References

  1. Ashordia M. Criteria of correctness of linear boundary value problems for systems of generalized ordinary differential equations. Czechoslovak Math. J. 1996, 46 (3), 385–404.
  2. Atlasiuk O.M. Limit theorems for solutions of multipoint boundary-value problems in Sobolev spaces. J. Math. Sci. 2020, 247 (2), 238–247. doi:10.1007/s10958-020-04799-w
  3. Atlasiuk O.M. Limit theorems for solutions of multipoint boundary-value problems with a parameter in Sobolev spaces. Ukrainian Math. J. 2021, 72 (8), 1175–1184. doi:10.1007/s11253-020-01859-x (translation of Ukrain. Mat. Zh. 2020, 72 (8), 1015–1023. doi:10.37863/umzh.v72i8.6158 (in Ukrainian))
  4. Atlasiuk O.M., Mikhailets V.A. Fredholm one-dimensional boundary-value problems in Sobolev spaces. Ukrainian Math. J. 2019, 70 (10), 1526–1537. doi:10.1007/s11253-019-01588-w (translation of Ukrain. Mat. Zh. 2018, 70 (10), 1324–1333. (in Ukrainian))
  5. Atlasiuk O.M., Mikhailets V.A. Fredholm one-dimensional boundary-value problems with parameter in Sobolev spaces. Ukrainian Math. J. 2019, 70 (11), 1677–1687. doi:10.1007/s11253-019-01599-7 (translation of Ukrain. Mat. Zh. 2018, 70 (11), 1457–1465. (in Ukrainian))
  6. Boichuk A.A., Samoilenko A.M. Generalized inverse operators and Fredholm boundary-value problems. VSP, Utrecht-Boston, 2004.
  7. Cartan A. Differential calculus. Differential forms. Mir, Moscow, 1971. (in Russian)
  8. Dunford N., Schwartz J.T. Linear operators. I. General theory. Interscience Publishers, New York, London, 1958.
  9. Gikhman I.I. Concerning a theorem of N.N. Bogolyubov. Ukrain. Mat. Zh. 1952, 4 (2), 215–219. (in Russian)
  10. Gnyp E.V., Kodlyuk T.I., Mikhailets V.A. Fredholm boundary-value problems with parameter in Sobolev spaces. Ukrainian Math. J. 2015, 67 (5), 658–667. doi:10.1007/s11253-015-1105-1 (translation of Ukrain. Mat. Zh. 2015, 67 (5), 584–591. (in Russian))
  11. Goriunov A.S., Mikhailets V.A., Pankrashkin K. Formally self-ajoint quasi-differential operators and boundary-value problems. Electr. J. Differ. Equa. 2013, 2013, 1–16.
  12. Goriunov A.S., Mikhailets V.A. Regularization of singular Sturm-Liouville equations. Methods Funct. Anal. Topology 2010, 16 (2), 120–130.
  13. Goriunov A.S., Mikhailets V.A. Regularization of two-term differential equations with singular coefficients by quasiderivatives. Ukrainian Math. J. 2012, 63 (9), 1361–1378. doi:10.1007/s11253-012-0584-6 (translation of Ukrain. Mat. Zh. 2011, 63 (9), 1190–1205. (in Russian))
  14. Goriunov A.S., Mikhailets V.A. Resolvent convergence of Sturm-Liouville operators with singular potentials. Math. Notes. 2010, 87 (1), 287–292. doi:10.1134/S0001434610010372 (translation of Mat. Zametki 2010, 87 (2), 311–315. (in Russian))
  15. Hnyp E.V. Continuity of the solutions of one-dimensional boundary-value problems with respect to the parameter in the Slobodetskii spaces. Ukrainian Math. J. 2016, 68 (6), 849–861. doi:10.1007/s11253-016-1261-y (translation of Ukrain. Mat. Zh. 2011, 68 (6), 746–756. (in Ukrainian))
  16. Hnyp Y.V., Mikhailets V.A., Murach A.A. Parameter-dependent one-dimensional boundary-value problems in Sobolev spaces. Electr. J. Differ. Equa. 2017, 2017 (81), 1–13.
  17. Hörmander L. The analysis of linear partial differential operators. III: Pseudo-differential operators. Springer-Verlag, Berlin, Heidelberg, 2007.
  18. Kiguradze I.T. Boundary-value problems for systems of ordinary differential equations. J. Soviet Math. 1988, 43 (2), 2259–2339. doi:10.1007/BF01100360
  19. Kiguradze I.T. On boundary value problems for linear differential systems with singularities. Differ. Equ. 2003, 39 (2), 212–225. doi:10.1023/A:1025152932174
  20. Kiguradze I.T. Some singular boundary-value problems for ordinary differential equations. Tbilisi University, Tbilisi, 1975. (in Russian)
  21. Kodlyuk T.I., Mikhailets V.A. Solutions of one-dimensional boundary-value problems with a parameter in Sobolev spaces. J. Math. Sci. 2013, 190 (4), 589–599. doi:10.1007/s10958-013-1272-2
  22. Krasnoselskii M.A., Krein S.G. On the principle of averaging in nonlinear mechanics. Uspekhi Mat. Nauk. 1955, 10 (3), 147–153.
  23. Kurzweil J., Vorel Z. Continuous dependence of solutions of differential equations on a parameter. Czechoslovak Math. J. 1957, 7 (4), 568–583. (in Russian)
  24. Levin A.Yu. The limiting transition for nonsingular systems. Dokl. Akad. Nauk SSSR. 1967, 176 (4), 774–777. (in Russian)
  25. Mikhailets V., Atlasiuk O. Differential systems in Sobolev spaces with generic inhomogeneous boundary conditions. Carpathian Math. Publ. 2024, 16 (2), 523–538. doi:10.15330/cmp.16.2.523-538
  26. Mikhailets V., Atlasiuk O. The solvability of inhomogeneous boundary-value problems in Sobolev spaces. Banach J. Math. Anal. 2024, 18 (2), article number 12. doi:10.1007/s43037-023-00316-8
  27. Mikhailets V.A., Atlasiuk O.M., Skorobohach T.B. On the solvability of Fredholm boundary-value problems in fractional Sobolev spaces. Ukrainian Math. J. 2023, 75 (1), 107–117. doi:10.1007/s11253-023-02188-5 (translation of Ukrain. Mat. Zh. 2023, 75 (1), 96–104. doi:10.37863/umzh.v75i1.7308 (in Russian))
  28. Mikhailets V.A., Murach A.A., Soldatov V.O. Continuity in a parameter of solutions to generic boundary-value problems. Electron. J. Qual. Theory Differ. Equ. 2016, 2016 (A87), 1–16. doi:10.14232/ejqtde.2016.1.87
  29. Nguen T.K. On the dependence of a solution to a linear system of differential equations on a parameter. Differ. Equ. 1993, 29 (6), 830–835.
  30. Opial Z. Continuous parameter dependence in linear systems of differential equations. J. Differ. Equ. 1967, 3 (4), 571–579.
  31. Reid W.T. Some limit theorems for ordinary differential systems. J. Differ. Equ. 1967, 3 (3), 423–439.