References
- Ashordia M. Criteria of correctness of linear boundary value
problems for systems of generalized ordinary differential
equations. Czechoslovak Math. J. 1996, 46 (3),
385–404.
- Atlasiuk O.M. Limit theorems for solutions of multipoint
boundary-value problems in Sobolev spaces. J. Math. Sci. 2020,
247 (2), 238–247. doi:10.1007/s10958-020-04799-w
- Atlasiuk O.M. Limit theorems for solutions of multipoint
boundary-value problems with a parameter in Sobolev spaces.
Ukrainian Math. J. 2021, 72 (8), 1175–1184.
doi:10.1007/s11253-020-01859-x (translation of Ukrain. Mat. Zh. 2020,
72 (8), 1015–1023. doi:10.37863/umzh.v72i8.6158 (in
Ukrainian))
- Atlasiuk O.M., Mikhailets V.A. Fredholm one-dimensional
boundary-value problems in Sobolev spaces. Ukrainian Math. J. 2019,
70 (10), 1526–1537. doi:10.1007/s11253-019-01588-w
(translation of Ukrain. Mat. Zh. 2018, 70 (10),
1324–1333. (in Ukrainian))
- Atlasiuk O.M., Mikhailets V.A. Fredholm one-dimensional
boundary-value problems with parameter in Sobolev spaces. Ukrainian
Math. J. 2019, 70 (11), 1677–1687.
doi:10.1007/s11253-019-01599-7 (translation of Ukrain. Mat. Zh. 2018,
70 (11), 1457–1465. (in Ukrainian))
- Boichuk A.A., Samoilenko A.M. Generalized inverse operators and
Fredholm boundary-value problems. VSP, Utrecht-Boston, 2004.
- Cartan A. Differential calculus. Differential forms. Mir, Moscow,
1971. (in Russian)
- Dunford N., Schwartz J.T. Linear operators. I. General theory.
Interscience Publishers, New York, London, 1958.
- Gikhman I.I. Concerning a theorem of N.N. Bogolyubov.
Ukrain. Mat. Zh. 1952, 4 (2), 215–219. (in Russian)
- Gnyp E.V., Kodlyuk T.I., Mikhailets V.A. Fredholm boundary-value
problems with parameter in Sobolev spaces. Ukrainian Math. J. 2015,
67 (5), 658–667. doi:10.1007/s11253-015-1105-1
(translation of Ukrain. Mat. Zh. 2015, 67 (5), 584–591.
(in Russian))
- Goriunov A.S., Mikhailets V.A., Pankrashkin K. Formally
self-ajoint quasi-differential operators and boundary-value
problems. Electr. J. Differ. Equa. 2013, 2013,
1–16.
- Goriunov A.S., Mikhailets V.A. Regularization of singular
Sturm-Liouville equations. Methods Funct. Anal. Topology 2010,
16 (2), 120–130.
- Goriunov A.S., Mikhailets V.A. Regularization of two-term
differential equations with singular coefficients by
quasiderivatives. Ukrainian Math. J. 2012, 63 (9),
1361–1378. doi:10.1007/s11253-012-0584-6 (translation of Ukrain. Mat.
Zh. 2011, 63 (9), 1190–1205. (in Russian))
- Goriunov A.S., Mikhailets V.A. Resolvent convergence of
Sturm-Liouville operators with singular potentials. Math. Notes.
2010, 87 (1), 287–292. doi:10.1134/S0001434610010372
(translation of Mat. Zametki 2010, 87 (2), 311–315. (in
Russian))
- Hnyp E.V. Continuity of the solutions of one-dimensional
boundary-value problems with respect to the parameter in the
Slobodetskii spaces. Ukrainian Math. J. 2016, 68
(6), 849–861. doi:10.1007/s11253-016-1261-y (translation of Ukrain. Mat.
Zh. 2011, 68 (6), 746–756. (in Ukrainian))
- Hnyp Y.V., Mikhailets V.A., Murach A.A. Parameter-dependent
one-dimensional boundary-value problems in Sobolev spaces. Electr.
J. Differ. Equa. 2017, 2017 (81), 1–13.
- Hörmander L. The analysis of linear partial differential operators.
III: Pseudo-differential operators. Springer-Verlag, Berlin, Heidelberg,
2007.
- Kiguradze I.T. Boundary-value problems for systems of ordinary
differential equations. J. Soviet Math. 1988, 43
(2), 2259–2339. doi:10.1007/BF01100360
- Kiguradze I.T. On boundary value problems for linear differential
systems with singularities. Differ. Equ. 2003, 39
(2), 212–225. doi:10.1023/A:1025152932174
- Kiguradze I.T. Some singular boundary-value problems for ordinary
differential equations. Tbilisi University, Tbilisi, 1975. (in
Russian)
- Kodlyuk T.I., Mikhailets V.A. Solutions of one-dimensional
boundary-value problems with a parameter in Sobolev spaces. J.
Math. Sci. 2013, 190 (4), 589–599.
doi:10.1007/s10958-013-1272-2
- Krasnoselskii M.A., Krein S.G. On the principle of averaging in
nonlinear mechanics. Uspekhi Mat. Nauk. 1955, 10
(3), 147–153.
- Kurzweil J., Vorel Z. Continuous dependence of solutions of
differential equations on a parameter. Czechoslovak Math. J. 1957,
7 (4), 568–583. (in Russian)
- Levin A.Yu. The limiting transition for nonsingular systems.
Dokl. Akad. Nauk SSSR. 1967, 176 (4), 774–777. (in
Russian)
- Mikhailets V., Atlasiuk O. Differential systems in Sobolev spaces
with generic inhomogeneous boundary conditions. Carpathian Math.
Publ. 2024, 16 (2), 523–538.
doi:10.15330/cmp.16.2.523-538
- Mikhailets V., Atlasiuk O. The solvability of inhomogeneous
boundary-value problems in Sobolev spaces. Banach J. Math. Anal.
2024, 18 (2), article number 12.
doi:10.1007/s43037-023-00316-8
- Mikhailets V.A., Atlasiuk O.M., Skorobohach T.B. On the
solvability of Fredholm boundary-value problems in fractional Sobolev
spaces. Ukrainian Math. J. 2023, 75 (1), 107–117.
doi:10.1007/s11253-023-02188-5 (translation of Ukrain. Mat. Zh. 2023,
75 (1), 96–104. doi:10.37863/umzh.v75i1.7308 (in
Russian))
- Mikhailets V.A., Murach A.A., Soldatov V.O. Continuity in a
parameter of solutions to generic boundary-value problems.
Electron. J. Qual. Theory Differ. Equ. 2016, 2016
(A87), 1–16. doi:10.14232/ejqtde.2016.1.87
- Nguen T.K. On the dependence of a solution to a linear system of
differential equations on a parameter. Differ. Equ. 1993,
29 (6), 830–835.
- Opial Z. Continuous parameter dependence in linear systems of
differential equations. J. Differ. Equ. 1967, 3
(4), 571–579.
- Reid W.T. Some limit theorems for ordinary differential
systems. J. Differ. Equ. 1967, 3 (3), 423–439.