References
- Antonova T., Cesarano C., Dmytryshyn R., Sharyn S. An
approximation to Appell’s hypergeometric function \(F_2\) by branched continued fraction.
Dolomites Res. Notes Approx. 2024, 17 (1), 22–31.
doi:10.14658/PUPJ-DRNA-2024-1-3
- Antonova T., Dmytryshyn R., Goran V. On the analytic continuation
of Lauricella-Saran hypergeometric function \(F_K(a_1,a_2,b_1,b_2;a_1,b_2,c_3;\mathbf{z})\).
Mathematics 2023, 11 (21), 4487.
doi:10.3390/math11214487
- Antonova T., Dmytryshyn R., Kril P., Sharyn S. Representation of
some ratios of Horn’s hypergeometric functions \(H_7\) by continued fractions. Axioms
2023, 12 (8), 738. doi:10.3390/axioms12080738
- Antonova T., Dmytryshyn R., Lutsiv I.-A., Sharyn S. On some
branched continued fraction expansions for Horn’s hypergeometric
function \(H_4(a, b; c, d; z_1, z_2)\)
ratios. Axioms 2023, 12 (3), 299.
doi:10.3390/axioms12030299
- Asbullah M.A., Abd Rahman N.N., Kamel Ariffin M.R., Sapar S.H., Yunos
F. Cryptanalysis of rsa key equation of \(n=p^2q\) for small \(|2q
- p|\) using continued fraction. MJS 2020,
39, 72–80. doi:10.22452/mjs.vol39no1.6
- Athukorala P., Chathurangi M., Ranasinghe R. A variant of RSA
using continued fractions. J. Discret. Math. Sci. Cryptogr. 2022,
25, 127–134. doi:10.1080/09720529.2021.1968574
- Bodnar D.I. Branched Continued Fractions. Naukova Dumka, Kyiv, 1986.
(in Russian)
- Bodnar O.S., Dmytryshyn R.I., Sharyn S.V. On the convergence of
multidimensional S-fractions with independent variables. Carpathian
Math. Publ. 2020, 12 (2), 353–359.
doi:10.15330/cmp.12.2.353-359
- Blanch G. Numerical evaluation of continued fractions. SIAM
Rev. 1964, 6, 383–421. doi:10.1137/1006092
- Chernega I., Dmytryshyn R., Kravtsiv V., Vasylyshyn T., Zagorodnyuk
A. Function calculus on rings of multisets associated with symmetric
and supersymmetric polynomials. Carpathian Math. Publ. 2025,
17 (1), 187–199. doi:10.15330/cmp.17.1.187-199
- Chyrun L., Vysotska V., Chyrun S., Hu Z., Ushenko Y., Uhryn D.
Agile intelligent information technology for speech synthesis based
on transfer function approximation methods using continued
fractions. IJIGSP 2025, 17, 1–28.
doi:10.5815/ijigsp.2025.02.01
- Cuyt A.A.M., Petersen V., Verdonk B., Waadeland H., Jones W.B.
Handbook of Continued Fractions for Special Functions. Springer,
Dordrecht, 2008.
- Cuyt A., Van der Cruyssen P. Rounding error analysis for forward
continued fraction algorithms. Comput. Math. Appl. 1985,
11, 541–564. doi:10.1016/0898-1221(85)90037-9
- Dmytryshyn M., Goran T., Rusyn R. Videoconferencing Platforms in
Ukrainian Education: Facts and Prospects. In: Proc. of 2025 15th
International Conference on Advanced Computer Information Technologies,
Sibenik, Croatia, September 17–19, 2025. IEEE, 2025, 1055–1058.
doi:10.1109/ACIT65614.2025.11185589
- Dmytryshyn M., Hladun V. On the sets of stability to
perturbations of some continued fraction with applications.
Symmetry 2025, 17 (9), 1442.
doi:10.3390/sym17091442
- Dmytryshyn R., Antonova T., Dmytryshyn M. On the analytic
extension of the Horn’s confluent function \(\mathrm{H}_6\) on domain in the space \(\mathbb{C}^2\). Constr. Math. Anal.
2024, 7, 11–26. doi:10.33205/cma.1545452
- Dmytryshyn R., Antonova T., Hladun S. On analytical continuation
of the Horn’s hypergeometric functions \(H_3\) and their ratios. Axioms 2025,
14 (1), 67. doi:10.3390/axioms14010067
- Dmytryshyn R., Cesarano C., Dmytryshyn M., Lutsiv I.-A. A priori
bounds for truncation error of branched continued fraction expansions of
Horn’s hypergeometric functions \(H_4\)
and their ratios. Res. Math. 2025, 33 (1), 13–22.
doi:10.15421/242502
- Dmytryshyn R., Cesarano C., Lutsiv I.-A., Dmytryshyn M. Numerical
stability of the branched continued fraction expansion of Horn’s
hypergeometric function \(H_4.\)
Mat. Stud. 2024, 61 (1), 51–60.
doi:10.30970/ms.61.1.51-60
- Dmytryshyn R.I. Convergence of multidimensional A- and
J-fractions with independent variables. Comput. Methods Funct.
Theory 2022, 22 (2), 229–242.
doi:10.1007/s40315-021-00377-6
- Dmytryshyn R., Goran V. On the analytic extension of
Lauricella-Saran’s hypergeometric function \(F_K\) to symmetric domains. Symmetry
2024, 16 (2), 220. doi:10.3390/sym16020220
- Dmytryshyn R., Lutsiv I.-A., Dmytryshyn M. On the analytic
extension of the Horn’s hypergeometric function \(H_4\). Carpathian Math. Publ. 2024,
16 (1), 32–39. doi:10.15330/cmp.16.1.32-39
- Dmytryshyn R.I. Multidimensional regular C-fraction with
independent variables corresponding to formal multiple power
series. Proc. Roy. Soc. Edinburgh Sect. A 2020,
150 (4), 153–1870. doi:10.1017/prm.2019.2
- Dmytryshyn R., Oleksyn V. On analytical extension of generalized
hypergeometric function \(_3F_2\).
Axioms 2024, 13 (11), 759.
doi:10.3390/axioms13110759
- Dmytryshyn R.I. On some of convergence domains of
multidimensional S-fractions with independent variables. Carpathian
Math. Publ. 2019, 11 (1), 54–58.
doi:10.15330/cmp.11.1.54-58
- Dmytryshyn R. On the analytic continuation of Appell’s
hypergeometric function \(F_2\) to some
symmetric domains in the space \(\mathbb{C}^2\). Symmetry 2024,
16 (11), 1480. doi:10.3390/sym16111480
- Dmytryshyn R.I., Sharyn S.V. Approximation of functions of
several variables by multidimensional S-fractions with independent
variables. Carpathian Math. Publ. 2021, 13 (3),
592–607. doi:10.15330/cmp.13.3.592-607
- Dmytryshyn R., Sharyn S. Representation of special functions by
multidimensional A- and J-fractions with independent variables.
Fractal Fract. 2025, 9 (2), 89.
doi:10.3390/fractalfract9020089
- Dmytryshyn R. Truncation error bounds for branched continued
fraction expansions of some Appell’s hypergeometric functions \(F_2\). Symmetry 2025,
17 (8), 1204. doi:10.3390/sym17081204
- Gautschi W. Computational aspects of three-term recurrence
relations. SIAM Rev. 1967, 9, 24–82.
- He L., Xing Y., Xia K., Tan J. An adaptive image inpainting
method based on continued fractions interpolation. Discret. Dyn.
Nat. Soc. 2018, 2018, 9801361.
doi:10.1155/2018/9801361
- Hingu C., Fu X., Saliyu T., Hu R., Mishan R. Power-optimized
field-programmable gate array implementation of neural activation
functions using continued fractions for AI/ML workloads.
Electronics 2024, 13, 5026.
doi:10.3390/electronics13245026
- Hladun V.R., Bodnar D.I., Rusyn R.S. Convergence sets and
relative stability to perturbations of a branched continued fraction
with positive elements. Carpathian Math. Publ. 2024,
16 (1), 16–31. doi:10.15330/cmp.16.1.16-31
- Hladun V.R., Dmytryshyn M.V., Kravtsiv V.V., Rusyn R.S. Numerical
stability of the branched continued fraction expansions of the ratios of
Horn’s confluent hypergeometric functions \(\mathrm{H}_{6}\). Math. Model. Comput.
2024, 11 (4), 1152–1166.
doi:10.23939/mmc2024.04.1152
- Hladun V., Kravtsiv V., Dmytryshyn M., Rusyn R. On numerical
stability of continued fractions. Mat. Stud. 2024,
62 (2), 168–183. doi:10.30970/ms.62.2.168-183
- Hladun V., Rusyn R., Dmytryshyn M. On the analytic extension of
three ratios of Horn’s confluent hypergeometric function \(\mathrm{H}_7\). Res. Math. 2024,
32 (1), 60–70. doi:10.15421/242405
- Hladun V.R. Some sets of relative stability under perturbations
of branched continued fractions with complex elements and a variable
number of branches. J. Math. Sci. 2016, 215,
11–25. doi:10.1007/s10958-016-2818-x (translation of Mat. method. and
fiz.-mech. polya 2014, 57, 14–24. (in Ukrainian))
- Pinti A., Tulai O., Chaikovskyi Y., Stetsko M., Dmytryshyn M.,
Alekseyenko L. International Communication and Innovation in Investment
in Flagship, Mortgage and Social Projects to Guarantee Security and
Minimize Risks of Public Finances. In: Hamdan R.K. (Ed) Integrating Big
Data and IoT for Enhanced Decision-Making Systems in Business, Studies
in Big Data, 177. Springer, Cham, 2026.
doi:10.1007/978-3-031-97609-4_35
- Jones W.B., Thron W.J. Continued Fractions: Analytic Theory and
Applications. Addison-Wesley Pub. Co., Reading, 1980.
- Jones W.B., Thron W.J. Numerical stability in evaluating
continued fractions. Math. Comp. 1974, 28,
795–810. doi:10.2307/2005701
- Lorentzen L., Waadeland H. Continued Fractions with Applications.
Noth Holland, Amsterdam, 1992.
- Macon N., Baskervill M. On the generation of errors in the
digital evaluation of continued fractions. J. Assoc. Comput. Math.
1956, 3, 199–202. doi:10.1145/320831.320838
- Moscato P., Haque M.N., Huang K., Sloan J., Corrales de Oliveira J.
Learning to extrapolate using continued fractions: predicting the
critical temperature of superconductor materials. Algorithms 2023,
16, 382. doi:10.3390/a16080382
- Wojtowicz M., Bodnar D., Shevchuk R., Bodnar O., Bilanyk I. The Monte
Carlo type method of attack on the RSA cryptosystem. In: Proc. of the
10th Intern. Conf. on Advanced Computer Information Technologies,
Institute of Applied Informatics of Deggendorf Institute of Technology,
Deggendorf, Germany, May 13–15, 2020. Institute of Electrical and
Electronics Engineers Inc., Deggendorf, 2020, 755–758.
doi:10.1109/ACIT49673.2020.9208824
- Zahreddine Z. Continued fraction expansions of stable
discrete-time systems of difference equations. Symmetry 2022,
14, 1226. doi:10.3390/sym14061226