References
- Agranovich M.S. Elliptic operators on closed manifolds. Partial
differential equations, VI. Elliptic and parabolic operators,
Encyclopaedia Math. Sci., 63, 1–130, Springer, Berlin,
1994.
- Almeida A., Caetano A. Real interpolation of generalized
Besov-Hardy spaces and applications. J. Fourier Anal. Appl. 2011,
17 (4), 691–719. doi:10.1007/s00041-010-9145-2
- Anop A., Chepurukhina I., Murach A. Elliptic problems with
additional unknowns in boundary conditions and generalized Sobolev
spaces. Axioms 2021, 10, 292.
doi:10.3390/axioms10040292
- Anop A., Denk R., Murach A. Elliptic problems with rough boundary
data in generalized Sobolev spaces. Commun. Pure Appl. Anal. 2021,
20 (2), 697–735. doi:10.3934/cpaa.2020286
- Anop A., Kasirenko T. Elliptic boundary-value problems in
Hörmander spaces. Methods Funct. Anal. Topology 2016,
22 (4), 295–310.
- Anop A.V., Murach A.A. Parameter-elliptic problems and
interpolation with a function parameter. Methods Funct. Anal.
Topology 2014, 20 (2), 103–116.
- Anop A.V., Murach A.A. Regular elliptic boundary-value problems
in the extended Sobolev scale. Ukrainian Math. J. 2014,
66 (7), 969–985. doi:10.1007/s11253-014-0988-6
(translation of Ukrain. Mat. Zh. 2014, 66 (7), 867–883.
(in Russian))
- Avakumović V.G. O jednom O-inverznom stavu. Rad
Jugoslovenske Akad. Znatn. Umjetnosti 1936, 254,
167–186.
- Baghdasaryan A.G. On interpolation of pairs of generalized spaces
of Besov type. Eurasian Math. J. 2010, 1 (4),
32–77.
- Bingham N.H., Goldie C.M., Teugels J.L. Regular variation. In: Rota
G.-C. (Ed.) Encyclopedia Math. Appl., 27. Cambridge University Press,
Cambridge, 1989.
- Buldygin V.V., Indlekofer K.-H., Klesov O.I., Steinebach J.G.
Pseudo-Regularly Varying Functions and Generalized Renewal Processes.
Springer, Cham, 2018.
- Domı́nguez Ó., Tikhonov S. Function spaces of logarithmic
smoothness: embeddings and characterizations. Mem. Amer. Math. Soc.
2023, 282, 1393. doi:10.1090/memo/1393
- Douglis A., Nirenberg L. Interior estimates for elliptic systems
of partial differential equations. Comm. Pure Appl. Math. 1955,
8 (4), 503–538.
- Dunford N., Schwartz I. T. Linear operators, Part II. Spectral
theory, selfadjoint operators in Hilbert spaces [reprint of the 1963
orginal]. John Willey & Sons, Inc., New York, 1988.
- Faierman M. Fredholm theory for an elliptic differential operator
defined on \(\mathbb{R}^{n}\) and
acting on generalized Sobolev spaces. Comm. Pure Appl. Analysis
2020, 19 (3), 1463–1483. doi:10.3934/cpaa.2020074
- Farkas W., Leopold H.-G. Characterisations of function spaces of
generalised smoothness. Ann. Mat. Pura Appl. 2006,
185 (1), 1–62. doi:10.1007/s10231-004-0110-z
- Foiaş C., Lions J.-L. Sur certains théorèmes d’interpolation Acta
Scient. Math. Szeged. 1961, 22 (3–4), 269–282. (in
French)
- Haroske D.D., Moura S.D. Continuity envelopes and sharp
embeddings in spaces of generalized smoothness. J. Funct. Anal.
2008, 254 (6), 1487–1521.
doi:10.1016/j.jfa.2007.12.009
- Haroske D.D., Leopold H.-G., Moura S.D., Skrzypczak L. Nuclear
and compact embeddings in function spaces of generalised
smoothness. Anal. Math. 2023, 49 (4), 1007–1039.
doi:10.1007/s10476-023-0238-y
- Hörmander L. Linear partial differential operators. In: Eckmann B.,
van der Waerden B.L. (Eds.) Grundlehren Math. Wiss., 116. Springer,
Berlin, 1963.
- Hörmander L. The analysis of linear partial differential operators,
Vol. II. Differential operators with constant coefficients [reprint of
the 1983 original]. Springer, Berlin, 2005.
- Hörmander L. The analysis of linear partial differential operators,
Vol. III. Pseudo-differential operators [reprint of the 1994 edition].
Springer, Berlin, 2007.
- Jacob N. Pseudodifferential operators and Markov processes. Imperial
College Press, London, 2001, 2002, 2005.
- Loosveldt L., Nicolay S. Some equivalent definitions of Besov
spaces of generalized smoothness. Math. Nachr. 2019,
292 (10), 2262–2282. doi:10.1002/mana.201800111
- Los V., Mikhailets V.A., Murach A.A. Parabolic problems in
generalized Sobolev spaces. Commun. Pure Appl. Anal. 2021,
20 (10), 3605–3636. doi:10.3934/cpaa.2021123
- Mikhailets V.A., Murach A.A. Elliptic operators in a refined
scale of functional spaces. Ukrainian. Math. J. 2005,
57 (5), 817–825. doi:10.1007/s11253-005-0231-6
(translation of Ukrain. Mat. Zh. 2005, 57 (5), 689–696.
(in Russian))
- Mikhailets V.A., Murach A.A. Improved scale of spaces and
elliptic boundary-value problems. II. Ukranian Math. J. 2006,
58 (3), 398–417. doi:10.1007/s11253-006-0074-9
(translation of Ukrain. Mat. Zh. 2006, 58 (3), 352–370.
(in Russian))
- Mikhailets V.A., Murach A.A. Interpolation with a function
parameter and refined scale of spaces. Methods Funct. Anal.
Topology 2008, 14 (1), 81–100.
- Mikhailets V.A., Murach A.A. On elliptic operators on a closed
manifold. Dopov. Nats. Akad. Nauk Ukr. Mat. Pryrodozn. Tekh. Nauki
2009, 3, 13–19. (in Russian)
- Mikhailets V. A., Murach A. A. The refined Sobolev scale,
interpolation, and elliptic problems. Banach J. Math. Anal. 2012,
6 (2), 211–281. doi:10.15352/bjma/1342210171
- Mikhailets V.A., Murach A.A. Extended Sobolev scale and elliptic
operators. Ukrainian Math. J. 2013, 65 (3),
392–404. doi:10.1007/s11253-013-0787-5 (translation of Ukrain. Mat. Zh.
2013, 65 (3), 392–404. (in Russian))
- Mikhailets V.A., Murach A.A. Hörmander spaces, interpolation, and
elliptic problems. In: Carstensen C., Fusco N., Gesztesy F., Jacob N.,
Neeb K.-H. (Eds.) De Gruyter Studies in Math., 60. De Gruyter, Berlin,
2014.
- Mikhailets V.A., Murach A.A. Interpolation Hilbert spaces between
Sobolev spaces. Results Math. 2015, 67 (1),
135–152. doi:10.1007/s00025-014-0399-x
- Mikhailets V., Murach A. Unconditional convergence of
eigenfunction expansions for abstract and elliptic operators. Proc.
Roy. Soc. Edinburgh Sect. A. 2025, 155 (6), 2345–2363.
doi:10.1017/prm.2024.40
- Mikhailets V., Murach A., Chepurukhina I. Elliptic operators and
boundary-value problems in spaces of generalized smoothness.
Ukrainian Math. J. 2025, 76 (9), 1503–1536.
doi:10.1007/s11253-025-02403-5 (translation of Ukrain. Mat. Zh. 2025,
76 (9), 1331–1363. doi:10.3842/umzh.v76i9.8595 (in
Ukrainian))
- Mikhailets V., Murach A., Zinchenko T. An extended Hilbert scale
and its applications. Adv. Math. 2025, 465,
110155. doi:10.1016/j.aim.2025.110155
- Milatovic O. Extended Sobolev scale on \(\mathbb{Z}^{n}\). J. Pseudo-Differ.
Oper. Appl. 2024, 15, 25.
doi:10.1007/s11868-024-00600-7
- Milatovic O. The essential adjointness of pseudodifferential
operators on \(\mathbb{Z}^{n}\).
Complex. Anal. Oper. Theory 2024, 18 (6), 150.
doi:10.1007/s11785-024-01597-z
- Moura S.D., Neves J.S., Schneider C. Spaces of generalized
smoothness in the critical case: optimal embeddings, continuity
envelopes and approximation numbers. J. Approx. Theory 2014,
187, 82–117. doi:10.1016/j.jat.2014.07.010
- Murach A.A. On elliptic systems in Hörmander spaces.
Ukrainian Math. J. 2009, 61 (3), 467–477. doi:10.1007/s11253-009-0215-z (translation of Ukrain. Mat. Zh. 2009,
61 (3), 391–399. (in Russian))
- Murach A.A., Zinchenko T. Parameter-elliptic operators on the
extended Sobolev scale. Methods Funct. Anal. Topology 2013,
19, (1), 29–39.
- Nicola F., Rodino L. Global Pseudodifferential Calculas on Euclidean
spaces. In: Wong M.W. (Ed.) Pseudo Diff. Oper., 4. Birkhäser, Basel,
2010.
- Ovchinnikov V.I. The methods of orbits in interpolation
theory. Mathematical Reports 1984, 1 (2),
349–515.
- Peetre J. On interpolation functions. Acta Sci. Math.
(Szeged) 1966, 27, 167–171.
- Peetre J. On interpolation functions. II. Acta Sci. Math.
(Szeged) 1968, 29, 91–92.
- Seneta E. Regularly varying functions. In: Dold A., Eckmann B. (Eds.)
Lecture Notes in Math., 508. Springer-Verlag,
Berlin-Heidelberg–New York, 1976.
- Stepanets A.I. Methods of Approximation Theory. VSP, Utrecht,
2005.
- Volevich L.R., Paneah B.P. Certain spaces of generalized
functions and embedding theorems. Russian Math. Surveys 1965,
20 (1), 1–73. (translation of Uspehi Mat. Nauk 1965,
20 (1), 3–74 (in Russian))
- Wells R.O. Jr. Dufferential analysis on complex manifolds. Springer,
New York, 1980.
- Zinchenko T.N., Murach A.A. Douglis-Nirenberg elliptic systems in
Hörmander spaces. Ukrainian Math. J. 2013, 64
(11), 1672–1687. doi:10.1007/s11253-013-0743-4 (translation of Ukrain.
Mat. Zh. 2013, 64 (11), 1477–1476. (in Russian))
- Zinchenko T.N., Murach A.A. Petrovskii elliptic systems in the
extended Sobolev scale. J. Math. Sci. (N.Y.) 2014,
196 (5), 721–732. doi:10.1007/s10958-014-1688-3
(translation of Ukrain. Mat. Visnyk 2013, 10 (3),
433–449. (in Russian))
- Zinchenko T. Elliptic operators on refined Sobolev scales on
vector bundles. Open Math. 2017, 15 (1), 907–925.
doi:10.1515/math-2017-0076
- Zinchenko T. Extended Sobolev scale over vector bundles.
Proc. of Institute of Mathematics, National Academy of Sciences of
Ukraine 2017, 14 (3), 114–127. (in Ukrainian)