). Let R(A) and Q(t) be the polynomial and the quasi-polynomial defined by

equalities (28) and (29), respectively. If there exists some constant 6 € R such that the condi-
tionVt € [a,b] |[R(d/dt)Q(t)] > 6 > 0 is fulfilled, then for any ¢ € (0, W] the estimate
R

meas RE(Q, ¢, [a,b]) < C1 Mg(e/5)'/™ holds, where C; = Cy(n,n9,b —a) > 0.

Ar =14+ max ’

, Mg=1+ max |z;|, ng=ny+...+npu.
0<j<n—1

1<]<

LetIL, ={ji= (u1,--- pim) ER" 1y < ... < pm}, W(ay,...,a,) := det[a{:_l]zjzl deno-
tes the Vandermonde determinant constructed by the values of a4, ..., a,.



656 Nytrebych Z.M., Savka I.Ya., Shevchuk R.V., Symotiuk M.M.

Theorem 3. If > 2m? —m and Cy = |W(A1,...,As)| > O, then for almost all (with respect
to Lebesgue measure in R™) vectors ji € I1,, the inequality |Ax| > Cy|k|~" holds for all (except
for finitely many numbers) k € Z.

Proof. Let P,y = ITjZ4[a;, bj] be an arbitrary fixed parallelepiped such that P, C Ily. In the
proof, we will assume that the determinant Ay is a function of the variable ji, A;(ji) := A. For
each k # 0, we introduce the following sets E; (k) = {ji € Py : |Ax(ji)| < Colk|~"}. Let E;, be
the set of those vectors that belong to infinitely many sets E; (k), k € Z, namely

—+00
E, =limsupE,(k) = (| | Ey(k).
[k| =00 K=0 [k|>K

To prove the theorem, it suffices to show that meas g E;; =0 for any Py, C I1,,. For this end, we
use the Borel-Cantelli lemma and establish the convergence of the series } ;. meas g Ej; (k).
In particular, for its convergence, let us prove the estimate mes gnEy (k) < Cy|k|~17*¢ for all
(except for, perhaps, finitely many numbers) k € Z\{0}, where ¢ and C, are some positive
constants independent of k.

Let us permute blocks in the matrix My so that

B
8 E Ey
M; = o |,
W, WP‘
namely
_ efik)th o e*ik)tntx Vleikylﬁ . Vleiky’"ﬁ _
(i)&l)e*ik)‘llx - (i)\n)efik)‘”’x yz(iyl)eikﬂlﬁ oL Vz(i;l/lm)eik””’ﬁ
(iA)2e~*Me o (iA,)%e kA v3(ipg 2By (i, ) 2eikrmP
(i}\l )m—lefik)\m L (i)\n)m_lefik/\”lx Vi (iﬂl )m—leik}lllg . Vm(iym)m—leikymﬁ
(i/\l)mefzk)qrx o (i)\n)meﬂk)‘””‘ 0 T 0
M = f - s . . _
(i)\l)n—le—ik)\la L (i}\n)n_le_ik/\”‘x 0 o 0
1 - 1 1 - 1
(iA1) e (iAn) (ip) o (it )
(M?P . (A G ()2
I G ()"t ()"

It is obvious that Ay (1) = (—1)(m+=1m det M.

We denote by Aj the determinant obtained from det My by crossing out last (1 + m — )
rows and last (n + m — j) columns, where j = n,...,n + m. Moreover, Ajp = A]-k(;/ll, o, ]/t]-,n),
j=n. 4 m Ay = det[EY] = W(iky, ..., iAy)e Mtttk (A L = [W(Ay,..., A,
An+m,k - det Mk

For every k € Z\{0}, consider the sets:

Fy(K) = {7 € Put [Bamp(0)] < Ve (6, 1)},
Fy(i,0) = {7 € Pt [, )| < (),
Aj—1 k(B tjmnt)| 2 Vi (kA)}, j=n+1n+m,
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= (A1,...,Ay), are defined as follows:
va(k, A) = [A] = WAL, . An)| £ 0, vi(k,A) = vk, A)E(K), > n,
gi—1(k)

gj( ) - |k|2(jfn71+m)fm+sj’

j>n, &ulk)=1,

g = go/2Mtm=it1(1 —27™), i =n+1,...,n+ m, the number gy > 0 is arbitrarily small.
Note that

n—+m
F,(kyc J FGk Vkez\{0}.
j=n+1
Indeed, let fi € Fy(k). If i ¢ Fy(j, k) forallj € {n+1,...,n+ m}, then one can obtain
the contradictory inequality v, (k, i) = |Auk| < vu(k, i), which contradicts the definition of
Fy(j k), n +1 < j < n+ m. Therefore, ji € F(jo, k) for some number jo € {n+1,...,n+ m},
and the required inclusion is true.

Thus,
n+m
measgnFy (k) < ) measgnFy,(j, k). (30)
j=n+1
By Fubini’s theorem, for each of the sets F;(j, k), n +1 < j < n + m, we have
measgn Fy (j, k) = /ﬁ measr Fy (j, k, il )dfi—n, (31)
j—n
where

m
Ps= T[] lagbgl, fs= (1, ths—1,fss1,-- - m), s€{l,...,m},
q=lq#s
Fn(]',k, ﬁj—n) = {“Ll]'_n € [El]'_n, b]‘_n] : ﬁ € Fn(]',k>}, ] =n+1,...,n+m.
For upper estimates of the Lebesgue measures of sets F;(j, k, fi;_,), we use Lemma 2. For
this end, we introduce the polynomials R;(, k) = &/~""1(¢ — ikp)™ withn+1 < j < n+m.
If we apply the differential operator R]-(ayj%,k) to the expansion of the determinant

A]-(k, Ui, .oy y]-,n), j = n+1,n+ m, along the last column, then as a result, we get

0 . G .
R]<a—/k)A]k(,u1//,u]fn) = (] —n —1)!l] " 1(—Zkﬁ)mA]‘_1,k(}/l1,...,}/l]',nfl). (32)
Hj—n

If ji € F;(j, k), then from the formulas (32) and the definition of the set F;(j, k), it follows
that

> ﬁm|k|mv]-,1(k,7t), n+1<j<n+m. (33)

j—n
For fixed pi1, ..., pj—u—1 the determinant Aj(p1, . .., #y—j) as a function of the variable p;

is a quasi-polynomial with My, =1+ Blk|, where j=n+1,...,n+m.
The degree of the polynomial R;(¢,k) in the variable ¢ is equal to j —n — 1+ m,

degRj = j —n —1+m, and the value Ag, is calculated according to the formula

dqu(C, k)
aci  le=o

‘R]‘ <%1k> Nj(p1, - tj—n)

R (00)
o

1
AR], =14+ max deng*q, R](q)(o, k) =

qugdegRj

Since
j—n—1 .
RO(0.K) = 3 Clle 0 — iepyru-0| =S U n D
(=0

=0 (m+j—n—1—g)!

(—ikﬁ)deg R]-fq’
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we get ARj < Gslk|, n+1 < j < n+ m, where Cj is some positive constant independent of
j and k. Based on the the estimates (33) and Lemma 2, we have the following inequalities for
j=n+1,...,n+mand all |k| large enough:

measrF (j, k, ﬁ]-,n)

Vj (k, X) deg R; g] (k/ X) ﬁl{j
= ClMAfk(ﬁM!k\mw—1<k,X>) < Gull+ Pl D(ﬁm\krm«:j—l(k,m)

1 deg R; 1 _ (34
1 degR; [k |78 Tt (
< I < S L ]
- Cl(l +ﬁ)|k|<‘Bm’k‘m‘kIZ(j—n—l—i-m)—m—o—sj) G (1 +ﬁ)<‘3m’k‘2degRj+€j)
1
1 deg R; _1-%F;
< c1(1+5>(—ﬁm|k|deg&ﬂj) i < Cylk| 71,
where C; = Ci(degR;, degR;, b, —a;—,) > 0, |k|de8 Rj > 2(deg R; —{—1)CdegR] M, E =

e]-/ degR]- >0,n+1<j <n+m,and constant

Co=(+IA) _, max B ABNC (deg Ry, deg Ry, bjn — ;)

is independent of the values of k.
Integrating the estimates (34), from the equalities (31) we obtain

measgn Fy (j, k) < Cslk| 7%, n+1<j<n+m, (35)
where C5 = Cy ; irllaxm HZZL,,#]-(% —ag), € = mMinj_, 1, n4m €. Then, from estimates (35) and

inequalities (30), for all large enough |k| we get

mesgnFy (k) < mCs|k|~17¢. (36)
Note that e, 11+ ...+ €44m = €0,
Vn+m(k'A) N Vn(k’A)§n+m(k) N |k|27+yﬁl 2(j—n—1+m)—m+e;) N |k|2215":1(571+m)*m2+£0
v (k, A) WAL LA G
I R A TR

where 17 = 2m? — m + €y, &g > 0 can be arbitrarily small.

From the above, we get that for all (except for, perhaps, finitely many numbers) k € Z the
inclusion E; (k) C F,(k) is true if 7 > 2m?* — m. Finally, it follows from (36) that the series
Y_kez)\ {0} meas gnEy (k) is convergent. This completes the proof. O

The next theorem is similar to the previous one.

Theorem 4. If 7 > 2n*> —n and Cg = |W(l1, ..., m)| > 0, then for almost all (with respect to
Lebesgue measure in R") vectors A = (Ay,...,A,) € I1, the inequality |Ay| > Colk|™" holds
for all (except for finitely many numbers) k € Z.

Proof. To prove this, we can use the representation of the determinant Ay in the form

Ap = det My = (—1)(mrn=meik{(uttpom) = (Mt +An)a] qot M,
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where the matrix M is obtained from M by permuting the right and left blocks and extracting

exponents e*#1f, . eikinp e=ikan

()"t

(i‘um)m—le—ikymﬁ

., e~k from each column,

(i}\l )m—leik)\lzx

_ e~ ikmp o~ ikimp pikMa pikAna
(g )e™"1P (ip)e™ 0P | (idg)ethe (i, )eihn
(l“ul)ZefzkHl/; (iym)zefzkymﬁ (iAg)2eiMe (idy ) 2eikAnc

(i)\n)m._leik)‘"’x

My = (ip1) (ipm) (iA1) (iAn)
lem_l (iVm.)m ! (17\1.)’”_1 (i)mjm_l

0 0 (i)™ PE
- O O (17\1.)"_1 (iAn.)”_l

Given this structure of the matrix /Mk, the proof of Theorem 4 is similar to that of Theorem 3

and is therefore omitted.
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Y wiit cTaTTi 3apaua po3rASIAAETHCS y LMAIHApHMUHI obaacti (—a, B) X (R/27Z), sika po3ai-
AsteTbest rinepraommaoo {0} X (R/271Z) Ha ABi HemepeTHHI IMAIHAPMYHI mA06AaCTi. 30KpeMa,
AaHy 3apady MOXHA iHTepIpeTyBaTH SIK IIOLIYK PO3B’SI3KY AAS TTapy paKTOPW30BaHMX PiBHSHD i3
YaCTMHHVMU IOXIAHVMMIU 3i CTaAMMU KoedpillieHTaMM, sIKi BiATIOBiAHO BU3HAUeHi B IMX ITiA0BAACTSIX,
3 YMOBaMM CIIPSIKEHHsI Ha MiIepIAOIIVHI Ta TOYaTKOBO-HEAOKAABHMMY YMOBaMI Ha HVKHII i Bepx-
Hill TOBepXHi 06AaCTi.

@dopMarbHO pO3B’SI30K MOXHA IIPEACTaBUTH y BUTASIAL psiAiB Dyp’e METOAOM PO3AiAeHHS 3MiH-
HIX, aAe BUHMKAE IMTaHHs IIPO 301KHiCTh AaHOTO psiay B mpocTopax CoboaeBa, nepioanurmx dpyH-
KIIiJ 3a IPOCTOPOBOIO 3MiHHOIO. 15T 361>kHicTh TIOB’s13aHa 3 TPO6AEMOI0 MaAVX 3HAMEHHMKIB i MOXe
6yTH HeCTilIKOIO IIIOAO MaAMX 3MiH KoedillieHTiB 3apadi Ta mapaMeTpiB 06AACTi.

BcTaHOBAEHO METPUYHI OIIIHKM AASI MAAUIX 3HAMEHHVKIB, SIKi TapaHTYIOTh 361KHICTh pO3B’sI3KiB.
Takum uMHOM, OTPMMaHO AOCTaTHI yMOBM pO3B’I3HOCTI 3apadi B mpocTopax CoboaeBa. PesyabTatn
TTOKa3aAM, 110 PO3B’SI3HICTD 3aA€XUTb Bia KoedillieHTiB AMdpepeHITiaAbHIX PiBHSHb.

Kotouosi croea i ¢ppasu: rimepboriuHe piBHSHHS, 3aAaua CHPSDKEHHs], TOYAaTKOBO-HEAOKaAbHA
yMOBa, MaAMii 3HAMEHHMK.



