References

  1. Acar Ö., Özkapu A.S. Multivalued rational type \(F\)-contraction on orthogonal metric space. Math. Found. Comput. 2023, 6 (3), 303–312. doi:10.3934/mfc.2022026
  2. Acar Ö. Some fixed point results on ultrametric space. Topol. Algebra Appl. 2022, 10, 227–232. doi:10.1515/taa-2022-0129
  3. Agarwal R.P., O’Regan D., Shahzad N. Fixed point theorems for generalized contractive maps of Mei-Keeler type. Math. Nachr. 2004, 276 (1), 3–12. doi:10.1002/mana.200310208
  4. Berinde V. On the approximation of fixed points of weak contractive mappings. Carpathian J. Math. 2006, 19 (1), 7–22.
  5. Choudhury B.S., Metiya N., Khatua D., de la Sen M. Fixed-point study of generalized rational type multivalued contractive mappings on metric spaces with a graph. Axioms 2021, 10 (1), 31. doi:10.3390/axioms10010031
  6. Ćirić Lj.B. A generalization of Banach’s contraction principle. Proc. Amer. Math. Soc. 1974, 45 (2), 267–273. doi:10.2307/2040075
  7. Gajić L., Arshad M., Khan S.U., Rahman L.U. Some new fixed point results in ultra metric space. TWMS J. Pure Appl. Math. 2017, 8 (1), 33–42.
  8. Gajić L. A multivalued fixed point theorem in ultrametric spaces. Mat. Vesn. 2002, 54 (3–4), 89–91.
  9. Gajić L. On ultrametric spaces. Novi Sad J. Math. 2001, 31 (2), 69–71.
  10. Giniswamy, Jeyanthi C., Maheshwari P.G. Fixed point theorems under \(F\)-contraction in ultrametric space. Adv. Fixed Point Theory 2017, 7 (1), 144–154.
  11. Hardy G.E., Rogers T.D. A generalization of a fixed point theorem of Reich. Canad. Math. Bull. 1973, 16 (2), 201–206. doi:10.4153/CMB-1973-036-0
  12. Hussain A., Kanwal T. Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results. Trans. A. Razmadze Math. Inst. 2018, 172 (3), 481–490. doi:10.1016/j.trmi.2018.08.006
  13. Karapınar E., Fulga A. A fixed point theorem for Proinov mappings with a contractive iterate. Appl. Math. J. Chinese Univ. 2023, 38 (3), 403–412. doi:10.1007/s11766-023-4258-y
  14. Matkowski J. Fixed point theorems for mappings with a contractive iterate at a point. Proc. Amer. Math. Soc. 1977, 62, 344–348.
  15. Nazam M., Aydi H., Hussain A. Existence theorems for (\(\Psi ,\Phi )\)-orthogonal interpolative contractions and an application to fractional differential equations. Optimization 2023, 72 (7), 1899–1929. doi:10.1080/02331934.2022.2043858
  16. Rao K.P.R., Kishore G.N.V., Ranga Rao T. Some coincidence point theorems in ultra metric spaces. Int. J. Math. Anal. 2007, 1 (18), 897–902.
  17. Rhoades B.E. Some theorems on weakly contractive maps. Nonlinear Anal. 2001, 47 (4), 2683–2693. doi:10.1016/S0362-546X(01)00388-1
  18. Suzuki T. A generalized Banach contraction principle that characterizes metric completeness Proc. Amer. Math. Soc. 2008, 136 (5), 1861–1869.
  19. Van Roovij A.C.M. Non-Archimedean functional analysis. Marcel Dekker, New York, 1978.
  20. Wardowski D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. doi:10.1186/1687-1812-2012-94
  21. Zhang Q., Song Y. Fixed point theory for generalized \(% \varphi\)-weak contractions. Appl. Math. Lett. 2009, 22 (1), 75–78. doi:10.1016/j.aml.2008.02.007