References
- Acar Ö., Özkapu A.S. Multivalued rational type \(F\)-contraction on orthogonal metric
space. Math. Found. Comput. 2023, 6
(3), 303–312. doi:10.3934/mfc.2022026
- Acar Ö. Some fixed point results on ultrametric space.
Topol. Algebra Appl. 2022, 10, 227–232.
doi:10.1515/taa-2022-0129
- Agarwal R.P., O’Regan D., Shahzad N. Fixed point theorems for
generalized contractive maps of Mei-Keeler type. Math. Nachr. 2004,
276 (1), 3–12.
doi:10.1002/mana.200310208
- Berinde V. On the approximation of fixed points of weak contractive
mappings. Carpathian J. Math. 2006, 19
(1), 7–22.
- Choudhury B.S., Metiya N., Khatua D., de la Sen M. Fixed-point
study of generalized rational type multivalued contractive mappings on
metric spaces with a graph. Axioms 2021,
10 (1), 31. doi:10.3390/axioms10010031
- Ćirić Lj.B. A generalization of Banach’s contraction
principle. Proc. Amer. Math. Soc. 1974,
45 (2), 267–273. doi:10.2307/2040075
- Gajić L., Arshad M., Khan S.U., Rahman L.U. Some new fixed point
results in ultra metric space. TWMS J. Pure Appl. Math. 2017,
8 (1), 33–42.
- Gajić L. A multivalued fixed point theorem in ultrametric
spaces. Mat. Vesn. 2002, 54 (3–4),
89–91.
- Gajić L. On ultrametric spaces. Novi Sad J. Math. 2001,
31 (2), 69–71.
- Giniswamy, Jeyanthi C., Maheshwari P.G. Fixed point theorems
under \(F\)-contraction in ultrametric
space. Adv. Fixed Point Theory 2017,
7 (1), 144–154.
- Hardy G.E., Rogers T.D. A generalization of a fixed point theorem
of Reich. Canad. Math. Bull. 1973, 16
(2), 201–206. doi:10.4153/CMB-1973-036-0
- Hussain A., Kanwal T. Existence and uniqueness for a neutral
differential problem with unbounded delay via fixed point results.
Trans. A. Razmadze Math. Inst. 2018, 172
(3), 481–490. doi:10.1016/j.trmi.2018.08.006
- Karapınar E., Fulga A. A fixed point theorem for
Proinov mappings with a contractive iterate. Appl. Math. J. Chinese
Univ. 2023, 38 (3), 403–412.
doi:10.1007/s11766-023-4258-y
- Matkowski J. Fixed point theorems for mappings with a contractive
iterate at a point. Proc. Amer. Math. Soc. 1977,
62, 344–348.
- Nazam M., Aydi H., Hussain A. Existence theorems for (\(\Psi
,\Phi )\)-orthogonal interpolative contractions and an
application to fractional differential equations. Optimization
2023, 72 (7), 1899–1929.
doi:10.1080/02331934.2022.2043858
- Rao K.P.R., Kishore G.N.V., Ranga Rao T. Some coincidence point
theorems in ultra metric spaces. Int. J. Math. Anal. 2007,
1 (18), 897–902.
- Rhoades B.E. Some theorems on weakly contractive maps.
Nonlinear Anal. 2001, 47 (4), 2683–2693.
doi:10.1016/S0362-546X(01)00388-1
- Suzuki T. A generalized Banach contraction principle that
characterizes metric completeness Proc. Amer. Math. Soc. 2008,
136 (5), 1861–1869.
- Van Roovij A.C.M. Non-Archimedean functional analysis. Marcel Dekker,
New York, 1978.
- Wardowski D. Fixed points of a new type of contractive mappings
in complete metric spaces. Fixed Point Theory Appl. 2012,
2012, 94.
doi:10.1186/1687-1812-2012-94
- Zhang Q., Song Y. Fixed point theory for generalized \(%
\varphi\)-weak contractions. Appl. Math. Lett. 2009,
22 (1), 75–78.
doi:10.1016/j.aml.2008.02.007