ISSN 2075-9827 e-ISSN 2313-0210 https://journals.pnu.edu.ua/index.php/cmp
Carpathian Math. Publ. 2025, 17 (2), 679-692 KapmnaTcpki maTem. my6a. 2025, T.17, N2, C.679-692
doi:10.15330/cmp.17.2.679-692

[\

Approximation of isometric function spaces by entire
functions of exponential type
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In this article, sufficient conditions are established for mappings by convolution operators of
spaces of function defined on the n-dimensional Euclidean space into spaces of entire functions of
exponential type. Integral representations for these operators are obtained. Equalities of approxi-
mation characteristics in isometric functional spaces of many variables are obtained using equalities
of approximation characteristics in isometric function spaces of one variable.
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1 Introduction

In the paper [10], some subspaces of real functions of n + k variables were constructed that
are isometric to spaces of real functions defined on the n-dimensional Euclidean space. Since
isometry of functional spaces with different numbers of variables is a rare phenomenon and
was previously known only for spaces of complex-valued functions (see [10, p. 1027]), we
consider its applications.

In papers [1, 12], subspaces of solutions to the Laplace and heat equations were found,
being isometric to spaces of real functions of one variable.

To construct subspaces of solutions to differential equations and their systems that are iso-
metric to spaces of real functions, it was necessary to establish conditions for the convergence
of the convolution of the function with a delta-like kernel to this function that was done in [11].

In paper [13], the definitions of the main approximation characteristics were formulated,
examples of their equality for isometric mappings of spaces of real functions of n 4 m variables
into spaces of real 27r-periodic functions in each of the n variables were presented, and some
examples of their applications in the theory of function approximation were given.

In the paper [9], the results of work [13] were extended to isometric mappings in spaces of
non-periodic functions. Integral representations were found for function spaces isometric to
spaces of entire functions of exponential type, which are necessary for establishing the equality
of approximation characteristics in isometric function spaces. The topic related to the study of
approximation characteristics in spaces of entire functions and vectors of exponential type is
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2020 Mathematics Subject Classification: 30E10, 30C70, 41A35.

© Bushev D.M., Kal’chuk I.V,, Kharkevych Yu.l., 2025



680 Bushev D.M.,, Kal’chuk I.V,, Kharkevych Yu.l.

relevant and is developing intensively (see, e.g., [15,16,25]). Problems of approximation theory
also play an important role in applied research (see, e.g., [3,5,18-20,26]).

2 Main notations, definitions and statements

Let us denote by C", L, Lg, ig, p = (p1,...,pn), the spaces of real functions defined on
E" that are continuous, bounded, essentially bounded and measurable, respectively, with the
following norms:

Ifllen = sup [£(x)],

x€E"

1l = Supgrai [f(x)],

xeE"
Hf”Lg = H tee H ”f(xl/"'lx”)l‘pl,xl sz,xz S Upn,xn
P2 r3 pn 1
00 (e} o P p Pn— pn
= </ ((/ (/ |f(x1,x2,...,xn)|f’1dx1> 1dx2> 2) 1dxn> ,
iy = - TG 3 s+ T

ap+27 ay+271 a1+2m % Z—g —pgil an
= sup ( / (...sup ( / (sup / |f(x1, ..., xn) Pt dx1> dx2> > dxn> .
an€E i a€E i am€E s

Let X" be one of the spaces C", LZ,, Lg, ﬂg withp = (p1,...,pn), 1 <pi<oo,i=1,...,n.
Let
F(—i(n = {T(yn(Z) = Ta—n(xl +it1,...,xn +an) . Ta—n(JC) S Xn}

be the space of entire functions of exponential type not larger than ¢" = (01,...,04) (see
[23, pp. 118, 119]), which belong to the space X" on the real n-dimensional Euclidean space E".
Let X" D FX"(E") = {Tsn(x) : Tpn(z) € FX"} be their restriction to the space E".

Let the inequality 7 = (y1,...,ym) > 0 = (0,...,0) mean that the coordinates of the vector
i are non-negative, and 7 > 0 mean that at least one of them is positive. Denote by

H;{,m ={(xy) =(x9) = (x1,..., X0, Y1,---,ym) € "™ 15> 0},

I, = {(x,y) € E"™: 7 >0}

the subsets of the real (n 4+ m)-dimensional Euclidean space E"1™.
Let Igm (x) be delta-like kernels (see [10, equation (9), (10)]), defined on IT;} .. Let

{EX" Ign} = {(T(Tn * Ign) (z) = /n Ign () Ton(z — ) dt : (Tom € FXY A (7 > ('))} ,
) g oy ) (Tenx D) (z), §>0, . o
{F(—T * Iy—m} = {ITgn (Z,y) = { T(—Tn (yZ>, y_ _ 0 : Tgn - Fﬁ'

be convolution spaces of entire functions of exponential type not larger than ¢ with delta-like
kernels, and let

(EX(E") 5 I} = {(Ton 5 L) () = (Ton (x) € FX'(E") A (7 > 0)},
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OI

Ta—ﬂ * Igm)(x), y_

(FF(En) * 1} = {IT(-,n(x,y) - {< A A

} : Tyn(x) € P%"(E")} (1)

OI

be their restrictions to E".
If n = 1, then the index n and the overlines above the vectors 7, p etc. will be omitted.
Let us denote by

Upn(A, %) = (Agn * ) (x / Agn(x — ) () dt @)

a linear operator defined by convolution with the kernel Az (t).

We will determine sufficient conditions under which the operator Uz:(A, f, x) maps the
space X" into the subspace FX" (E").

Let 2" = {m = (my,...,mj,...,my) :m; € Z,i =1,...,n} be the integer lattice in the
space E", and let Q% = [my,m1 + 1] x - -+ X [my, my, + 1] C E" be the n-dimensional cube in
E" corresponding to the vector i € Z". Let x;3 € Q};, be an arbitrary element of this cube. The
following statement holds.

Lemma 1. If the function f, together with all its derivatives and mixed partial derivatives
o f

grable on E", then

k=1,2,...,n, of at most first order with respect to each variable, is absolutely inte-

akf

B - aXMk dx. 3)

ol < [ p

meZ” =1 1<m <---<m<n

Proof. Let us show that inequality (3) holds for n = 1. In this case, Q}, = [my,m; + 1] and
Xm = x™ € [my,mq + 1], where m; € Z, and

L fem < [ If@ldc [ If () dx @

mEZ

Since the function f(x) is differentiable on the entire real axis, the function |f(x)| is contin-
uous on E, and

min | f(x)] = [f(ym,)], (%)

x€[my,mi+1]

where y,,, € [m1,m1 + 1]. Then, due to the differentiability of the function f(x), and consider-
ing that both x™ and y,,, belong to the segment [mm1, m1 + 1], using relation (5), we get

FE) < fFE™) = fFYm) ]+ 1f Yomi)|
my1+1

= [ x| [ )

mq

my+1 my+1 6
< [ wlar M p@la

mq

From inequality (6), using the additive property of the integral and the equality

U [ml,ml +1] = (—OO,—{—OO),

miEZ

inequality (4) follows.
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Let us prove that inequality (3) holds for n = 2. That is, Q2, = [mq, mq + 1] x [ma, my + 1],
xm = (X, x) € Q3, and

Y IfGd )] < /152 (If Ger,x2) [+ | fiy (x1, x2) [+ | fry (21, x2) [+ | fiyy (21, 22)]) dxydxs.
mez?

Since the functions f(x) and f (x1, x2) are absolutely integrable on E?, by Fubini theorem
(see, e.g., [22, pp. 85, 86]), for each fixed x; these functions are absolutely integrable in the

variable x; on the entire real axis. Therefore, using inequality (6), we obtain
o mtl i mEl i
P ) < [ G el + [ If G, )] . @)

mq mq

Reasoning in the same way as in proving inequality (7), we establish

, - moy+1 , my+1 "
G < [ 1 )l + [ g e, m) ®
2 2
. my+1 , I’I”l7_+1
Fan) < [ I m)lde+ [ |f(a,x)]ds. ©)
my my

From inequalities (7)—(9), it follows that

mi1+1 pmr+1
FOEal < [ (G Uf G )|+ o )| g (1, 22) ) dada

Using the method of mathematical induction, we can prove that for any natural number n
the following inequality
) dx

_ - 1 ok f(x

fowl =1l < [, (F@i+ X T L
holds, from which, using the additive property of the integral and the equality J Q} = E",
i

axml st axmk

my<---<mp<n

inequality (3) follows. Lemma 1 is proved. O

From Lemma 1 and the Zygmund inequality (see, e.g., [23, pp. 138-140]), the following
statement follows.

Corollary 1. If T;«(x) is an entire function of exponential type not larger than ¢" and is abso-
lutely integrable on E", then

>, |Ton(xn !<<1+Z )y Uml---cfmk>llTan||Uf. (10)

meZm" 1 1<my<---<mp<n

Proof. Using Zygmund inequality for entire functions of exponential type not larger than 7",
we obtain the inequalities:

akT[Tn (X)

m S (Tml . "(ka |T5—71(X)|,

a Tgn
ax”ll * aka

’dx < Omy - Umk/ ’TU" )’ dx = Umy =+ Omy ”TU'””L”’

I

from which, together with Lemma 1, inequality (10) follows. O
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We should note that inequality (10) for the case x5 = (my,...,m,) € Z" follows
from [23, Theorem 3.3.2].

Let us establish sufficient conditions under which the operator U« (A, f,z) maps the space
X" into the subspace FX".

Theorem 1. Let X" be one of the spaces C", LY., Lg, or ﬁg, where p = (p1,...,pn), 1 < pi < oo,
i=1,...,n. Let Agn(z) be an entire function of exponential type not larger than &", belonging
to the space F2" := F(-fl, and let f € X". Then the function

U(—,n(A,f, Z) = ()A\(-Tn * f) (Z) = En }\(_T” (Z - t)f(t) dt

is an entire function of exponential type not larger than ¢", which belongs to the space X",
ie Um(A, f,z) € FX.

Proof. For the spaces C" and LZ, 1 < p < o, Theorem 1 was established in [23, pp. 162, 163].
Let us prove that
X" CL":=Lj. (11)
If f e Iig with p = (p1,...,pn), then using the definition of the norm in the space Iig and
Holder’s inequality, we obtain

n

i < [1m)V% | f]

i=1

£

fny, 12
b (12)

where + + L

1 o .
o T = 1,i.e.

Lycim (13)
From the definitions of norms in the spaces C", LY, Iig and Lj it follows that C" C Lg, C Ly

and L C Iig. Therefore, from relations (12) and (13) we obtain (11).

Since Ay#(z) is an entire function of exponential type not larger than 7", we get the follow-
ing Taylor series expansion (see [23, p. 163])

}Lan(z—}—l/[) :}L(yn(Zl +u1,...,2n+un)

A (w) 5 Pt thidn(u)

kezn  © kez ot - kgt k!

. (14)

which converges absolutely for any u € E" and Z = (z3,...,z4) € C", where C, is the com-
plex n-dimensional Euclidean space, Z" = {k = (ky,...,ky):kj € Z,k; > 0,i=1,...,n} is
the integer lattice in E" with non-negative coordinates and z* := z’l(1 oz,

Using equality (14) and a change of variables, we obtain
(Ron @I < [ Ron(z = u)f ()
= [ Aor(z+uw)f(-u)ldu < 1 /

Let us denote by Qf = [0,1]" C E" and 7" = |
with side lengths 1 and 271, respectively. Let [0,1]" +m = QF, and 7t — 27t = 7" (171) denote
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the shifts of these cubes by the vectors 71 € Z" and 27171, respectively. Since the coordinates of
the vectors /1 and 27111 are multiples of the side lengths of the corresponding cubes, different
cubes from the families Q% and 71" (1) do not have common interior points. Therefore, the
following relations hold:

U Qn=E'= | n"(m) and #"(m)N#A"(m2) = & = Qp, N Qy, Viity # iz, (16)

mezZn meZn
where A is the set of all interior points of the set A.

Since 6 < 27t < 7, it follows from relations (16) that each cube 71" (1) contains exactly 6"
cubes QF, , and each point of the cube 77" (171) lies in some cube Qy, . Therefore, the maximum
value of the function defined on the cube 71" (7) is less than the sum of all maximum values
of this function on the cubes that intersect with this cube. Taking this into account, and using
the definition of the norm in the space L" and relations (16), for any function f € L" we have

Je A0 [ 01

}\@(u)f(—u)‘du< y max

0—7’1
mezn wem (i

NG (17)
< —U)||tn max [A ’
w<nu£%Hya<>
Since the function )Atg_;) (u) is continuous on the set E", there exists a point x5 € Qf, such
that .
max [A) ()] = A3 (xn) . (18)
ucQr

Using Corollary 1 and Bernstein inequality (see [23, p. 163]), we obtain

¥ A% G )(HZ Y Uml---vmk>}\ﬁé@

1

mez" 11<m<..<m<n
<(F T acen el o
11<m <..<mp<n
<1+ Z Z ‘Tml""ka) ‘_TEH}A\‘_T" L"
=11<m<..<mp<n !
From (17)—(19), it follows that
- _ _ n
LA -] du < Klifllgg Aol g o o =TT (20)
i=1
And from (15) and (20), we have
a Z ¥ oilzi]
‘()‘ff” *f) (Z” < Ky ||f||L” H)‘U”HL” Z ’ =Ky Hf”m H)‘U”HL” ei=t . (21)

kez"

Therefore, if f € ﬁ?, then from inequality (21) (see also [23, p. 163]) it follows that
(Agn * f)(z) is an entire function of exponential type not larger than &". If f € X", then, due
to relation (11), (Asn * f)(z) is also an entire function of exponential type not larger than &".
Using the generalized Minkowski inequality, we obtain

1f Aol < ]

Hence, if f € X", then (Asn * f)(z) € FX". Theorem 1 is proved. O

Xn A
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From the integral representations (see [9, equations (21), (25)]) for functions from the space
FZ' = F; 2, and taking into account that F2" C F2', it follows that

A 1 —iut - 1 : —iut — - _
Agn(t) = W/A A(u)e™™ du = @) /Ag(“(”) +ib(u))e M du = F 1 (Agn) () o)
1 1

= Gy Jp N =:(5;52-/Ln(aﬁn<u>—+ib5n(u))e-iufdu,

n
o

where on the set A%, the equalities Agn (1) = A(u), agn(u) = a(u) and by»(u) = b(u) hold,
while on the set {E" \ A%} we have Agn(u) = agn(u) = bsn(1) = 0. The function a(u) is a real
even function, and b(u) is a real odd function with respect to each variable uy, ..., u,, both
belonging to the space Ly(an).

From the necessary condition for the absolute integrability of the Fourier transform, it fol-
lows that the function Ag»(u), and thus the functions ag» (1) and bg»(u), are continuous on E".
Therefore, according to the definition of these functions, the function A(u), and hence a(u)
and b(u), are continuous on A and equal to zero on the set

[(AY) ={x=(x1,...,xn) EE":|xj| =03, i=1,...,n}.

Let us establish sufficient conditions for the absolute integrability of the kernel Ag(x)
on E".

We denote by L,(, ;) the normed space of functions defined on the interval (a,b) with the

10 = ( / ' f(x)|rdx>m.

Let us prove the auxiliary statement.

Lemma 2. Let A(u) = a(u) + ib(u), where a(u) is an even real-valued function and b(u) is an
odd real-valued function, both absolutely continuous on the segment [—o, 0|, and

a(c) =a(—0) =b(c) =b(—0o) =0. (23)

Then, for any p > 1, the function A, (z), which for n = 1 is defined by equation (22), belongs to
the space F;. Moreover, if the derivatives a’(x) and V' (x) of the functions a(x) and b(x) belong
to the space Ly(_ ;), where q > 1, then the function Av(2) belongs to the space F}.

Proof. Since the function A(u) is continuous on [—c, ], it follows that A(u) € Ly_, ), and
by the Wiener-Paley theorem (see [23, pp. 130, 131]), the function A,(z) belongs to the space
F2,and F2 D P D Fl, where 1 < p < 2. Since the functions a(x) and b(x) are absolutely
continuous on the segment [—0, 0], integrating by parts and using equalities (22), (23), we
obtain

A _ L 7 —iut _ l -1 _ L/oo —iut
Aolt) = 5— [ AW du = 2 F T A = 3= [ Aclwe ™, @

it
where on the interval (—c, ) we have A, (1) = A’'(u), and for |u| > o the equality A (1) =0
holds. Since the functions a(u) and b(u) are absolutely continuous on [—c, ¢], the function
A(u) = a'(u) +ib'(u) belongs (see, e.g., [21, pp. 252-255]) to the space Ly(_q) = L(_¢,), and
the function A (u) belongs to the space L = L(_, 1c0)- Therefore, the function F “TAL)(t) is
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continuous and bounded on the entire real axis, as the inverse Fourier transform of a function
that is absolutely integrable on (—o0, +-00), that is,

[F 71 (A [| ¢ < Ka- (25)

For an arbitrary p; > 1 and fixed a > 0, using the boundedness of the function |A(u)| on
the segment [—0c, 0] and the generalized Minkowski inequality, we obtain

1
a 7z o a . 2
</ Ao (5] dt) oLl |A(u)|</ et |71 dt) "
—a 271 )¢ —a (26)
< (2a)7r i/”m( ) du < K
< (2a) 20 ), 1A du 3.

For any p > 1, by virtue of inequality (25), we get

P y dt y
(/ dt) < 1<2</ —) < K,. 27)
|t]>a It]>a [HP

From relations (24), (26), and (27), it follows that for any p > 1, the function ﬁg(t) belongs
to the space L. Therefore, for any p > 1, we have }A\U(z) € FP.

If, in addition, the functions a’(u) and b'(u) belong to the space L,(_, ) for some g > 1,
then we get A'(u) = a’(u) +ib'(u) € Ly_y,0) C Ly(_g,0), where 1 <7 < min{2,4}, and hence
AL (1) € Ly. According to the Hausdorff-Young theorem (see, e.g., [23, p. 201]), it follows that
F~Y(A}) € Ly, where 1 + 1 = 1. Therefore,

(e

Using Holder inequality, relation (28), and taking into account that r > 1, we obtain
1

/M SF 1)) at < (/M J-"_l()xfy)(f)‘r/dt>:/</ ﬁf <Ko  (29)

t>a [t
From relations (24), (26), and (29), it follows that A (t) € Land Ao (z) € E}, which completes
the proof of Lemma 2. O

SF )

1
7

F LA ‘ dt) " < Ks. (28)

Let us note that a similar statement holds for Fourier coefficients (see, e.g., [7, p. 173] or
[8, pp. 162-163]). If the 27r-periodic absolutely continuous function f(x) has the derivative
f'(x) that belongs to the space L, with the norm

i1, = ([T irara) "y

then

DL F Gl + ) < K 0
=1

but there exist absolutely continuous functions for which the series (30) diverges. The con-
dition that the derivative A’ (1) belongs to the space Ly(~¢,0) is not necessary for the absolute
integrability of the function A, (t). If A(u) = a(|u|), where a(u) = —In(¢~'u), then on the
interval (0,0) we have a’(u) = —% < O0anda’(u) = % > 0. Therefore (see, e.g., [2, p. 125]),

o ‘ o

the function A¢(t) = 5= [ a(ju|)e ™ du = 1 [ a(u) cos(ut) du belongs to the space L, but the
—o 0

derivative a’(u) does not belong to any of the spaces L,y for p > 1.
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Theorem 2. Let

n

_ Hl M) =TT () + 8 (w)), (31)
i

j=1

where the functions a/(u;) are real and even, and b/ (u;) are real and odd, and all are abso-

lutely continuous on the segments [—o;j,0;] for j = 1,...,n with the boundary conditions
a/(|oj|) = b/(|oj|) = 0. Then for any p > 1 the function

. 1 »

Agn(z) = o) /Ag AMu)e ™ du (32)

belongs to the space F};n. Moreover, if the derivatives (a/ (u;))" and (b/ (u;))" belong to the space

Ly(~0,0; for some q > 1, then Agn(z) € FL'.

Proof. Since the functions a/(u;) and b/ (u;) are absolutely continuous on the segments [—0;, 0j],
these functions belong to the space Ly(_, ), and hence the functions A/ (uj) = @ (u;) +ibl (uj)
also belong to Ly _ 0,7)" From equation (31) it follows that the function A(u) belongs to the
space Lyan). Therefore by the Wiener-Paley theorem, the function As«(z), defined by equa-
tion (32), belongs to the space F2', that is, Ay« (z) is an entire function of exponential type not

large then .
From equations (31) and (32), it follows that
uj)e "% duj = Hlf‘lng)(zj), (33)
]:

A

Agn(z) = (21

j=17-

- {1 1=

0, \u]] > ;.

where

Since, according to Lemma 2, for any p > 1, we have F ’1()\{,],) (xj) € Ly, then from equa-
lity (33), by virtue of the definition of the norm in the space L”, it follows that Az:(x) € Ly.
Hence, for any p > 1, we get Agn(z) € F(-fn. Moreover, if the derivatives a/’ (uj) and b/’ (uj)
belong to the space Ly(=o;0) with g > 1, then, by Lemma 2, the functions F ! (A{Tj) (x;) belong
to the space L. Therefore, from equation (33) it follows that Agz«(x) € L", ie. Agu(z) € FL'.
Theorem 2 is proved. O

Let us find the integral representations for the operators
Upn (A, f, %) = (Agn % f)(x / Agn(x — 1) F(1) dt.

Theorem 3. Let the kernel Ay« (t) be defined by equation (22) and belong to the space L". Let
f € LI, where1 < p < 2. Then, for the operators Us»(A, f,x) given by (2), the following
integral representation

Upn (A, f, %) = ﬁ Ao () F () (w)e ™ du = ﬁ /A A@F() e du (34

Eﬂ
holds for all x € E".

Proof. If f € Ly, 1 < p < 2, then by the Hausdorff-Young theorem, we get F(f)(u) € L,
where % + % = 1. Therefore, according to equation (22) and the definition of the function
Agn(u), we obtain F(f)(u)Ag(u) € L". Then, by [10, Lemma 7], equality (34) holds for all
x € E". Theorem 3 is proved. O
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3 Examples of equality of approximation characteristics in function spaces
that are isometric to spaces of real non-periodic functions

To simplify the notation, we first present examples of the equality of approximation char-
acteristics in function spaces that are isometric to spaces of real non-periodic functions of one
variable.

Let ¥yn (x) be delta-like kernels (see [10, equations (9), (10)]), defined on Hf ., With respect
to a single variable x.

Let us introduce the linear operator U, (A Yym, f, x) = ((}A\U * ‘]E’gm) * f ) (x), which, for
n = 1, coincides with the operator defined by (2), where the kernel A¢(z) = s=F " 1(As)(z) is
described by formulas (22) and (24), and belongs to the function space EL.

We define the following approximation characteristics:

e ox(f,Us (A, f)) = |If = Us(A, f)|lx is the approximation of the function f € X by the
linear operator U, (A, f),

o oxm, (f * Yyu, Ug(A, f xF¥yn)) = Hf *Wgn — U (A, f *Fym) } XM, 19 the approximation
of the function f * ¥yn € XM,, by the linear operator U, (A, f * ¥yn),

* ox(M, Uy (A, M)) = sup px(f,Us(A, f)) is the approximation of the set M C X by the
feM

operator U, (A, f),

o oxm, ({M*Fgn}, Us (A {M « ¥ygn})) = sup pxm,, (f * Fgn, Us (A, f * ¥yn)) is the ap-
proximation of the set {M * ¥yn} C XMmfI;\Athe operator Uy (A, f * ¥ym),

e E,(f)x = px(f,FX(E)) = inf(E) Ilf(x) — To(x)||x is the best approximation of the

T,eFX
function f € X (entire function of exponential type not large than ¢) from the space FX,

o Eo(f*¥ym)xm, = pxm, (f * ¥gn, FX(E) = ¥yn) is the best approximation of the func-
tion f € XM, (entire function of exponential type not large than o) from the space
{POX(E) * Tgm},

e E,(M)x = sup E,(f)x is the best approximation of the set M C X by functions from FX,
feM

 Eg({M*¥yn}) gy, = supEq(f x ¥ygn)y,, is the best approximation of the set
m feM m
{M* ¥y} C XM, by functions from the space {FX(E) * Yy},

e AM(M,FX(E))x is the best linear approximation (see [13]) of the set M C X by linear
operators from the set L(X, FX(E)), which consists of all linear operators mapping the
space X into the subspace FX(E),

o AM({M * ¥y}, {FX(E) x ¥gn})y,, is the best linear approximation of the image
{M % ¥y} by linear operators from the set L({X * ¥y}, {FX(E) * ¥gn})xm,,, i-e. the
set of all linear operators that map the space {X * ¥y } into the subspace {FX (E) x ¥gn }.

Taking into account the isometric property of the convolution operator with a non-negative
delta-like kernel (see [10, Corollary 1]), we can state the following propositions.
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Proposition 1. Let ¥;n(x) be a non-negative delta-like kernel. If X is either one of the spaces
Ly, 1 < p < oo, or the space C, of uniformly continuous functions defined on E, then the
space X x ¥ym is isometric to the space X, and the subspace FX(E) is isometric to the subspace
FX(E) * ¥gn. Then, due to this isometry, the following equalities hold:

ox(f, Us(A, f)) = pxa, (f * Tgn, U (A x Fgn, f)),

px(M, UU—(A, M)) = PXMW({M * Tgm}, UO—(A, {Tgm * M})), (35)
Eo(f)x = Eo(f *¥gn)xm,,  Eo(M)x = Ec({M * ¥y })xm,., (36)
MM, EX(E))x = A({M = ¥ygn}, {ES(E) * ¥yn})xm, - (37)

Proposition 2. If X is one of the spaces Ly, ip, 1 < p < o0, or C, then the same equalities hold
for the isometric spaces X and X * Yij", as well as for their isometric subspaces FX(E) and
FX(E) « ¥yn (see (1)), with the replacement of the set M « ¥y by M+ ¥gn, and the norm in
the space XM,, by the norm in XM,,, where XM, and XM,, are the function spaces (see [10,
equations (7), (8)]).

Proposition 3. Let the delta-like kernel ¥yn(x) be not non-negative. If X is one of the sub-
spaces of Ly, Iip, 1 < p < o, or C, then, according to [10, Corollary 1], the spaces {X x* ‘I’y—m}
are isomorphic to the space X, and the subspaces {FX(E) « ¥yn} are isomorphic to the sub-
space FX(E).

Proof. Using [10, inequalities (22)], we obtain:
If = UsA F)llx < |1 * ¥gm = Uolt £+ ¥ | ir. < [, - IF = UolA, Dl (38)

px (M, Uy (A, M)) < pxg,, (M ¥gn }, Us (A, {¥gn x M}))

39

< HT?”’H1Mm -ox (M, Us (A, M)), (39)

Eo(f)x < Eo(f * ¥ym)xam, < [[¥ynll1, - Eo(f)x, (40)
Es(M)x < Es({M*¥p Hxm, < [[¥9m |17, - E«(M)x, (41)

MM, F3(E))x < A({M =¥y}, {FX(E) * ¥y })xm,, < [[¥gn MM ES(E))x.  (42)

}11\717” )
O

If X is one of the spaces L,, 1 < p < oo, or C;, then these inequalities are valid
for the isomorphic spaces {X * ¥y} and X, as well as for their isomorphic subspaces
{FX(E) * ¥gn} and FX(E). In this case, the set {M * ¥gn} from the space XM, is replaced
by the set {M * ¥y} from the space XMy, and the norm of the space XM, is replaced by the
norm of the space XM,,.

Proceeding analogously to the proof of the Zygmund inequality, we establish that the Zyg-
mund inequality holds in the spaces {F(E) * ¥gn} and {FX(E) % ¥y}, which are isometric
to the space FX(E).
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Proposition 4. For all functions (¥gn * T, ) (x) € {F (E) * Yy } and YTy (x,y) € {FX(E) * ¥Ygn },
the following inequalities hold:

5(k) (T-m * T(T) (x)
y&xk o <o H(Tym * T‘7>(x>Hme ’ (43)
(k)
LS T T e (44)
XM,

where X is one of the spaces C, Ly, ip, 1<p< oo

From the criterion of the best approximation of the function f € L,, 1 < p < oo, (entire
function of exponential type not large than ¢) by elements of the space F7 (see, e.g., [24, p. 84]),
it follows the criterion for the best approximation of the isometric image f * ¥y» by elements
of the space {F} (E) * ¥n }, which is isometric to the space Fy (E).

Using the criterion for the element of best approximation (see [10, equation (15)]), we obtain
the following assertion.

Proposition 5. The element YT; (x,y) € {E}(E) * ¥y} is the best approximation element for
v(x,y) € {Lp * Yyn}, which is defined by the identity

Ee(©)r,m, = llo(y) = 9T (2, )|,

if and only if, for every element T, (x,y) € {F}(E) * ¥y}, the following condition

[ 4T(5,0) - [o(x,0) — 9T (5, 0)1 " sgn(o(,0) — ¥ (x,0)) dx = 0
holds, where YT, (x,0) = T,(x) and YTz (x,0) = T (x).

If we replace the spaces X, XM,,, XM,, and their norms respectively by the spaces X",
X"M,,, X"*M,, and their norms, the delta-like kernels Yym(x) by the delta-like kernels Igm (x),
the subspaces FX(E), {FX(E) * Yyn} and {FX(E)+ ¥y} by the corresponding subspaces
FX"(EM), {FX" (E") « Iy} and {FX"(E") * I7n}, and the operators Uy (A, f, x), Us (A, f * ¥ gm, x)
by the corresponding operators Ugzn(A, f,x), Ugn (A, f * I]’/fm,x), the bnest approximations E,
of subspaces FX(E) by the best approximations Es» of subspaces FX (E"), and the best ap-
proximations Eq(f * ¥y )xm, and Eq(f * ¥y )xy, of the respective subspaces {FX(E) * ¥gn }
and {FX(E) x¥gn} by Egn(f * Ign) xnm,, and Egn(f % Igu)xnp,, of the respective subspaces
{FX"(E") * Ijn} and {FX"(E™) * Ijn}, then for the function spaces X", X" My, and X" My, un-
der the appropriate conditions of [10, Corollary 1], the equalities (35)—(37), inequalities (38)-
(42), and Zygmund inequalities (43), (44) hold. Namely,

okt +kn (Tﬁ” * [’}m) (x) n
Y k; S
axkl H axkﬂ S 11:I1:0-l TU * I]/m X" My ’ (45)
X" M,y -
8k1+"'+k”1T¢7n(x,y) n K,
m - <1 1T (x,9) g, - (46)
oxy! - - 0y xim, =1
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where X" is one of the spaces C", Ly, 1 < p < oo, L, Iig, p = (pr,--e.pn), 1 < pi < oo,
i=1,...,n,and Ij(x) is a non-negative delta-like kernel.

We should note that inequalities (45), (46) were established in [23, pp. 138-140] for arbitrary

function spaces with a norm invariant under shifts in the variables x1, ..., x,, under the con-
dition that norm convergence in the space and almost everywhere convergence imply equality
of the limit elements.

Given the growing interest of researchers in applied mathematics in the methods of ap-

proximation theory (see, e.g., [4,6,14,17]), the results obtained in this work may prove useful in
studies related to mathematical modeling, optimization methods, and mathematical physics.
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V 11iif CTATTi BCTAaHOBAEHI AOCTaTHI YMOBU AASI BiAOOpakeHb ollepaTOpaMy 3TOPTOK IPOCTOPiB
dyHKIIM, 3aAaHMX Ha H-BUMipHOMY €BKAIAOBOMY IPOCTOpi, Ha IpOCTOPY LiAMX (PYHKLIM eKCIo-
HeHIIiaAbHOTO TUITY. 3HaliA€Hi iHTerpaAbHi IpeACTaBACHHS AASL IIMX OllepaTopiB. Bukopucrosyroun
PIBHOCTI aIIpOKCHMMALIHNMX XapaKTepUCTUK B i30MeTPMUHMX IIPOCTOpax pyHKIIN Bia OAHIiET 3MiH-
HOI, MpeACTaBAEHO PiBHOCTI allpOKCUMAIIiHMX XapaKTepUCTMK B i30MeTpMUHMX (PYHKIIOHAABHMX
IIpocTopax 6araTbox 3MiHHMX.

Kntouosi cnosa i hpasu: i3oMeTpUUIHMIL IPOCTip, AiHIHMIA OlepaTOp, allpOKCMMAaTMBHA XapaKTe-
PpUCTHKa, TIPOCTip 3TOPTOK, AeAbTaIIOAIOHe SIAPO, MPOCTip HiAMX (PYHKITi eKCIIOHEHITiaABHOTO THITY.



