References

  1. Antonova T., Cesarano C., Dmytryshyn R., Sharyn S. An approximation to Appell’s hypergeometric function \(F_2\) by branched continued fraction. Dolomites Res. Notes Approx. 2024, 17 (1), 22–31. doi:10.14658/PUPJ-DRNA-2024-1-3
  2. Antonova T., Dmytryshyn R., Goran V. On the analytic continuation of Lauricella-Saran hypergeometric function \(F_K(a_1,a_2,b_1,b_2;a_1,b_2,c_3;\mathbf{z})\). Mathematics 2023, 11 (21), 4487. doi:10.3390/math11214487
  3. Antonova T., Dmytryshyn R., Kril P., Sharyn S. Representation of some ratios of Horn’s hypergeometric functions \(H_7\) by continued fractions. Axioms 2023, 12 (8), 738. doi:10.3390/axioms12080738
  4. Antonova T., Dmytryshyn R., Lutsiv I.-A., Sharyn S. On some branched continued fraction expansions for Horn’s hypergeometric function \(H_4(a, b; c, d; z_1, z_2)\) ratios. Axioms 2023, 12 (3), 299. doi:10.3390/axioms12030299
  5. Asbullah M.A., Abd Rahman N.N., Kamel Ariffin M.R., Sapar S.H., Yunos F. Cryptanalysis of rsa key equation of \(n=p^2q\) for small \(|2q - p|\) using continued fraction. MJS 2020, 39, 72–80. doi:10.22452/mjs.vol39no1.6
  6. Athukorala P., Chathurangi M., Ranasinghe R. A variant of RSA using continued fractions. J. Discret. Math. Sci. Cryptogr. 2022, 25, 127–134. doi:10.1080/09720529.2021.1968574
  7. Bodnar D.I. Branched Continued Fractions. Naukova Dumka, Kyiv, 1986. (in Russian)
  8. Bodnar O.S., Dmytryshyn R.I., Sharyn S.V. On the convergence of multidimensional S-fractions with independent variables. Carpathian Math. Publ. 2020, 12 (2), 353–359. doi:10.15330/cmp.12.2.353-359
  9. Blanch G. Numerical evaluation of continued fractions. SIAM Rev. 1964, 6, 383–421. doi:10.1137/1006092
  10. Chernega I., Dmytryshyn R., Kravtsiv V., Vasylyshyn T., Zagorodnyuk A. Function calculus on rings of multisets associated with symmetric and supersymmetric polynomials. Carpathian Math. Publ. 2025, 17 (1), 187–199. doi:10.15330/cmp.17.1.187-199
  11. Chyrun L., Vysotska V., Chyrun S., Hu Z., Ushenko Y., Uhryn D. Agile intelligent information technology for speech synthesis based on transfer function approximation methods using continued fractions. IJIGSP 2025, 17, 1–28. doi:10.5815/ijigsp.2025.02.01
  12. Cuyt A.A.M., Petersen V., Verdonk B., Waadeland H., Jones W.B. Handbook of Continued Fractions for Special Functions. Springer, Dordrecht, 2008.
  13. Cuyt A., Van der Cruyssen P. Rounding error analysis for forward continued fraction algorithms. Comput. Math. Appl. 1985, 11, 541–564. doi:10.1016/0898-1221(85)90037-9
  14. Dmytryshyn M., Goran T., Rusyn R. Videoconferencing Platforms in Ukrainian Education: Facts and Prospects. In: Proc. of 2025 15th International Conference on Advanced Computer Information Technologies, Sibenik, Croatia, September 17–19, 2025. IEEE, 2025, 1055–1058. doi:10.1109/ACIT65614.2025.11185589
  15. Dmytryshyn M., Hladun V. On the sets of stability to perturbations of some continued fraction with applications. Symmetry 2025, 17 (9), 1442. doi:10.3390/sym17091442
  16. Dmytryshyn R., Antonova T., Dmytryshyn M. On the analytic extension of the Horn’s confluent function \(\mathrm{H}_6\) on domain in the space \(\mathbb{C}^2\). Constr. Math. Anal. 2024, 7, 11–26. doi:10.33205/cma.1545452
  17. Dmytryshyn R., Antonova T., Hladun S. On analytical continuation of the Horn’s hypergeometric functions \(H_3\) and their ratios. Axioms 2025, 14 (1), 67. doi:10.3390/axioms14010067
  18. Dmytryshyn R., Cesarano C., Dmytryshyn M., Lutsiv I.-A. A priori bounds for truncation error of branched continued fraction expansions of Horn’s hypergeometric functions \(H_4\) and their ratios. Res. Math. 2025, 33 (1), 13–22. doi:10.15421/242502
  19. Dmytryshyn R., Cesarano C., Lutsiv I.-A., Dmytryshyn M. Numerical stability of the branched continued fraction expansion of Horn’s hypergeometric function \(H_4.\) Mat. Stud. 2024, 61 (1), 51–60. doi:10.30970/ms.61.1.51-60
  20. Dmytryshyn R.I. Convergence of multidimensional A- and J-fractions with independent variables. Comput. Methods Funct. Theory 2022, 22 (2), 229–242. doi:10.1007/s40315-021-00377-6
  21. Dmytryshyn R., Goran V. On the analytic extension of Lauricella-Saran’s hypergeometric function \(F_K\) to symmetric domains. Symmetry 2024, 16 (2), 220. doi:10.3390/sym16020220
  22. Dmytryshyn R., Lutsiv I.-A., Dmytryshyn M. On the analytic extension of the Horn’s hypergeometric function \(H_4\). Carpathian Math. Publ. 2024, 16 (1), 32–39. doi:10.15330/cmp.16.1.32-39
  23. Dmytryshyn R.I. Multidimensional regular C-fraction with independent variables corresponding to formal multiple power series. Proc. Roy. Soc. Edinburgh Sect. A 2020, 150 (4), 153–1870. doi:10.1017/prm.2019.2
  24. Dmytryshyn R., Oleksyn V. On analytical extension of generalized hypergeometric function \(_3F_2\). Axioms 2024, 13 (11), 759. doi:10.3390/axioms13110759
  25. Dmytryshyn R.I. On some of convergence domains of multidimensional S-fractions with independent variables. Carpathian Math. Publ. 2019, 11 (1), 54–58. doi:10.15330/cmp.11.1.54-58
  26. Dmytryshyn R. On the analytic continuation of Appell’s hypergeometric function \(F_2\) to some symmetric domains in the space \(\mathbb{C}^2\). Symmetry 2024, 16 (11), 1480. doi:10.3390/sym16111480
  27. Dmytryshyn R.I., Sharyn S.V. Approximation of functions of several variables by multidimensional S-fractions with independent variables. Carpathian Math. Publ. 2021, 13 (3), 592–607. doi:10.15330/cmp.13.3.592-607
  28. Dmytryshyn R., Sharyn S. Representation of special functions by multidimensional A- and J-fractions with independent variables. Fractal Fract. 2025, 9 (2), 89. doi:10.3390/fractalfract9020089
  29. Dmytryshyn R. Truncation error bounds for branched continued fraction expansions of some Appell’s hypergeometric functions \(F_2\). Symmetry 2025, 17 (8), 1204. doi:10.3390/sym17081204
  30. Gautschi W. Computational aspects of three-term recurrence relations. SIAM Rev. 1967, 9, 24–82.
  31. He L., Xing Y., Xia K., Tan J. An adaptive image inpainting method based on continued fractions interpolation. Discret. Dyn. Nat. Soc. 2018, 2018, 9801361. doi:10.1155/2018/9801361
  32. Hingu C., Fu X., Saliyu T., Hu R., Mishan R. Power-optimized field-programmable gate array implementation of neural activation functions using continued fractions for AI/ML workloads. Electronics 2024, 13, 5026. doi:10.3390/electronics13245026
  33. Hladun V.R., Bodnar D.I., Rusyn R.S. Convergence sets and relative stability to perturbations of a branched continued fraction with positive elements. Carpathian Math. Publ. 2024, 16 (1), 16–31. doi:10.15330/cmp.16.1.16-31
  34. Hladun V.R., Dmytryshyn M.V., Kravtsiv V.V., Rusyn R.S. Numerical stability of the branched continued fraction expansions of the ratios of Horn’s confluent hypergeometric functions \(\mathrm{H}_{6}\). Math. Model. Comput. 2024, 11 (4), 1152–1166. doi:10.23939/mmc2024.04.1152
  35. Hladun V., Kravtsiv V., Dmytryshyn M., Rusyn R. On numerical stability of continued fractions. Mat. Stud. 2024, 62 (2), 168–183. doi:10.30970/ms.62.2.168-183
  36. Hladun V., Rusyn R., Dmytryshyn M. On the analytic extension of three ratios of Horn’s confluent hypergeometric function \(\mathrm{H}_7\). Res. Math. 2024, 32 (1), 60–70. doi:10.15421/242405
  37. Hladun V.R. Some sets of relative stability under perturbations of branched continued fractions with complex elements and a variable number of branches. J. Math. Sci. 2016, 215, 11–25. doi:10.1007/s10958-016-2818-x (translation of Mat. method. and fiz.-mech. polya 2014, 57, 14–24. (in Ukrainian))
  38. Pinti A., Tulai O., Chaikovskyi Y., Stetsko M., Dmytryshyn M., Alekseyenko L. International Communication and Innovation in Investment in Flagship, Mortgage and Social Projects to Guarantee Security and Minimize Risks of Public Finances. In: Hamdan R.K. (Ed) Integrating Big Data and IoT for Enhanced Decision-Making Systems in Business, Studies in Big Data, 177. Springer, Cham, 2026. doi:10.1007/978-3-031-97609-4_35
  39. Jones W.B., Thron W.J. Continued Fractions: Analytic Theory and Applications. Addison-Wesley Pub. Co., Reading, 1980.
  40. Jones W.B., Thron W.J. Numerical stability in evaluating continued fractions. Math. Comp. 1974, 28, 795–810. doi:10.2307/2005701
  41. Lorentzen L., Waadeland H. Continued Fractions with Applications. Noth Holland, Amsterdam, 1992.
  42. Macon N., Baskervill M. On the generation of errors in the digital evaluation of continued fractions. J. Assoc. Comput. Math. 1956, 3, 199–202. doi:10.1145/320831.320838
  43. Moscato P., Haque M.N., Huang K., Sloan J., Corrales de Oliveira J. Learning to extrapolate using continued fractions: predicting the critical temperature of superconductor materials. Algorithms 2023, 16, 382. doi:10.3390/a16080382
  44. Wojtowicz M., Bodnar D., Shevchuk R., Bodnar O., Bilanyk I. The Monte Carlo type method of attack on the RSA cryptosystem. In: Proc. of the 10th Intern. Conf. on Advanced Computer Information Technologies, Institute of Applied Informatics of Deggendorf Institute of Technology, Deggendorf, Germany, May 13–15, 2020. Institute of Electrical and Electronics Engineers Inc., Deggendorf, 2020, 755–758. doi:10.1109/ACIT49673.2020.9208824
  45. Zahreddine Z. Continued fraction expansions of stable discrete-time systems of difference equations. Symmetry 2022, 14, 1226. doi:10.3390/sym14061226