References

  1. Agranovich M.S. Elliptic operators on closed manifolds. Partial differential equations, VI. Elliptic and parabolic operators, Encyclopaedia Math. Sci., 63, 1–130, Springer, Berlin, 1994.
  2. Almeida A., Caetano A. Real interpolation of generalized Besov-Hardy spaces and applications. J. Fourier Anal. Appl. 2011, 17 (4), 691–719. doi:10.1007/s00041-010-9145-2
  3. Anop A., Chepurukhina I., Murach A. Elliptic problems with additional unknowns in boundary conditions and generalized Sobolev spaces. Axioms 2021, 10, 292. doi:10.3390/axioms10040292
  4. Anop A., Denk R., Murach A. Elliptic problems with rough boundary data in generalized Sobolev spaces. Commun. Pure Appl. Anal. 2021, 20 (2), 697–735. doi:10.3934/cpaa.2020286
  5. Anop A., Kasirenko T. Elliptic boundary-value problems in Hörmander spaces. Methods Funct. Anal. Topology 2016, 22 (4), 295–310.
  6. Anop A.V., Murach A.A. Parameter-elliptic problems and interpolation with a function parameter. Methods Funct. Anal. Topology 2014, 20 (2), 103–116.
  7. Anop A.V., Murach A.A. Regular elliptic boundary-value problems in the extended Sobolev scale. Ukrainian Math. J. 2014, 66 (7), 969–985. doi:10.1007/s11253-014-0988-6 (translation of Ukrain. Mat. Zh. 2014, 66 (7), 867–883. (in Russian))
  8. Avakumović V.G. O jednom O-inverznom stavu. Rad Jugoslovenske Akad. Znatn. Umjetnosti 1936, 254, 167–186.
  9. Baghdasaryan A.G. On interpolation of pairs of generalized spaces of Besov type. Eurasian Math. J. 2010, 1 (4), 32–77.
  10. Bingham N.H., Goldie C.M., Teugels J.L. Regular variation. In: Rota G.-C. (Ed.) Encyclopedia Math. Appl., 27. Cambridge University Press, Cambridge, 1989.
  11. Buldygin V.V., Indlekofer K.-H., Klesov O.I., Steinebach J.G. Pseudo-Regularly Varying Functions and Generalized Renewal Processes. Springer, Cham, 2018.
  12. Domı́nguez Ó., Tikhonov S. Function spaces of logarithmic smoothness: embeddings and characterizations. Mem. Amer. Math. Soc. 2023, 282, 1393. doi:10.1090/memo/1393
  13. Douglis A., Nirenberg L. Interior estimates for elliptic systems of partial differential equations. Comm. Pure Appl. Math. 1955, 8 (4), 503–538.
  14. Dunford N., Schwartz I. T. Linear operators, Part II. Spectral theory, selfadjoint operators in Hilbert spaces [reprint of the 1963 orginal]. John Willey & Sons, Inc., New York, 1988.
  15. Faierman M. Fredholm theory for an elliptic differential operator defined on \(\mathbb{R}^{n}\) and acting on generalized Sobolev spaces. Comm. Pure Appl. Analysis 2020, 19 (3), 1463–1483. doi:10.3934/cpaa.2020074
  16. Farkas W., Leopold H.-G. Characterisations of function spaces of generalised smoothness. Ann. Mat. Pura Appl. 2006, 185 (1), 1–62. doi:10.1007/s10231-004-0110-z
  17. Foiaş C., Lions J.-L. Sur certains théorèmes d’interpolation Acta Scient. Math. Szeged. 1961, 22 (3–4), 269–282. (in French)
  18. Haroske D.D., Moura S.D. Continuity envelopes and sharp embeddings in spaces of generalized smoothness. J. Funct. Anal. 2008, 254 (6), 1487–1521. doi:10.1016/j.jfa.2007.12.009
  19. Haroske D.D., Leopold H.-G., Moura S.D., Skrzypczak L. Nuclear and compact embeddings in function spaces of generalised smoothness. Anal. Math. 2023, 49 (4), 1007–1039. doi:10.1007/s10476-023-0238-y
  20. Hörmander L. Linear partial differential operators. In: Eckmann B., van der Waerden B.L. (Eds.) Grundlehren Math. Wiss., 116. Springer, Berlin, 1963.
  21. Hörmander L. The analysis of linear partial differential operators, Vol. II. Differential operators with constant coefficients [reprint of the 1983 original]. Springer, Berlin, 2005.
  22. Hörmander L. The analysis of linear partial differential operators, Vol. III. Pseudo-differential operators [reprint of the 1994 edition]. Springer, Berlin, 2007.
  23. Jacob N. Pseudodifferential operators and Markov processes. Imperial College Press, London, 2001, 2002, 2005.
  24. Loosveldt L., Nicolay S. Some equivalent definitions of Besov spaces of generalized smoothness. Math. Nachr. 2019, 292 (10), 2262–2282. doi:10.1002/mana.201800111
  25. Los V., Mikhailets V.A., Murach A.A. Parabolic problems in generalized Sobolev spaces. Commun. Pure Appl. Anal. 2021, 20 (10), 3605–3636. doi:10.3934/cpaa.2021123
  26. Mikhailets V.A., Murach A.A. Elliptic operators in a refined scale of functional spaces. Ukrainian. Math. J. 2005, 57 (5), 817–825. doi:10.1007/s11253-005-0231-6 (translation of Ukrain. Mat. Zh. 2005, 57 (5), 689–696. (in Russian))
  27. Mikhailets V.A., Murach A.A. Improved scale of spaces and elliptic boundary-value problems. II. Ukranian Math. J. 2006, 58 (3), 398–417. doi:10.1007/s11253-006-0074-9 (translation of Ukrain. Mat. Zh. 2006, 58 (3), 352–370. (in Russian))
  28. Mikhailets V.A., Murach A.A. Interpolation with a function parameter and refined scale of spaces. Methods Funct. Anal. Topology 2008, 14 (1), 81–100.
  29. Mikhailets V.A., Murach A.A. On elliptic operators on a closed manifold. Dopov. Nats. Akad. Nauk Ukr. Mat. Pryrodozn. Tekh. Nauki 2009, 3, 13–19. (in Russian)
  30. Mikhailets V. A., Murach A. A. The refined Sobolev scale, interpolation, and elliptic problems. Banach J. Math. Anal. 2012, 6 (2), 211–281. doi:10.15352/bjma/1342210171
  31. Mikhailets V.A., Murach A.A. Extended Sobolev scale and elliptic operators. Ukrainian Math. J. 2013, 65 (3), 392–404. doi:10.1007/s11253-013-0787-5 (translation of Ukrain. Mat. Zh. 2013, 65 (3), 392–404. (in Russian))
  32. Mikhailets V.A., Murach A.A. Hörmander spaces, interpolation, and elliptic problems. In: Carstensen C., Fusco N., Gesztesy F., Jacob N., Neeb K.-H. (Eds.) De Gruyter Studies in Math., 60. De Gruyter, Berlin, 2014.
  33. Mikhailets V.A., Murach A.A. Interpolation Hilbert spaces between Sobolev spaces. Results Math. 2015, 67 (1), 135–152. doi:10.1007/s00025-014-0399-x
  34. Mikhailets V., Murach A. Unconditional convergence of eigenfunction expansions for abstract and elliptic operators. Proc. Roy. Soc. Edinburgh Sect. A. 2025, 155 (6), 2345–2363. doi:10.1017/prm.2024.40
  35. Mikhailets V., Murach A., Chepurukhina I. Elliptic operators and boundary-value problems in spaces of generalized smoothness. Ukrainian Math. J. 2025, 76 (9), 1503–1536. doi:10.1007/s11253-025-02403-5 (translation of Ukrain. Mat. Zh. 2025, 76 (9), 1331–1363. doi:10.3842/umzh.v76i9.8595 (in Ukrainian))
  36. Mikhailets V., Murach A., Zinchenko T. An extended Hilbert scale and its applications. Adv. Math. 2025, 465, 110155. doi:10.1016/j.aim.2025.110155
  37. Milatovic O. Extended Sobolev scale on \(\mathbb{Z}^{n}\). J. Pseudo-Differ. Oper. Appl. 2024, 15, 25. doi:10.1007/s11868-024-00600-7
  38. Milatovic O. The essential adjointness of pseudodifferential operators on \(\mathbb{Z}^{n}\). Complex. Anal. Oper. Theory 2024, 18 (6), 150. doi:10.1007/s11785-024-01597-z
  39. Moura S.D., Neves J.S., Schneider C. Spaces of generalized smoothness in the critical case: optimal embeddings, continuity envelopes and approximation numbers. J. Approx. Theory 2014, 187, 82–117. doi:10.1016/j.jat.2014.07.010
  40. Murach A.A. On elliptic systems in Hörmander spaces. Ukrainian Math. J. 2009, 61 (3), 467–477. doi:10.1007/s11253-009-0215-z (translation of Ukrain. Mat. Zh. 2009, 61 (3), 391–399. (in Russian))
  41. Murach A.A., Zinchenko T. Parameter-elliptic operators on the extended Sobolev scale. Methods Funct. Anal. Topology 2013, 19, (1), 29–39.
  42. Nicola F., Rodino L. Global Pseudodifferential Calculas on Euclidean spaces. In: Wong M.W. (Ed.) Pseudo Diff. Oper., 4. Birkhäser, Basel, 2010.
  43. Ovchinnikov V.I. The methods of orbits in interpolation theory. Mathematical Reports 1984, 1 (2), 349–515.
  44. Peetre J. On interpolation functions. Acta Sci. Math. (Szeged) 1966, 27, 167–171.
  45. Peetre J. On interpolation functions. II. Acta Sci. Math. (Szeged) 1968, 29, 91–92.
  46. Seneta E. Regularly varying functions. In: Dold A., Eckmann B. (Eds.) Lecture Notes in Math., 508. Springer-Verlag, Berlin-Heidelberg–New York, 1976.
  47. Stepanets A.I. Methods of Approximation Theory. VSP, Utrecht, 2005.
  48. Volevich L.R., Paneah B.P. Certain spaces of generalized functions and embedding theorems. Russian Math. Surveys 1965, 20 (1), 1–73. (translation of Uspehi Mat. Nauk 1965, 20 (1), 3–74 (in Russian))
  49. Wells R.O. Jr. Dufferential analysis on complex manifolds. Springer, New York, 1980.
  50. Zinchenko T.N., Murach A.A. Douglis-Nirenberg elliptic systems in Hörmander spaces. Ukrainian Math. J. 2013, 64 (11), 1672–1687. doi:10.1007/s11253-013-0743-4 (translation of Ukrain. Mat. Zh. 2013, 64 (11), 1477–1476. (in Russian))
  51. Zinchenko T.N., Murach A.A. Petrovskii elliptic systems in the extended Sobolev scale. J. Math. Sci. (N.Y.) 2014, 196 (5), 721–732. doi:10.1007/s10958-014-1688-3 (translation of Ukrain. Mat. Visnyk 2013, 10 (3), 433–449. (in Russian))
  52. Zinchenko T. Elliptic operators on refined Sobolev scales on vector bundles. Open Math. 2017, 15 (1), 907–925. doi:10.1515/math-2017-0076
  53. Zinchenko T. Extended Sobolev scale over vector bundles. Proc. of Institute of Mathematics, National Academy of Sciences of Ukraine 2017, 14 (3), 114–127. (in Ukrainian)