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In this article, sufficient conditions are established for mappings by convolution operators of

spaces of function defined on the n-dimensional Euclidean space into spaces of entire functions of

exponential type. Integral representations for these operators are obtained. Equalities of approxi-

mation characteristics in isometric functional spaces of many variables are obtained using equalities

of approximation characteristics in isometric function spaces of one variable.
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1 Introduction

In the paper [10], some subspaces of real functions of n + k variables were constructed that

are isometric to spaces of real functions defined on the n-dimensional Euclidean space. Since

isometry of functional spaces with different numbers of variables is a rare phenomenon and

was previously known only for spaces of complex-valued functions (see [10, p. 1027]), we

consider its applications.

In papers [1, 12], subspaces of solutions to the Laplace and heat equations were found,

being isometric to spaces of real functions of one variable.

To construct subspaces of solutions to differential equations and their systems that are iso-

metric to spaces of real functions, it was necessary to establish conditions for the convergence

of the convolution of the function with a delta-like kernel to this function that was done in [11].

In paper [13], the definitions of the main approximation characteristics were formulated,

examples of their equality for isometric mappings of spaces of real functions of n+m variables

into spaces of real 2π-periodic functions in each of the n variables were presented, and some

examples of their applications in the theory of function approximation were given.

In the paper [9], the results of work [13] were extended to isometric mappings in spaces of

non-periodic functions. Integral representations were found for function spaces isometric to

spaces of entire functions of exponential type, which are necessary for establishing the equality

of approximation characteristics in isometric function spaces. The topic related to the study of

approximation characteristics in spaces of entire functions and vectors of exponential type is
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relevant and is developing intensively (see, e.g., [15,16,25]). Problems of approximation theory

also play an important role in applied research (see, e.g., [3, 5, 18–20, 26]).

2 Main notations, definitions and statements

Let us denote by Cn, Ln
∞, Ln

p̄, L̂n
p̄, p̄ = (p1, . . . , pn), the spaces of real functions defined on

En that are continuous, bounded, essentially bounded and measurable, respectively, with the

following norms:

‖ f‖Cn = sup
x∈En

| f (x)|,

‖ f‖Ln
∞
= sup vrai

x∈En

| f (x)|,

‖ f‖Ln
p̄
=
∥

∥ . . .
∥

∥ ‖ f (x1, . . . , xn)‖p1,x1

∥

∥

p2,x2
. . .
∥

∥

pn,xn

=

(

∫ ∞

−∞

(

. . .

(

∫ ∞

−∞

(

∫ ∞

−∞
| f (x1 , x2, . . . , xn)|

p1 dx1

)

p2
p1

dx2

)

p3
p2

. . .

)

pn
pn−1

dxn

)

1
pn

,

∥

∥ f
∥

∥

L̂n
p̄
=
∥

∥ . . .
∥

∥ ‖ f (x1, . . . , xn)‖ p̂1,x1

∥

∥

p̂2,x2
. . .
∥

∥

p̂n,xn

= sup
an∈E

( an+2π
∫

an

(

. . . sup
a2∈E

( a2+2π
∫

a2

(

sup
a1∈E

a1+2π
∫

a1

| f (x1 , . . . , xn)|
p1 dx1

)

p2
p1

dx2

)

p3
p2

. . .

)

pn
pn−1

dxn

)

1
pn

.

Let Xn be one of the spaces Cn, Ln
∞, Ln

p̄, L̂n
p̄ with p̄ = (p1, . . . , pn), 1 ≤ pi < ∞, i = 1, . . . , n.

Let

FXn

σ̄ =
{

Tσ̄n(z) = Tσ̄n(x1 + it1, . . . , xn + itn) : Tσ̄n(x) ∈ Xn
}

be the space of entire functions of exponential type not larger than σ̄n = (σ1, . . . , σn) (see

[23, pp. 118, 119]), which belong to the space Xn on the real n-dimensional Euclidean space En.

Let Xn ⊃ FXn

σ̄ (En) =
{

Tσ̄n(x) : Tσ̄n(z) ∈ FXn

σ̄

}

be their restriction to the space En.

Let the inequality ȳ = (y1, . . . , ym) ≥ 0̄ = (0, . . . , 0) mean that the coordinates of the vector

ȳ are non-negative, and ȳ > 0̄ mean that at least one of them is positive. Denote by

Π+
n,m = {(x, y) = (x̄, ȳ) = (x1, . . . , xn, y1, . . . , ym) ∈ En+m : ȳ > 0̄},

Π̄+
n,m = {(x, y) ∈ En+m : ȳ ≥ 0̄}

the subsets of the real (n + m)-dimensional Euclidean space En+m.

Let In
ȳm(x) be delta-like kernels (see [10, equation (9), (10)]), defined on Π+

n,m. Let

{FXn

σ̄ ∗ In
ȳm} =

{

(Tσ̄n ∗ In
ȳm)(z) =

∫

En
In
ȳm(t)Tσ̄n(z − t) dt : (Tσ̄n ∈ FXn

σ̄ ) ∧ (ȳ > 0̄)

}

,

{FXn

σ̄ ∗ In
ȳm} =

{

ITσ̄n(z, ȳ) =

{

(Tσ̄n ∗ In
ȳm)(z), ȳ > 0̄,

Tσ̄n(z), ȳ = 0̄

}

: Tσ̄n ∈ FXn

σ̄

}

be convolution spaces of entire functions of exponential type not larger than σ̄n with delta-like

kernels, and let

{FXn

σ̄ (En) ∗ In
ȳm} =

{

(Tσ̄n ∗ In
ȳm)(x) : (Tσ̄n(x) ∈ FXn

σ̄ (En)) ∧ (ȳ > 0̄)
}

,
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{FXn

σ̄ (En) ∗ In
ȳm} =

{

ITσ̄n(x, y) =

{

(Tσ̄n ∗ In
ȳm)(x), ȳ > 0̄,

Tσ̄n(x), ȳ = 0̄

}

: Tσ̄n(x) ∈ FXn

σ̄ (En)

}

(1)

be their restrictions to En.

If n = 1, then the index n and the overlines above the vectors σ̄, p̄ etc. will be omitted.

Let us denote by

Uσ̄n(Λ, f , x) = (λ̂σ̄n ∗ f )(x) =
∫

En
λ̂σ̄n(x − t) f (t) dt (2)

a linear operator defined by convolution with the kernel λ̂σ̄n(t).

We will determine sufficient conditions under which the operator Uσ̄n(Λ, f , x) maps the

space Xn into the subspace FXn

σ̄ (En).

Let Z
n = {m̄ = (m1, . . . , mi, . . . , mn) : mi ∈ Z, i = 1, . . . , n} be the integer lattice in the

space En, and let Qn
m̄ = [m1, m1 + 1] × · · · × [mn, mn + 1] ⊂ En be the n-dimensional cube in

En corresponding to the vector m̄ ∈ Zn. Let xm̄ ∈ Qn
m̄ be an arbitrary element of this cube. The

following statement holds.

Lemma 1. If the function f , together with all its derivatives and mixed partial derivatives
∂k f

∂xi1
···∂xik

, k = 1, 2, . . . , n, of at most first order with respect to each variable, is absolutely inte-

grable on En, then

∑
m̄∈Zn

| f (xm̄)| ≤
∫

En
| f (x)|dx +

n

∑
k=1

∑
1≤m1<···<mk≤n

∫

En

∣

∣

∣

∣

∣

∂k f (x)

∂xm1 . . . ∂xmk

∣

∣

∣

∣

∣

dx. (3)

Proof. Let us show that inequality (3) holds for n = 1. In this case, Q1
m̄ = [m1, m1 + 1] and

xm̄ = xm1 ∈ [m1, m1 + 1], where m1 ∈ Z, and

∑
m1∈Z

| f (xm1 )| ≤
∫ ∞

−∞
| f (x)| dx +

∫ ∞

−∞
| f ′(x)| dx. (4)

Since the function f (x) is differentiable on the entire real axis, the function | f (x)| is contin-

uous on E, and

min
x∈[m1,m1+1]

| f (x)| = | f (ym1 )|, (5)

where ym1 ∈ [m1, m1 + 1]. Then, due to the differentiability of the function f (x), and consider-

ing that both xm1 and ym1 belong to the segment [m1, m1 + 1], using relation (5), we get

| f (xm1 )| ≤ | f (xm1 )− f (ym1 )|+ | f (ym1 )|

=
∫ m1+1

m1

| f (ym1 )| dx +

∣

∣

∣

∣

∫ ym1

xm1
f ′(x) dx

∣

∣

∣

∣

≤
∫ m1+1

m1

| f (x)| dx +
∫ m1+1

m1

| f ′(x)| dx.
(6)

From inequality (6), using the additive property of the integral and the equality

⋃

m1∈Z

[m1, m1 + 1] = (−∞,+∞),

inequality (4) follows.
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Let us prove that inequality (3) holds for n = 2. That is, Q2
m̄ = [m1, m1 + 1]× [m2, m2 + 1],

xm̄ = (xm̄
1 , xm̄

2 ) ∈ Q2
m̄, and

∑
m̄∈Z2

| f (xm̄
1 , xm̄

2 )| ≤
∫

E2

(

| f (x1 , x2)|+ | f ′x1
(x1, x2)|+ | f ′x2

(x1, x2)|+ | f ′′x1 x2
(x1, x2)|

)

dx1dx2.

Since the functions f (x) and f ′x1
(x1, x2) are absolutely integrable on E2, by Fubini theorem

(see, e.g., [22, pp. 85, 86]), for each fixed x2 these functions are absolutely integrable in the

variable x1 on the entire real axis. Therefore, using inequality (6), we obtain

| f (xm̄
1 , xm̄

2 )| ≤
∫ m1+1

m1

| f (x1 , xm̄
2 )| dx1 +

∫ m1+1

m1

| f ′x1
(x1, xm̄

2 )| dx1. (7)

Reasoning in the same way as in proving inequality (7), we establish

| f ′x1
(x1, xm̄

2 )| ≤
∫ m2+1

m2

| f ′x1
(x1, x2)| dx2 +

∫ m2+1

m2

| f ′′x1 x2
(x1, x2)| dx2, (8)

| f (x1 , xm̄
2 )| ≤

∫ m2+1

m2

| f ′x2
(x1, x2)| dx2 +

∫ m2+1

m2

| f (x1 , x2)| dx2. (9)

From inequalities (7)–(9), it follows that

| f (xm̄
1 , xm̄

2 )| ≤
∫ m1+1

m1

∫ m2+1

m2

(

| f (x1 , x2)|+ | f ′x1
(x1, x2)|+ | f ′x2

(x1, x2)|+ | f ′′x1 x2
(x1, x2)|

)

dx1dx2.

Using the method of mathematical induction, we can prove that for any natural number n

the following inequality

| f (xm̄)| = | f (xm̄
1 , . . . , xm̄

n )| ≤
∫

Qn
m̄

(

| f (x)| +
n

∑
k=1

∑
1≤m1<···<mk≤n

∣

∣

∣

∣

∣

∂k f (x)

∂xm1 · · · ∂xmk

∣

∣

∣

∣

∣

)

dx

holds, from which, using the additive property of the integral and the equality
⋃

m̄
Qn

m̄ = En,

inequality (3) follows. Lemma 1 is proved.

From Lemma 1 and the Zygmund inequality (see, e.g., [23, pp. 138–140]), the following

statement follows.

Corollary 1. If Tσ̄n(x) is an entire function of exponential type not larger than σ̄n and is abso-

lutely integrable on En, then

∑
m̄∈Zn

|Tσ̄n(xm̄)| ≤

(

1 +
n

∑
k=1

∑
1≤m1<···<mk≤n

σm1 · · · σmk

)

‖Tσ̄n‖Ln
1

. (10)

Proof. Using Zygmund inequality for entire functions of exponential type not larger than σ̄n,

we obtain the inequalities:

∣

∣

∣

∂kTσ̄n(x)

∂xm1 · · · ∂xmk

∣

∣

∣
≤ σm1 · · · σmk

|Tσ̄n(x)| ,

∫

En

∣

∣

∣

∂kTσ̄n(x)

∂xm1 · · · ∂xmk

∣

∣

∣
dx ≤ σm1 · · · σmk

∫

En
|Tσ̄n(x)| dx = σm1 · · · σmk

‖Tσ̄n‖Ln
1

,

from which, together with Lemma 1, inequality (10) follows.
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We should note that inequality (10) for the case xm̄ = (m1, . . . , mn) ∈ Zn follows

from [23, Theorem 3.3.2].

Let us establish sufficient conditions under which the operator Uσ̄n(Λ, f , z) maps the space

Xn into the subspace FXn

σ̄ .

Theorem 1. Let Xn be one of the spaces Cn, Ln
∞, Ln

p̄, or L̂n
p̄, where p̄ = (p1, . . . , pn), 1 ≤ pi < ∞,

i = 1, . . . , n. Let λ̂σ̄n(z) be an entire function of exponential type not larger than σ̄n, belonging

to the space F1n

σ̄ := F
Ln

1
σ̄ , and let f ∈ Xn. Then the function

Uσ̄n(Λ, f , z) = (λ̂σ̄n ∗ f )(z) =
∫

En
λ̂σ̄n(z − t) f (t) dt

is an entire function of exponential type not larger than σ̄n, which belongs to the space Xn,

i.e. Uσ̄n(Λ, f , z) ∈ FXn

σ̄ .

Proof. For the spaces Cn and Ln
p, 1 ≤ p ≤ ∞, Theorem 1 was established in [23, pp. 162, 163].

Let us prove that

Xn ⊆ L̂n := L̂n
1 . (11)

If f ∈ L̂n
p̄ with p̄ = (p1, . . . , pn), then using the definition of the norm in the space L̂n

p̄ and

Hölder’s inequality, we obtain

‖ f‖L̂n ≤
n

∏
i=1

(2π)1/qi‖ f‖L̂n
p̄
, (12)

where 1
pi
+ 1

qi
= 1, i.e.

L̂n
p̄ ⊆ L̂n. (13)

From the definitions of norms in the spaces Cn, Ln
∞, L̂n

p̄ and Ln
p it follows that Cn ⊂ Ln

∞ ⊂ Ln
p

and Ln
p̄ ⊂ L̂n

p̄. Therefore, from relations (12) and (13) we obtain (11).

Since λ̂σ̄n(z) is an entire function of exponential type not larger than σ̄n, we get the follow-

ing Taylor series expansion (see [23, p. 163])

λ̂σ̄n(z + u) = λ̂σ̄n(z1 + u1, . . . , zn + un)

= ∑
k̄∈Zn

+

λ̂
(k̄)
σ̄n (u)

k̄!
z̄k̄ = ∑

k̄∈Zn
+

∂k1+···+knλ̂σ̄n(u)

∂uk1
1 · · · ∂ukn

n k1! · · · kn!
zk1

1 · · · zkn
n ,

(14)

which converges absolutely for any u ∈ En and z̄ = (z1, . . . , zn) ∈ C
n, where Cn is the com-

plex n-dimensional Euclidean space, Z
n
+ =

{

k̄ = (k1, . . . , kn) : ki ∈ Z, ki ≥ 0, i = 1, . . . , n
}

is

the integer lattice in En with non-negative coordinates and z̄k̄ := zk1
1 · · · zkn

n .

Using equality (14) and a change of variables, we obtain

|(λ̂σ̄n ∗ f )(z)| ≤
∫

En
|λ̂σ̄n(z − u) f (u)|du

=
∫

En
|λ̂σ̄n(z + u) f (−u)|du ≤ ∑

k̄∈Zn
+

∫

En

∣

∣

∣
λ̂
(k̄)
σ̄n (u) f (−u)

∣

∣

∣
du

|z̄k |

k̄!
.

(15)

Let us denote by Qn
1 = [0, 1]n ⊂ En and πn = [−π, π)n ⊂ En the cubes in the space En

with side lengths 1 and 2π, respectively. Let [0, 1]n + m̄ = Qn
m̄ and πn − 2πm̄ = πn(m̄) denote
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the shifts of these cubes by the vectors m̄ ∈ Zn and 2πm̄, respectively. Since the coordinates of

the vectors m̄ and 2πm̄ are multiples of the side lengths of the corresponding cubes, different

cubes from the families Qn
m̄ and πn(m̄) do not have common interior points. Therefore, the

following relations hold:
⋃

m̄∈Zn

Qn
m̄ = En =

⋃

m̄∈Zn

πn(m̄) and π̊n(m̄1) ∩ π̊n(m̄2) = ∅ = Q̊n
m̄1

∩ Q̊n
m̄2

∀m̄1 6= m̄2, (16)

where Å is the set of all interior points of the set A.

Since 6 < 2π < 7, it follows from relations (16) that each cube πn(m̄) contains exactly 6n

cubes Qn
m̄1

, and each point of the cube πn(m̄) lies in some cube Qn
m̄2

. Therefore, the maximum

value of the function defined on the cube πn(m̄) is less than the sum of all maximum values

of this function on the cubes that intersect with this cube. Taking this into account, and using

the definition of the norm in the space L̂n and relations (16), for any function f ∈ L̂n we have
∫

En

∣

∣

∣
λ̂
(k̄)
σ̄n (u) f (−u)

∣

∣

∣
du ≤ ∑

m̄∈Zn

max
u∈πn(m̄)

∣

∣

∣
λ̂
(k̄)
σ̄n (u)

∣

∣

∣

∫

πn(m̄)
| f (−u)| du

< ‖ f (−u)‖ L̂n ∑
m̄∈Zn

max
u∈Qn

m̄

∣

∣

∣
λ̂
(k̄)
σ̄n (u)

∣

∣

∣
.

(17)

Since the function λ̂
(k̄)
σ̄n (u) is continuous on the set En, there exists a point xm̄ ∈ Qn

m̄ such

that

max
u∈Qn

m̄

|λ̂
(k̄)
σ̄n (u)| = |λ̂

(k̄)
σ̄n (xm̄)|. (18)

Using Corollary 1 and Bernstein inequality (see [23, p. 163]), we obtain

∑
m̄∈Zn

∣

∣

∣
λ̂
(k̄)
σ̄n (xm̄)

∣

∣

∣
≤

(

1 +
n

∑
k=1

∑
1≤m1<...<mk≤n

σm1 · · · σmk

)

∥

∥λ̂
(k̄)
σ̄n

∥

∥

Ln
1

≤

(

1 +
n

∑
k=1

∑
1≤m1<...<mk≤n

σm1 · · · σmk

)

n

∏
i=1

σ
ki
i

∥

∥λ̂σ̄n

∥

∥

Ln
1

=

(

1 +
n

∑
k=1

∑
1≤m1<...<mk≤n

σm1 · · · σmk

)

σ̄k̄
∥

∥λ̂σ̄n

∥

∥

Ln
1

.

(19)

From (17)–(19), it follows that
∫

En

∣

∣

∣
λ̂
(k̄)
σ̄n (u) f (−u)

∣

∣

∣
du ≤ K1 ‖ f‖ L̂n

1

∥

∥λ̂σ̄n

∥

∥

Ln
1

σ̄k̄, σ̄k̄ =
n

∏
i=1

σ
ki
i . (20)

And from (15) and (20), we have

∣

∣

(

λ̂σ̄n ∗ f
)

(z)
∣

∣ ≤ K1 ‖ f‖L̂n
1

∥

∥λ̂σ̄n

∥

∥

Ln
1

∑
k̄∈Zn

+

|z̄k̄|σ̄k̄

k̄!
= K1 ‖ f‖L̂n

1

∥

∥λ̂σ̄n

∥

∥

Ln
1

e

n
∑

i=1
σi|zi|

. (21)

Therefore, if f ∈ L̂n
1 , then from inequality (21) (see also [23, p. 163]) it follows that

(λ̂σ̄n ∗ f )(z) is an entire function of exponential type not larger than σ̄n. If f ∈ Xn, then, due

to relation (11), (λ̂σ̄n ∗ f )(z) is also an entire function of exponential type not larger than σ̄n.

Using the generalized Minkowski inequality, we obtain
∥

∥ f ∗ λ̂σ̄n

∥

∥

Xn ≤
∥

∥ f
∥

∥

Xn

∥

∥λ̂σ̄n

∥

∥

Ln
1
.

Hence, if f ∈ Xn, then (λ̂σ̄n ∗ f )(z) ∈ FXn

σ̄ . Theorem 1 is proved.
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From the integral representations (see [9, equations (21), (25)]) for functions from the space

F2n

σ̄ := F
Ln

2
σ̄ , and taking into account that F1n

σ̄ ⊂ F2n

σ̄ , it follows that

λ̂σ̄n(t) =
1

(2π)n

∫

∆n
σ̄

λ(u)e−iut du =
1

(2π)n

∫

∆n
σ̄

(a(u) + ib(u))e−iut du = F−1(λσ̄n)(u)

=
1

(2π)n

∫

En
λσ̄n(u)e−iut du =

1

(2π)n

∫

En
(aσ̄n(u) + ibσ̄n(u))e−iut du,

(22)

where on the set ∆n
σ̄, the equalities λσ̄n(u) = λ(u), aσ̄n(u) = a(u) and bσ̄n(u) = b(u) hold,

while on the set {En \ ∆n
σ̄} we have λσ̄n(u) = aσ̄n(u) = bσ̄n(u) = 0. The function a(u) is a real

even function, and b(u) is a real odd function with respect to each variable u1, . . . , un, both

belonging to the space L2(∆n
σ̄)

.

From the necessary condition for the absolute integrability of the Fourier transform, it fol-

lows that the function λσ̄n(u), and thus the functions aσ̄n(u) and bσ̄n(u), are continuous on En.

Therefore, according to the definition of these functions, the function λ(u), and hence a(u)

and b(u), are continuous on ∆n
σ̄ and equal to zero on the set

Γ(∆n
σ̄) = {x = (x1, . . . , xn) ∈ En : |xi| = σi, i = 1, . . . , n} .

Let us establish sufficient conditions for the absolute integrability of the kernel λ̂σ̄n(x)

on En.

We denote by Lr(a,b) the normed space of functions defined on the interval (a, b) with the

norm

‖ f‖Lr(a,b)
=

(

∫ b

a
| f (x)|r dx

)1/r

.

Let us prove the auxiliary statement.

Lemma 2. Let λ(u) = a(u) + ib(u), where a(u) is an even real-valued function and b(u) is an

odd real-valued function, both absolutely continuous on the segment [−σ, σ], and

a(σ) = a(−σ) = b(σ) = b(−σ) = 0. (23)

Then, for any p > 1, the function λ̂σ(z), which for n = 1 is defined by equation (22), belongs to

the space F
p
σ . Moreover, if the derivatives a′(x) and b′(x) of the functions a(x) and b(x) belong

to the space Lq(−σ,σ), where q > 1, then the function λ̂σ(z) belongs to the space F1
σ .

Proof. Since the function λ(u) is continuous on [−σ, σ], it follows that λ(u) ∈ L2(−σ,σ), and

by the Wiener-Paley theorem (see [23, pp. 130, 131]), the function λ̂σ(z) belongs to the space

F2
σ , and F2

σ ⊇ F
p
σ ⊇ F1

σ , where 1 ≤ p ≤ 2. Since the functions a(x) and b(x) are absolutely

continuous on the segment [−σ, σ], integrating by parts and using equalities (22), (23), we

obtain

λ̂σ(t) =
1

2πit

∫ σ

−σ
λ(u)e−iut du =

1

it
F−1(λσ)(t) =

1

2πit

∫ ∞

−∞
λσ(u)e

−iut du, (24)

where on the interval (−σ, σ) we have λσ(u) = λ′(u), and for |u| > σ the equality λ′
σ(u) = 0

holds. Since the functions a(u) and b(u) are absolutely continuous on [−σ, σ], the function

λ′(u) = a′(u) + ib′(u) belongs (see, e.g., [21, pp. 252–255]) to the space L1(−σ,σ) = L(−σ,σ), and

the function λ′
σ(u) belongs to the space L = L(−∞,+∞). Therefore, the function F−1(λ′

σ)(t) is
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continuous and bounded on the entire real axis, as the inverse Fourier transform of a function

that is absolutely integrable on (−∞,+∞), that is,
∥

∥F−1(λ′
σ)
∥

∥

C
< K2. (25)

For an arbitrary p1 ≥ 1 and fixed a > 0, using the boundedness of the function |λ(u)| on

the segment [−σ, σ] and the generalized Minkowski inequality, we obtain

(

∫ a

−a
|λ̂σ(t)|

p1 dt

)
1

p1
≤

1

2π

∫ σ

−σ
|λ(u)|

(

∫ a

−a
|e−iut|p1 dt

)
1

p1
du

≤ (2a)
1

p1 ·
1

2π

∫ σ

−σ
|λ(u)| du < K3.

(26)

For any p > 1, by virtue of inequality (25), we get

(

∫

|t|>a

∣

∣

∣

∣

1

t
F−1(λ′

σ)(t)

∣

∣

∣

∣

p

dt

)

1
p

≤ K2

(

∫

|t|>a

dt

|t|p

)

1
p

< K4. (27)

From relations (24), (26), and (27), it follows that for any p > 1, the function λ̂σ(t) belongs

to the space Lp. Therefore, for any p > 1, we have λ̂σ(z) ∈ F
p
σ .

If, in addition, the functions a′(u) and b′(u) belong to the space Lq(−σ,σ) for some q > 1,

then we get λ′(u) = a′(u) + ib′(u) ∈ Lq(−σ,σ) ⊂ Lr(−σ,σ), where 1 < r ≤ min{2, q}, and hence

λ′
σ(u) ∈ Lr. According to the Hausdorff-Young theorem (see, e.g., [23, p. 201]), it follows that

F−1(λ′
σ) ∈ Lr′ , where 1

r +
1
r′ = 1. Therefore,

(

∫

|t|>a

∣

∣

∣
F−1(λ′

σ)(t)
∣

∣

∣

r′

dt

)
1
r′

< K5. (28)

Using Hölder inequality, relation (28), and taking into account that r > 1, we obtain

∫

|t|>a

∣

∣

∣

1

it
F−1(λ′

σ)(t)
∣

∣

∣
dt ≤

(

∫

|t|>a

∣

∣

∣
F−1(λ′

σ)(t)
∣

∣

∣

r′

dt

)
1
r′
(

∫

|t|>a

dt

|t|r

)
1
r

< K6. (29)

From relations (24), (26), and (29), it follows that λ̂σ(t) ∈ L and λ̂σ(z) ∈ F1
σ , which completes

the proof of Lemma 2.

Let us note that a similar statement holds for Fourier coefficients (see, e.g., [7, p. 173] or

[8, pp. 162–163]). If the 2π-periodic absolutely continuous function f (x) has the derivative

f ′(x) that belongs to the space L̃p with the norm

‖ f‖L̃p
=

(

∫ π

−π
| f (x)|p dx

)1/p

, p > 1,

then
|a0( f )|

2
+

∞

∑
k=1

(|ak( f )| + |bk( f )|) < K7, (30)

but there exist absolutely continuous functions for which the series (30) diverges. The con-

dition that the derivative λ′(u) belongs to the space Lq(−σ,σ) is not necessary for the absolute

integrability of the function λ̂σ(t). If λ(u) = a(|u|), where a(u) = − ln(σ−1u), then on the

interval (0, σ) we have a′(u) = − 1
u < 0 and a′′(u) = 1

u2 > 0. Therefore (see, e.g., [2, p. 125]),

the function λ̂σ(t) =
1

2π

σ
∫

−σ

a(|u|)e−iut du = 1
π

σ
∫

0

a(u) cos(ut) du belongs to the space L, but the

derivative a′(u) does not belong to any of the spaces Lp(0,σ) for p > 1.
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Theorem 2. Let

λ(u) =
n

∏
j=1

λj(uj) =
n

∏
j=1

(

aj(uj) + ibj(uj)
)

, (31)

where the functions aj(uj) are real and even, and bj(uj) are real and odd, and all are abso-

lutely continuous on the segments [−σj , σj] for j = 1, . . . , n with the boundary conditions

aj(|σj |) = bj(|σj|) = 0. Then for any p > 1 the function

λ̂σ̄n(z) =
1

(2π)n

∫

∆n
σ̄

λ(u)e−iuz du (32)

belongs to the space F
pn

σ̄ . Moreover, if the derivatives (aj(uj))
′ and (bj(uj))

′ belong to the space

Lq(−σj,σj)
for some q > 1, then λ̂σ̄n(z) ∈ F1n

σ̄ .

Proof. Since the functions aj(uj) and bj(uj) are absolutely continuous on the segments [−σj, σj],

these functions belong to the space L2(−σj,σj)
, and hence the functions λj(uj) = aj(uj) + ibj(uj)

also belong to L2(−σj,σj)
. From equation (31) it follows that the function λ(u) belongs to the

space L2(∆n
σ̄)

. Therefore, by the Wiener-Paley theorem, the function λ̂σ̄n(z), defined by equa-

tion (32), belongs to the space F2n

σ̄ , that is, λ̂σ̄n(z) is an entire function of exponential type not

large then σ̄n.

From equations (31) and (32), it follows that

λ̂σ̄n(z) =
1

(2π)n

n

∏
j=1

∫ σj

−σj

λj(uj)e
−iujzj duj =

n

∏
j=1

F−1(λ
j
σj
)(zj), (33)

where

λ
j
σj
(uj) =

{

λj(uj), |uj| ≤ σj,

0, |uj| > σj.

Since, according to Lemma 2, for any p > 1, we have F−1(λ
j
σj
)(xj) ∈ Lp, then from equa-

lity (33), by virtue of the definition of the norm in the space Ln
p, it follows that λ̂σ̄n(x) ∈ Ln

p.

Hence, for any p > 1, we get λ̂σ̄n(z) ∈ F
pn

σ̄ . Moreover, if the derivatives aj ′(uj) and bj ′(uj)

belong to the space Lq(−σj,σj)
with q > 1, then, by Lemma 2, the functions F−1(λ

j
σj
)(xj) belong

to the space L. Therefore, from equation (33) it follows that λ̂σ̄n(x) ∈ Ln, i.e. λ̂σ̄n(z) ∈ F1n

σ̄ .

Theorem 2 is proved.

Let us find the integral representations for the operators

Uσ̄n(Λ, f , x) = (λ̂σ̄n ∗ f )(x) =
∫

En
λ̂σ̄n(x − t) f (t) dt.

Theorem 3. Let the kernel λ̂σ̄n(t) be defined by equation (22) and belong to the space Ln. Let

f ∈ Ln
p, where 1 ≤ p ≤ 2. Then, for the operators Uσ̄n(Λ, f , x) given by (2), the following

integral representation

Uσ̄n(Λ, f , x) =
1

(2π)n

∫

En
λσ̄n(u)F ( f )(u)e−iux du =

1

(2π)n

∫

∆n
σ̄

λ(u)F ( f )(u)e−iux du (34)

holds for all x ∈ En.

Proof. If f ∈ Ln
p, 1 ≤ p ≤ 2, then by the Hausdorff-Young theorem, we get F( f )(u) ∈ Ln

q ,

where 1
p + 1

q = 1. Therefore, according to equation (22) and the definition of the function

λσ̄n(u), we obtain F ( f )(u)λσ̄n (u) ∈ Ln. Then, by [10, Lemma 7], equality (34) holds for all

x ∈ En. Theorem 3 is proved.
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3 Examples of equality of approximation characteristics in function spaces

that are isometric to spaces of real non-periodic functions

To simplify the notation, we first present examples of the equality of approximation char-

acteristics in function spaces that are isometric to spaces of real non-periodic functions of one

variable.

Let Ψȳm(x) be delta-like kernels (see [10, equations (9), (10)]), defined on Π+
1,m with respect

to a single variable x.

Let us introduce the linear operator Uσ(Λ ∗ Ψȳm , f , x) =
(

(λ̂σ ∗ Ψȳm) ∗ f
)

(x), which, for

n = 1, coincides with the operator defined by (2), where the kernel λ̂σ(z) =
1

2πF
−1(λσ)(z) is

described by formulas (22) and (24), and belongs to the function space F1
σ .

We define the following approximation characteristics:

• ρX( f , Uσ(Λ, f )) = ‖ f − Uσ(Λ, f )‖X is the approximation of the function f ∈ X by the

linear operator Uσ(Λ, f ),

• ρXMm( f ∗ Ψȳm , Uσ(Λ, f ∗ Ψȳm)) =
∥

∥ f ∗ Ψȳm − Uσ(Λ, f ∗ Ψȳm)
∥

∥

XMm
is the approximation

of the function f ∗ Ψȳm ∈ XMm by the linear operator Uσ(Λ, f ∗ Ψȳm),

• ρX(M, Uσ(Λ, M)) = sup
f∈M

ρX( f , Uσ(Λ, f )) is the approximation of the set M ⊂ X by the

operator Uσ(Λ, f ),

• ρXMm

(

{M ∗ Ψȳm}, Uσ(Λ, {M ∗ Ψȳm})
)

= sup
f∈M

ρXMm

(

f ∗ Ψȳm , Uσ(Λ, f ∗ Ψȳm)
)

is the ap-

proximation of the set {M ∗ Ψȳm} ⊂ XMm by the operator Uσ(Λ, f ∗ Ψȳm),

• Eσ( f )X = ρX( f , FX
σ (E)) = inf

Tσ∈FX
σ (E)

‖ f (x) − Tσ(x)‖X is the best approximation of the

function f ∈ X (entire function of exponential type not large than σ) from the space FX
σ ,

• Eσ( f ∗ Ψȳm)XMm = ρXMm( f ∗ Ψȳm , FX
σ (E) ∗ Ψȳm) is the best approximation of the func-

tion f ∈ XMm (entire function of exponential type not large than σ) from the space

{FX
σ (E) ∗ Ψȳm},

• Eσ(M)X = sup
f∈M

Eσ( f )X is the best approximation of the set M ⊂ X by functions from FX
σ ,

• Eσ

(

{M ∗ Ψȳm}
)

XMm
= sup

f∈M

Eσ

(

f ∗ Ψȳm

)

XMm
is the best approximation of the set

{M ∗ Ψȳm} ⊂ XMm by functions from the space {FX
σ (E) ∗ Ψȳm},

• λ(M, FX
σ (E))X is the best linear approximation (see [13]) of the set M ⊂ X by linear

operators from the set L(X, FX
σ (E)), which consists of all linear operators mapping the

space X into the subspace FX
σ (E),

• λ
({

M ∗ Ψȳm

}

,
{

FX
σ (E) ∗ Ψȳm

})

XMm
is the best linear approximation of the image

{M ∗ Ψȳm} by linear operators from the set L({X ∗ Ψȳm}, {FX
σ (E) ∗ Ψȳm})XMm , i.e. the

set of all linear operators that map the space {X ∗ Ψȳm} into the subspace {FX
σ (E) ∗ Ψȳm}.

Taking into account the isometric property of the convolution operator with a non-negative

delta-like kernel (see [10, Corollary 1]), we can state the following propositions.
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Proposition 1. Let Ψȳm(x) be a non-negative delta-like kernel. If X is either one of the spaces

Lp, 1 ≤ p < ∞, or the space Cr of uniformly continuous functions defined on E, then the

space X ∗ Ψȳm is isometric to the space X, and the subspace FX
σ (E) is isometric to the subspace

FX
σ (E) ∗ Ψȳm . Then, due to this isometry, the following equalities hold:

ρX( f , Uσ(Λ, f )) = ρXMm( f ∗ Ψȳm , Uσ(Λ ∗ Ψȳm , f )),

ρX(M, Uσ(Λ, M)) = ρXMm({M ∗ Ψȳm}, Uσ(Λ, {Ψȳm ∗ M})), (35)

Eσ( f )X = Eσ( f ∗ Ψȳm)XMm , Eσ(M)X = Eσ({M ∗ Ψȳm})XMm , (36)

λ(M, FX
σ (E))X = λ({M ∗ Ψȳm}, {FX

σ (E) ∗ Ψȳm})XMm . (37)

Proposition 2. If X is one of the spaces Lp, L̂p, 1 ≤ p ≤ ∞, or C, then the same equalities hold

for the isometric spaces X and X ∗ Ψȳm, as well as for their isometric subspaces FX
σ (E) and

FX
σ (E) ∗ Ψȳm (see (1)), with the replacement of the set M ∗ Ψȳm by M ∗ Ψȳm , and the norm in

the space XMm by the norm in XM̄m, where XMm and XM̄m are the function spaces (see [10,

equations (7), (8)]).

Proposition 3. Let the delta-like kernel Ψȳm(x) be not non-negative. If X is one of the sub-

spaces of Lp, L̂p, 1 ≤ p ≤ ∞, or C, then, according to [10, Corollary 1], the spaces {X ∗ Ψȳm}

are isomorphic to the space X, and the subspaces {FX
σ (E) ∗ Ψȳm} are isomorphic to the sub-

space FX
σ (E).

Proof. Using [10, inequalities (22)], we obtain:

‖ f − Uσ(Λ, f )‖X ≤
∥

∥ f ∗ Ψȳm − Uσ(Λ, f ∗ Ψȳm)
∥

∥

XM̄m
≤
∥

∥Ψȳm

∥

∥

1M̄m
· ‖ f − Uσ(Λ, f )‖X , (38)

ρX(M, Uσ(Λ, M)) ≤ ρXM̄m
({M ∗ Ψȳm}, Uσ(Λ, {Ψȳm ∗ M}))

≤
∥

∥Ψȳm

∥

∥

1M̄m
· ρX(M, Uσ(Λ, M)),

(39)

Eσ( f )X ≤ Eσ( f ∗ Ψȳm)XM̄m
≤
∥

∥Ψȳm

∥

∥

1M̄m
· Eσ( f )X , (40)

Eσ(M)X ≤ Eσ({M ∗ Ψȳm})XM̄m
≤
∥

∥Ψȳm

∥

∥

1M̄m
· Eσ(M)X , (41)

λ(M, FX
σ (E))X ≤ λ({M ∗ Ψȳm}, {FX

σ (E) ∗ Ψȳm})XM̄m
≤
∥

∥Ψȳm

∥

∥

1M̄m
· λ(M, FX

σ (E))X . (42)

If X is one of the spaces Lp, 1 ≤ p < ∞, or Cr, then these inequalities are valid

for the isomorphic spaces {X ∗ Ψȳm} and X, as well as for their isomorphic subspaces

{FX
σ (E) ∗ Ψȳm} and FX

σ (E). In this case, the set {M ∗ Ψȳm} from the space XM̄m is replaced

by the set {M ∗ Ψȳm} from the space XMm, and the norm of the space XM̄m is replaced by the

norm of the space XMm.

Proceeding analogously to the proof of the Zygmund inequality, we establish that the Zyg-

mund inequality holds in the spaces {FX
σ (E) ∗ Ψȳm} and {FX

σ (E) ∗ Ψȳm}, which are isometric

to the space FX
σ (E).
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Proposition 4. For all functions (Ψȳm ∗ Tσ)(x)∈{FX
σ (E) ∗Ψȳm} and ψTσ(x, y)∈{FX

σ (E) ∗ Ψȳm},

the following inequalities hold:
∥

∥

∥

∥

∥

δ(k)(Ψȳm ∗ Tσ)(x)

δxk

∥

∥

∥

∥

∥

XMm

≤ σk
∥

∥(Ψȳm ∗ Tσ)(x)
∥

∥

XMm
, (43)

∥

∥

∥

∥

∥

δ(k)(ψTσ(x, y))

δxk

∥

∥

∥

∥

∥

XM̄m

≤ σk ‖ψTσ(x, y)‖XM̄m
, (44)

where X is one of the spaces C, Lp, L̂p, 1 ≤ p ≤ ∞.

From the criterion of the best approximation of the function f ∈ Lp, 1 < p < ∞, (entire

function of exponential type not large than σ) by elements of the space F
p
σ (see, e.g., [24, p. 84]),

it follows the criterion for the best approximation of the isometric image f ∗ Ψȳm by elements

of the space {F
p
σ (E) ∗ Ψȳm}, which is isometric to the space F

p
σ (E).

Using the criterion for the element of best approximation (see [10, equation (15)]), we obtain

the following assertion.

Proposition 5. The element ψT∗
σ (x, y) ∈ {F

p
σ (E) ∗ Ψȳm} is the best approximation element for

v(x, y) ∈ {Lp ∗ Ψȳm}, which is defined by the identity

Eσ(v)Lp M̄m
= ‖v(x, y)− ψT∗

σ (x, y)‖pM̄m

if and only if, for every element ψTσ(x, y) ∈ {F
p
σ (E) ∗ Ψȳm}, the following condition

∫ ∞

−∞
ψTσ(x, 0) · |v(x, 0)− ψT∗

σ (x, 0)|p−1 sgn(v(x, 0)− ψT∗
σ (x, 0)) dx = 0

holds, where ψTσ(x, 0) = Tσ(x) and ψT∗
σ (x, 0) = T∗

σ (x).

If we replace the spaces X, XMm, XM̄m and their norms respectively by the spaces Xn,

Xn Mm, Xn M̄m and their norms, the delta-like kernels Ψȳm(x) by the delta-like kernels In
ȳm(x),

the subspaces FX
σ (E), {FX

σ (E) ∗ Ψȳm} and {FX
σ (E) ∗ Ψȳm} by the corresponding subspaces

FXn

σ̄ (En), {FXn

σ̄ (En) ∗ In
ȳm} and {FXn

σ̄ (En) ∗ In
ȳm}, and the operators Uσ(Λ, f , x), Uσ(Λ, f ∗Ψȳm , x)

by the corresponding operators Uσ̄n(Λ, f , x), Uσ̄n(Λ, f ∗ In
ȳm, x), the best approximations Eσ

of subspaces FX
σ (E) by the best approximations Eσ̄n of subspaces FXn

σ̄ (En), and the best ap-

proximations Eσ( f ∗ Ψȳm)XMm and Eσ( f ∗ Ψȳm)XM̄m
of the respective subspaces {FX

σ (E) ∗ Ψȳm}

and {FX
σ (E) ∗ Ψȳm} by Eσ̄n( f ∗ In

ȳm)Xn Mm and Eσ̄n( f ∗ In
ȳm)Xn M̄m

of the respective subspaces

{FXn

σ̄ (En) ∗ In
ȳm} and {FXn

σ̄ (En) ∗ In
ȳm}, then for the function spaces Xn, Xn Mm, and Xn M̄m, un-

der the appropriate conditions of [10, Corollary 1], the equalities (35)–(37), inequalities (38)–

(42), and Zygmund inequalities (43), (44) hold. Namely,

∥

∥

∥

∥

∥

∥

∂k1+···+kn

(

Tσ̄n ∗ In
ȳm

)

(x)

∂xk1
1 · · · ∂xkn

n

∥

∥

∥

∥

∥

∥

Xn Mm

≤
n

∏
i=1

σ
ki
i

∥

∥

∥
Tσ̄n ∗ In

ȳm

∥

∥

∥

Xn Mm

, (45)

∥

∥

∥

∥

∥

∂k1+···+kn ITσ̄n(x, y)

∂xk1
1 · · · ∂xkn

n

∥

∥

∥

∥

∥

Xn M̄m

≤
n

∏
i=1

σ
ki
i ‖ITσ̄n(x, y)‖Xn M̄m

, (46)
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where Xn is one of the spaces Cn, Ln
p, 1 ≤ p ≤ ∞, Ln

p̄, L̂n
p̄, p̄ = (p1, . . . , pn), 1 ≤ pi < ∞,

i = 1, . . . , n, and In
ȳm(x) is a non-negative delta-like kernel.

We should note that inequalities (45), (46) were established in [23, pp. 138–140] for arbitrary

function spaces with a norm invariant under shifts in the variables x1, . . . , xn, under the con-

dition that norm convergence in the space and almost everywhere convergence imply equality

of the limit elements.

Given the growing interest of researchers in applied mathematics in the methods of ap-

proximation theory (see, e.g., [4,6,14,17]), the results obtained in this work may prove useful in

studies related to mathematical modeling, optimization methods, and mathematical physics.

References

[1] Abdullayev F.G., Bushev D.M., Imashkyzy M., KharkevychYu.I. Isometry of the Subspaces of Solutions of

Systems of Differential Equations to the Spaces of Real Functions. Ukrainian Math. J. 2020, 71 (8), 1153–1172.

doi:10.1007/s11253-019-01705-9 (translation of Ukrain. Mat. Zh. 2019, 71 (8), 1011–1027)

[2] Akhiezer N.I. Lectures on Approximation Theory. Dover Publications, New York, 1992.

[3] Babenko V., Babenko V., Kovalenko O., Parfinovych N. Nagy type inequalities in metric measure spaces and some

applications. Carpathian Math. Publ. 2023, 15 (2), 563–575. doi:10.15330/cmp.15.2.563-575

[4] Babenko V.F., Babenko V.V. Kovalenko O.V., Parfinovych N.V. On Landau-Kolmogorov Type Inequalities for

Charges and Their Applications. Res. Math. 2023, 31 (1), 3–16. doi:10.15421/242301

[5] Babenko V.F., Babenko Yu.V., Parfinovych N.V. Optimal Recovery of Mappings Based on Linear Information With

the Help of T-Splines in Banach Spaces. Res. Math. 2024, 32 (3), 6–11. doi:10.15421/242429

[6] Babenko V., Kolesnyk V., Kovalenko O., Parfinovych N. Kolmogorov-type inequalities in semilinear metric spaces.

Carpathian Math. Publ. 2025, 17 (2), 579–590. doi:10.15330/cmp.17.2.579-590

[7] Bary N.K. A Treatise on Trigonometric Series. Volume I. Pergamon Press, New York, 1964.

[8] Bary N.K. A Treatise on Trigonometric Series. Volume II. Pergamon Press, New York, 1964.

[9] Bushev D., Abdullayev F., Kal’chuk I., Imashkyzy M. The use of the isometry of function spaces with different

numbers of variables in the theory of approximation of functions. Carpathian Math. Publ. 2021, 13 (3), 805–817.

doi:10.15330/cmp.13.3.805-817

[10] Bushev D.M. Isometry of Functional Spaces With Different Number of Variables. Ukrainian Math. J. 1998, 50 (8),

1170–1191. doi:10.1007/BF02513090 (translation of Ukrain. Mat. Zh. 1998, 50 (8), 1027–1045)

[11] Bushev D.M., Kharkevych Yu.I. Conditions of Convergence Almost Everywhere for the Convolution of a Function

with Delta-Shaped Kernel to this Function. Ukrainian Math. J. 2016, 67 (11), 1643–1661. doi:10.1007/s11253-016-

1180-y (translation of Ukrain. Mat. Zh. 2015, 67 (11), 1461–1476)

[12] Bushev D.M., Kharkevych Yu.I. Finding Solution Subspaces of the Laplace and Heat Equations Isometric

to Spaces of Real Functions and Some of Their Applications. Math. Notes 2018, 103 (5–6), 869–880. doi:

10.1134/S0001434618050231

[13] Bushev D.N. Isometry of the Functional Spaces with Different Number of Variables and Some its Ap-

plications in the Theory of Approximation of Functions. J. Autom. Inf. Sci. 2019, 51 (1), 70–77.

doi:10.1615/JAutomatInfScien.v51.i1.70

[14] Chaichenko S.O., Shidlich A.L. Approximation of Functions by Linear Methods in Weighted Orlicz Type Spaces

with Variable Exponent. Res. Math. 2024, 32 (2), 70–87. doi:10.15421/242420

[15] Dmytryshyn M. Besov-Lorentz-type Spaces and Best Approximations by Exponential Type Vectors. Int. J. Math.

Anal. 2015, 9 (16), 779–786. doi:10.12988/ijma.2015.5233

[16] Dmytryshyn M. Tensor Products of Exponential Type Vectors of Unbounded Operators. Int. J. Math. Anal. 2014, 8

(11), 529–538. doi:10.12988/ijma.2014.4233



692 Bushev D.M., Kal’chuk I.V., Kharkevych Yu.I.

[17] Douglas S., Grafakos L. Remarks on Almost Everywhere Convergence and Approximate Identities. Acta Math. Sin.

(Engl. Ser.) 2025, 41 (1), 255–272. doi:10.1007/s10114-025-3557-z

[18] Kharkevych Y., Stepaniuk T. Approximate properties of Abel-Poisson integrals on classes of differentiable functions

defined by moduli of continuity. Carpathian Math. Publ. 2023, 15 (1), 286–294. doi:10.15330/cmp.15.1.286-294

[19] Krasniqi X.Z. On the efficiency of certain operators of Abel-Poisson type in seminormed approximations. J. Anal.

2025. doi:10.1007/s41478-025-00991-w

[20] Krasniqi X.Z. The degree of approximation for functions in the generalized Hölder class via the biharmonic poisson
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У цiй статтi встановленi достатнi умови для вiдображень операторами згорток просторiв

функцiй, заданих на n-вимiрному евклiдовому просторi, на простори цiлих функцiй експо-

ненцiального типу. Знайденi iнтегральнi представлення для цих операторiв. Використовуючи

рiвностi апроксимацiйних характеристик в iзометричних просторах функцiй вiд однiєї змiн-

ної, представлено рiвностi апроксимацiйних характеристик в iзометричних функцiональних

просторах багатьох змiнних.

Ключовi слова i фрази: iзометричний простiр, лiнiйний оператор, апроксимативна характе-

ристика, простiр згорток, дельтаподiбне ядро, простiр цiлих функцiй експоненцiального типу.


