References
- Al-Droubi A., Renardy M. Energy methods for a
parabolic-hyperbolic interface problem arising in electromagnetism.
Z. Angew. Math. Phys. 1988, 39 (6), 931–936.
doi:10.1007/BF00945129
- Ashyralyev A., Ozdemir Y. On nonlocal boundary value problems for
hyperbolic-parabolic equations. Taiwanese J. Math. 2007,
11 (4), 1075–1089. doi:10.1007/978-1-4020-5678-9_9
- Ashyralyev A., Yurtsever A. On a nonlocal boundary value problem
for semilinear hyperbolic-parabolic equations. Nonlinear Anal.,
Theory Methods Appl. 2001, 47 (5), 3585–3592.
doi:10.1016/S0362-546X(01)00479-5.
- Bhargava A., Chanmugam A., Herman C. Heat transfer model for deep
tissue injury: a step towards an early thermographic diagnostic
capability. Diagn. Path. 2014, 9, article 36.
doi:10.1186/1746-1596-9-36
- Bobyk I., Symotyuk M. Problem with two multiple points of
interpolation for linear factorized partial differential equations.
Visn. Nats. Univ. L’viv. Politekh., Fiz.-Mat. Nauky 2010,
687, 11–19. (in Ukrainian).
- Bouziani A. Solution of a transmission problem for semilinear
parabolic-hyperbolic equations by the time-discretization method.
Int. J. Stoch. Anal. 2006, 2006, 1–23.
doi:10.1155/JAMSA/2006/61439
- Chandra T.K. The Borel-Cantelli lemma. Springer, New Delhi, 2016.
- Chen S. Mixed type equations in gas dynamics. Q. Appl. Math.
2010, 68 (3), 487–511.
doi:10.1090/S0033-569X-2010-01164-9
- Liu Ch., Ball W.P. Analytical modeling of diffusion-limited
contamination and decontamination in a two-layer porous medium.
Adv. Water Resour. 1998, 21 (4), 297–313.
doi:10.1016/S0309-1708(96)00062-0
- Harman G. Metric number theory. Oxford University Press, Oxford,
1998.
- Il’kiv V.S., Ptashnyk B.I. Problems for partial differential
equations with nonlocal conditions. Metric approach to the problem of
small denominators. Ukrainian Math. J. 2006, 58
(12), 1847–1875. doi:10.1007/s11253-006-0172-8 (translation of Ukrain.
Mat. Zh. 2006, 58 (12), 1624–1650. (in Ukrainian))
- Jovanovic B.S., Vulkov L.G. Analysis and numerical approximation
of a parabolic-hyperbolic transmission problem. Centr. Eur. J.
Math. 2012, 10 (1), 73–84.
doi:10.2478/s11533-011-0114-z
- Kapustyan V.O., Pyshnograev I.O. Conditions for the existence and
uniqueness of the solution of a parabolic-hyperbolic equation with
nonlocal boundary conditions. Naukovi Visti 2012,
4 (84), 72–76. (in Ukrainian)
- Khinchin A. Continued fractions. Dover Publications, Inc., Mineola,
1997.
- Kuz A.M., Ptashnyk B.Yo. A problem with condition containing an
integral term for a parabolic-hyperbolic equation. Ukr. Math. J.
2015, 67 (5), 723–734. doi:10.1007/s11253-015-1110-4
(translation of Ukrain. Mat. Zh. 2015, 67 (5), 635–644.
(in Ukrainian))
- Milovanovic Z. Parabolic-hyperbolic transmission problem in
disjoint domains. Filomat 2018, 32 (20),
6911–6920. doi:10.2298/FIL1820911M
- Ptashnyk B.Yo., Il’kiv V.S., Kmit’ I.Ya., Polishchuk V.M. Nonlocal
boundary value problems for partial differential equations. Naukova
Dumka, Kyiv, 2002. (in Ukrainian)
- Rassias J. M. Mixed-type partial differential equations with
initial and boundary values in fluid mechanics. Int. J. Appl. Math.
Statist. 2008, 13 (J08), 77–107.
- Roth K.F. Rational approximations to algebraic numbers.
Mathematika 1955, 2 (1), 1–20. doi:10.1112/S0025579300000644
- Sauer T. Continued fractions and signal processing. Springer, Cham,
2021.
- Savka I., Tymkiv I. Problem of linear conjugation with multipoint
conditions in the case of multiple nodes for higher-order strictly
hyperbolic homogeneous equations. J Math. Sci. 2024,
282, 718–734. doi:10.1007/s10958-024-07211-z