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Kolmogorov-type inequalities in semilinear metric spaces
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For functions that take values in an isotropic semilinear metric space we prove two sharp

Kolmogorov-type inequalities. In the first one we obtain an estimate for the uniform norm of the

derivative (in the Rådström sense) of a function using the uniform norm of the function and the

Hω-norm of the function’s derivative; here ω is an arbitrary modulus of continuity. The second one

gives an estimate of the uniform norm of a generalized fractional derivative of a function via its

uniform norm and its Hω-norm.
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1 Introduction

Inequalities for derivatives of real-valued functions of one and several variables (often

called Kolmogorov-type inequalities) are important in many areas of mathematics and ap-

plications. A presentation of many sharp inequalities of this type, a description of their appli-

cations, and the corresponding references can be found in monographs [8, 11]. Inequalities for

functions with more general ranges are also important. We are interested in inequalities for

derivatives of functions taking values in semilinear metric spaces. Some known inequalities

for Hukuhara-type derivatives of integer and fractional orders can be found in [2, 3].

In this article, we prove two sharp Kolmogorov-type inequalities for functions that take

values in semilinear metric spaces, where the definition of the derivative is based on the well-

known Rådström embedding theorem [13].

Let G be line R, or semi-line R+, and (X, hX) be a semilinear metric space (precise defi-

nitions are given in Section 2). Let ω(t) be a modulus of continuity, i.e. a non-decreasing on

R+, continuous and semiadditive function such that ω(0) = 0. Denote by Hω(G, X) the set of

continuous functions f : G → X such that

‖ f‖Hω (G,X) := sup
u,v∈G
u 6=v

hX( f (u), f (v))

ω(|u − v|)
< ∞.

We obtain a sharp inequality that estimates the uniform norm of the derivative (in the

Rådström sense) of a function f : G → X using the uniform norm of the function and the
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Hω-norm of the function’s derivative. An analogue of this result for the derivatives in the sense

of Hukuhara can be found in [2, Theorems 5.1 and 6.1]. Inequalities that estimate the uniform

norm of a mixed derivative of a multivariate real-valued function using the uniform norm of

the function and the ‖ · ‖Hω-norm of the mixed derivative were obtained in [5, Theorem 6];

using the the uniform norm of the function and the ‖ · ‖Lp -norm, p ∈ [1, ∞], of the gradient of

the mixed derivative were obtained in [4, Theorem 5] and [6, Theorem 4]. Articles [4–6] also

contain related inequalities for charges.

We also prove a sharp inequality that estimates the uniform norm of a generalized frac-

tional derivative of a function via its uniform norm and its Hω-norm. Many results on in-

equalities for fractional derivatives are known. We refer to [7, Section 1.3], [11, Chapter 2],

and [9] for a survey of results and further references.

The article is organized as follows. In Section 2 we give necessary definitions and adduce

several theorems that will be needed in the article. Section 3 contains the main results of the

article.

2 Semilinear metric spaces

2.1 Definitions

Definition 1. A set X is called a semilinear space, if the operations of addition of elements

and their multiplication on real numbers are defined in X, and the following conditions are

satisfied for all x, y, z ∈ X and λ, µ ∈ R:

1) x + y = y + x;

2) x + (y + z) = (x + y) + z;

3) ∃ θ ∈ X : x + θ = x;

4) λ(x + y) = λx + λy;

5) λ(µx) = (λµ)x;

6) 1 · x = x, 0 · x = θ.

Definition 2. We call an element x ∈ X convex, if for all α, β ≥ 0 we have (α + β)x = αx + βx.

Denote by Xc the subspace of the space X that consists of all convex elements.

Definition 3. We say that an element x ∈ X is invertible if there exists an element x′ ∈ X such

that x + x′ = θ. In this case the element x′ is called the inverse to x. Denote by Xinv the set of

all invertible elements of the space X.

Definition 4. A semilinear space X endowed with a metric hX is called a semilinear metric

space if the following conditions are satisfied for all x, y, z ∈ X and λ ∈ R:

1) hX(λx, λy) = |λ| · hX(x, y);

2) hX(x + z, y + z) ≤ hX(x, y).
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Due to these properties and the triangle inequality one has

hX(x + y, u + v) ≤ hX(x + y, x + v) + hX(x + v, u + v) ≤ hX(y, v) + hX(x, u)

for all x, y, u, v ∈ X.

Definition 5. A semilinear metric space X is called isotropic if

hX(x + z, y + z) = hX(x, y)

for all x, y, z ∈ X.

Everywhere below we assume that X is isotropic and X = Xc.

2.2 Differences in semilinear spaces. Rådström’s theorem

We start from the definition of Hukuhara-type differences.

Definition 6. Let X be a semilinear metric space. We say that z ∈ X is a Hukuhara type

difference of x, y ∈ X if x = y + z. We denote this difference by z = x −H y.

Note that in an isotropic semilinear metric space, the Hukuhara difference x−H y is unique,

provided it exists.

Another approach to the definition of a difference is based on Rådström’s theorem [13].

Let X be an isotropic semilinear metric space that consists of convex elements. Note that

if for some a, b, c ∈ X one has a + c = b + c, then 0 = hX(a + c, b + c) = hX(a, b), hence

a + c = b + c =⇒ a = b. It follows from Rådström’s theorem [13] that the set X can be isomet-

rically embedded into some normed space as a convex cone. The outline of the proof of this

fact is as follows. Consider the set X × X. Define an equivalence relation on this set by setting

(x, y) ∼ (u, v) ⇐⇒ x + v = y + u. Let B denote the quotient set B := (X × X)/ ∼ and 〈x, y〉

denote the equivalence class containing the pair (x, y). For x, y ∈ X and α ∈ R define addition

in B and scalar multiplication by

〈x, y〉+ 〈u, v〉 := 〈x + u, y + v〉, α〈x, y〉 :=

{

〈αx, αy〉, α ≥ 0,

〈|α|y, |α|x〉, α < 0.

Define a metric on B by the formula δ(〈x, y〉, 〈u, v〉) := hX(x + v, y + u), where hX is the given

metric on X. Next, define the norm in B as ‖〈x, y〉‖B := δ(〈x, y〉, 〈θ, θ〉) = hX(x, y). Define the

embedding operator π : X → B by π(x) := 〈x, θ〉. We can then define the difference between

elements x, y ∈ X as x −π y := 〈x, θ〉 −B 〈y, θ〉 = 〈x, y〉. This difference is not necessarily an

element of X, but if for elements x, y ∈ X the Hukuhara-type difference x −H y exists, then

x −π y = 〈x, y〉 = 〈x −H y, θ〉.

2.3 Derivatives of a function with values in semilinear metric spaces

Let G = R or G = R+. As it is known for a function f : G → B and a point t ∈ G, the

derivative at the point t ∈ G is defined by the equality

D f (t) = lim
G∋γ→t

f (γ)−B f (t)

γ − t
,

where the limit is understood as the limit in the norm of the space B.

In particular, if we identify a function f : G → X with the function t 7→ 〈 f (t), θ〉, then we

arrive at the following definition.
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Definition 7. For a function f : G → X and a point t ∈ G, the derivative in the sense of

Rådström (π-derivative) at the point t ∈ G is defined by the equality

Dπ f (t) = D〈 f (·), θ〉(t) = lim
G∋γ→t

1

γ − t
〈 f (γ), f (t)〉,

where the limit is understood as the limit in the norm of the space B.

If t ∈ G, t 6= 0, and for all small enough γ > 0 there exist Hukuhara-type differences

f (t + γ)−H f (t) and f (t)−H f (t − γ), and both limits

lim
γ→+0

γ−1( f (t + γ)−H f (t)) and lim
γ→+0

γ−1( f (t) −H f (t − γ))

exist and are equal to each other, then the function f is said to be differentiable in the sense

of Hukuhara at the point t; in the case t = 0 one only requires existence of one limit. The

Hukuhara-type derivative is defined as

DH f (t) := lim
γ→+0

γ−1( f (t + γ)−H f (t)).

Observe that if a function f is differentiable in the sense of Hukuhara at a point t, then it is

π-differentiable at t, and

Dπ f (t) = 〈DH f (t), θ〉. (1)

A discussion of various ways to define differences and derivatives of multi-valued map-

pings can be found in [12, Section 2.1] (see also references therein). In [1], elements of calculus

for functions with values in semilinear metric spaces were developed based on the Hukuhara-

type differences.

2.4 Integral of functions with values in the space B

Although B is a normed space and one might try to use standard definitions of integrals for

such functions, the following problem arise: completeness of X does not, generally speaking,

imply completeness of B, see e.g. [10, p. 363].

We will use the following definition of the integral (we give this definition only for contin-

uous functions).

Let f1, f2 : R → X be continuous functions, and let a, b ∈ R, a < b. Then the functions

f1, f2 : [a, b] → X are Riemann integrable. Define

∫ b

a
〈 f1(t), f2(t)〉 dt :=

〈

∫ b

a
f1(t) dt,

∫ b

a
f2(t) dt

〉

.

Note that this definition is consistent with the definition of the Riemann integral as the limit

of Riemann sums. This definition is correct, and the integral so defined will have all the prop-

erties we require. These properties are as follows:

1) if 0 < a < b < c < ∞, then

∫ c

a
〈 f1(t), f2(t)〉 dt =

∫ b

a
〈 f1(t), f2(t)〉 dt +

∫ c

b
〈 f1(t), f2(t)〉 dt;

2)
∥

∥

∥

∫ b

a
〈 f1(t), f2(t)〉 dt

∥

∥

∥

B

≤
∫ b

a
‖〈 f1(t), f2(t)〉‖B dt.
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We will also need the definition of the improper integral. Let f1, f2 : (0, ∞) → X be continuous

functions, and let a, b ∈ R, a < b. Then the improper integral is defined as follows

∫

∞

0
〈 f1(t), f2(t)〉 dt := lim

a→0
b→∞

∫ b

a
〈 f1(t), f2(t)〉dt

(if the limit on the right-hand side exists in the space B). It is not difficult to verify that ana-

logues of the above properties of proper integrals are preserved for improper integrals.

2.5 Elements of calculus

We need the Finite-increment Theorem (see e.g. [15, Section 10.4, Theorem 1]), which we

formulate in a convenient for our purposes form.

Theorem 1. Assume that f : [a, b] → B is a continuously differentiable on [a, b] function. Then

1

b − a
‖ f (b) −B f (a)‖B ≤ sup

t∈[a,b]

‖D f (t)‖B .

As a corollary, one obtains the following result.

Theorem 2. Let us assume that f , g : [a, b] → B are two differentiable functions such that

D f (t) = Dg(t) for all t ∈ [a, b]. Then the function f −B g is constant on [a, b].

We also need an analogue of the Newton-Leibniz formula.

Theorem 3. Let a function f : [a, b] → X be π-differentiable at each point t ∈ [a, b], and

Dπ f (t) = 〈A(t), B(t)〉, where the functions A and B are continuous. Then

〈 f (b), f (a)〉 =
∫ b

a
Dπ f (t)dt =

〈

∫ b

a
A(t)dt,

∫ b

a
B(t)dt

〉

.

Proof. Consider the function Φ : [a, b] → B, defined as follows

Φ(t) =
∫ t

a
Dπ f (s)ds =

〈

∫ t

a
A(t)dt,

∫ t

a
B(t)dt

〉

.

We compute the derivative DΦ(t) for a fixed t ∈ [a, b]. Let γ 6= 0 be such that t + γ ∈ [a, b] and

consider the quantity ∆( f ; t, γ) = (Φ(t + γ)−B Φ(t))/γ. Using additivity of the integral and

the definitions of the elements of the space B and of the operations on the elements, we prove

that for γ > 0 we have

∆( f ; t, γ) =
1

γ

〈

∫ t+γ

t
A(s)ds,

∫ t+γ

t
B(s)ds

〉

,

and for γ < 0 we have

∆( f ; t, γ) =
1

|γ|

〈

∫ t

t+γ
A(s)ds,

∫ t

t+γ
B(s)ds

〉

.



584 Babenko V., Kolesnyk V., Kovalenko O., Parfinovych N.

We start with the proof of the first equality.

∆( f ; t, γ) =
1

γ

〈

∫ t+γ

a
A(s)ds,

∫ t+γ

a
B(s)ds

〉

−B

1

γ

〈

∫ t

a
A(s)ds,

∫ t

a
B(s)ds

〉

=
1

γ

〈

∫ t+γ

a
A(s)ds +

∫ t

a
B(s)ds,

∫ t+γ

a
B(s)ds +

∫ t

a
A(s)ds

〉

=
1

γ

〈

∫ t

a
A(s)ds +

∫ t+γ

t
A(s)ds +

∫ t

a
B(s)ds,

∫ t

a
B(s)ds +

∫ t+γ

t
B(s)ds +

∫ t

a
A(s)ds

〉

=
1

γ

〈

∫ t+γ

t
A(s)ds,

∫ t+γ

t
B(s)ds

〉

.

If γ < 0, then analogously we obtain

∆( f ; t, γ) =
1

|γ|

〈

∫ t+γ

a
B(s)ds,

∫ t+γ

a
A(s)ds

〉

−B

1

|γ|

〈

∫ t

a
B(s)ds

∫ t

a
A(s)ds

〉

=
1

|γ|

〈

∫ t+γ

a
B(s)ds +

∫ t+γ

a
A(s)ds +

∫ t

t+γ
A(s)ds,

∫ t+γ

a
A(s)ds +

∫ t+γ

a
B(s)ds +

∫ t

t+γ
B(s)ds

〉

=
1

|γ|

〈

∫ t

t+γ
A(s)ds,

∫ t

t+γ
B(s)ds

〉

.

Next, for γ > 0 one has

‖∆( f ; t, γ)−B Dπ f (t)‖B =
∥

∥

∥

1

γ

〈

∫ t+γ

t
A(s)ds,

∫ t+γ

t
B(s)ds

〉

−B 〈A(t), B(t)〉
∥

∥

∥

B

= hX

( 1

γ

∫ t+γ

t
A(s)ds + B(t),

1

γ

∫ t+γ

t
B(s)ds + A(t)

)

≤ hX

( 1

γ

∫ t+γ

t
A(s)ds, A(t)

)

+ hX

( 1

γ

∫ t+γ

t
B(s)ds, B(t)

)

= hX

( 1

γ

∫ t+γ

t
A(s)ds,

1

γ

∫ t+γ

t
A(t)ds

)

+ hX

( 1

γ

∫ t+γ

t
B(s)ds,

1

γ

∫ t+γ

t
B(t)ds

)

≤
1

γ

∫ t+γ

t
hX(A(s), A(t))ds +

1

γ

∫ t+γ

t
hX(B(s), B(t))ds.

Thus, in this case we get

‖∆( f ; t, γ)−B Dπ f (t)‖B ≤
1

γ

∫ t+γ

t
hX(A(s), A(t))ds +

1

γ

∫ t+γ

t
hX(B(s), B(t))ds.

Analogously, in the case γ < 0 we obtain

‖∆( f ; t, γ)−B Dπ f (t)‖B ≤
1

|γ|

∫ t

t+γ
hX(A(s), A(t))ds +

1

|γ|

∫ t

t+γ
hX(B(s), B(t))ds.

Taking into account continuity of the functions A and B we obtain ∆( f ; t, γ) → Dπ f (t) as

γ → 0. Thus for all t ∈ [a, b] we have

D
∫ t

a
Dπ f (s)ds = Dπ f (t) = D〈 f (t), θ〉.
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Using Theorem 2, we obtain

〈 f (t), θ〉 −B

∫ t

a
Dπ f (s)ds = 〈 f (a), θ〉

for all t ∈ [a, b], or, equivalently,

∫ t

a
Dπ f (s)ds = 〈 f (t), θ〉 −B 〈 f (a), θ〉 = 〈 f (t), f (a)〉,

which implies the statement of the theorem.

3 Kolmogorov-type inequalities

3.1 Auxiliary results

Recall that in this paper X is assumed to be an isotropic semilinear metric space that con-

sists of convex elements. By G we denote a segment [a, b] ⊂ R, line R, or semi-line R+.

Definition 8. For a function f : G → R and x ∈ Xinv define a function

fx : G → X, fx(t) = f+(t) · x + f−(t) · x′,

where for t ∈ G, f±(t) := ( f (t))± , and for a real ξ, ξ± := max{±ξ, 0}.

In this section, we state several properties of the functions fx , which will be used during

the construction of extremal functions for inequalities for derivatives.

Denote by C(G, X) the set of all continuous functions f : G → X and for a bounded function

f ∈ C(G, X) let

‖ f‖C(G,X) := sup
t∈G

‖ f (t)‖X .

Let ω(t) be some modulus of continuity.

Definition 9. Denote by Hω(G, X) the set of functions f ∈ C(G, X) such that

‖ f‖Hω (G,X) := sup
u,v∈G
u 6=v

hX( f (u), f (v))

ω(|u − v|)
< ∞.

Due to the definition of the metric in the space B, for a function f : G → B,

f (·) = 〈 f1(·), f2(·)〉, this definition can be rewritten as follows: we say that f ∈ Hω(G,B),

if

‖ f‖Hω (G,B) := sup
u,v∈G
u 6=v

‖〈 f1(u), f2(u)〉 −B 〈 f1(v), f2(v)〉‖B
ω(|u − v|)

< ∞.

The following two lemmas are known, see [3, Lemmas 6,7].

Lemma 1. Let f ∈ Hω([a, b], R) and x ∈ Xinv be such that hX(x, θ) = 1. Then fx ∈ Hω([a, b], X)

and
∫ b

a
fx(t)dt =

∫ b

a
f+(t)dt · x +

∫ b

a
f−(t)dt · x′.

Lemma 2. Let x ∈ Xinv, and f : [a, b] → R be a continuously differentiable function. Then the

derivative DH fx(t) exists at each point t ∈ [a, b] and DH fx(t) = ( f ′(t))x .
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Lemma 3. Let x ∈ X and A, B ≥ 0. Then 〈Ax, Bx〉 = (A − B)〈x, θ〉.

Proof. Assume that A ≥ B. Then (A − B)〈x, θ〉 = 〈(A − B)x, θ〉 = 〈(A − B)x + Bx, Bx〉 =

〈Ax, Bx〉. If A < B, then (A− B)〈x, θ〉 = 〈θ, (B− A)x〉 = 〈Ax, (B− A)x+ Ax〉 = 〈Ax, Bx〉.

Lemma 4. Let ϕ, ψ : [a, b] → R be two continuous functions and x ∈ Xinv. Then

∫ b

a
〈ϕx(t), ψx(t)〉dt =

∫ b

a
(ϕ(t)− ψ(t))dt · 〈x, θ〉.

Proof. Using Lemmas 1 and 3 we obtain

∫ b

a
〈ϕx(t), ψx(t)〉dt =

〈

∫ b

a
ϕx(t)dt,

∫ b

a
ψx(t)dt

〉

=
〈

∫ b

a
ϕ+(t)dt · x +

∫ b

a
ϕ−(t)dt · x′,

∫ b

a
ψ+(t)dt · x +

∫ b

a
ψ−(t)dt · x′

〉

=
〈

∫ b

a
ϕ+(t)dt · x +

∫ b

a
ψ−(t)dt · x,

∫ b

a
ψ+(t)dt · x +

∫ b

a
ϕ−(t)dt · x

〉

=
〈[

∫ b

a
ϕ+(t)dt +

∫ b

a
ψ−(t)dt

]

x,
[

∫ b

a
ψ+(t)dt +

∫ b

a
ϕ−(t)dt

]

x
〉

=
[

∫ b

a
ϕ+(t)dt +

∫ b

a
ψ−(t)dt −

∫ b

a
ψ+(t)dt −

∫ b

a
ϕ−(t)dt

]

〈x, θ〉

=
∫ b

a
(ϕ(t)− ψ(t))dt · 〈x, θ〉.

3.2 Inequalities on the class of functions with given majorant of modulus of continuity

Theorem 4. Let G = R or G = R+, f : G → X be a bounded function such that for every

t ∈ G the Rådström derivative Dπ f (t) exists, and ‖Dπ f‖Hω(G,B) < ∞. Then for any γ > 0 the

following inequality

‖Dπ f‖C(G,B) ≤
1

γ

∫ γ

0
ω(t) dt · ‖Dπ f‖Hω (G,B) +

α(G)

γ
‖ f‖C(G,X) (2)

holds, where α(G) = 1 if G = R, and α(G) = 2 if G = R+. If Xinv 6= {θ}, then the inequality

is sharp.

Proof. We start with the case G = R. For arbitrary t ∈ R using the equality

Dπ f (t)−B

1

2γ

∫ t+γ

t−γ
Dπ f (u)du =

1

2γ

∫ t+γ

t−γ
(Dπ f (t)−B Dπ f (u))du,

we obtain

∥

∥

∥
Dπ f (t)−B

1

2γ

∫ t+γ

t−γ
Dπ f (u)du

∥

∥

∥

B

≤
1

2γ

∫ t+γ

t−γ
‖Dπ f (t)−B Dπ f (u)‖Bdu

≤
1

2γ

∫ t+γ

t−γ
‖Dπ f‖Hω (G,B)ω(|t − u|)du

=
1

γ

∫ γ

0
ω(v)dv · ‖Dπ f‖Hω (G,B).
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Using Theorem 3, we obtain

∥

∥

∥

1

2γ

∫ t+γ

t−γ
Dπ f (u)du

∥

∥

∥

B

=
1

2γ
‖〈 f (t + γ), f (t − γ)〉‖B

=
1

2γ
hX( f (t + γ), f (t − γ)) ≤

1

γ
‖ f‖C(R,X) .

Using the obtained estimates, we have

∥

∥

∥
Dπ f (t)

∥

∥

∥

B

≤
∥

∥

∥
Dπ f (t)−B

1

2γ

∫ t+γ

t−γ
Dπ f (u)du

∥

∥

∥

B

+
∥

∥

∥

1

2γ

∫ t+γ

t−γ
Dπ f (u)du

∥

∥

∥

B

≤
1

γ

∫ γ

0
ω(v)dv‖Dπ f‖Hω(G,B) +

1

γ
‖ f‖C(R,X) ,

as required in the case G = R.

In the case G = R+, we use averaging operator

f 7→
1

γ

∫ t+γ

t
Dπ f (u)du instead of f 7→

1

2γ

∫ t+γ

t−γ
Dπ f (u)du

and analogous arguments to obtain the inequality

‖Dπ f (t)‖B ≤
1

γ

∫ γ

0
ω(v)dv‖Dπ f‖Hω (G,B) +

2

γ
‖ f‖C(G,X) .

Next, we prove sharpness of the obtained inequalities. We start from the case G = R first.

Choose y ∈ Xinv such that

‖〈y, θ〉‖B = hX(y, θ) = 1. (3)

Set

φγ(t) =

{

ω(γ)− ω(|t|), 0 ≤ |t| ≤ γ,

0, |t| ≥ γ,

and

ψγ(t) =
(

∫ t

0
φγ(s)ds

)

y
=











∫ t

0
φγ(s)ds · y, t ≥ 0,

∫ 0

t
φγ(s)ds · y′, t < 0.

Using Lemma 2 and relation (1), we obtain

Dπψγ(t) = 〈(φγ(t))y, 0〉 = φγ(t) · 〈y, θ〉 (4)

for all t ∈ R. From this equality and (3) it follows that

‖Dπψγ‖Hω(R,B) = ‖φγ‖Hω(R,R) = 1 and ‖Dπψγ‖C(R,B) = ‖φγ‖C(R,R) = ω(γ).

Moreover,

‖ψγ‖C(R,X) = ‖φγ‖C(R,R) = γω(γ)−
∫ γ

0
ω(s)ds.

Substituting these values into inequality (2) one can see that it becomes equality.

In order to prove sharpness of (2) in the case G = R+, set

φγ(t) =

{

ω(γ)− ω(t), 0 ≤ t ≤ γ,

0, t ≥ γ.
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Let t0 ∈ [0, γ] be such that
∫ t0

0
φ(s)ds =

∫ γ

t0

φ(s)ds.

Define

ψγ(t) =
(

∫ t

t0

φγ(s)ds
)

y
=















∫ t0

t
φγ(s)ds · y, 0 ≤ t ≤ t0,

∫ t

t0

φγ(s)ds · y′, t ≥ t0.

Again, by Lemma 2, we obtain that for all t ≥ 0 equalities (4) hold, hence one has

‖Dπψγ‖Hω(R+,B) = 1

and ‖Dπψγ‖C(R+,B) = ω(γ). Moreover,

‖ψγ(t)‖C(R+ ,X) =
1

2
γω(γ)−

1

2

∫ γ

0
ω(s)ds.

Substituting these values into inequality (2) one can see that it becomes equality.

3.3 Inequalities for generalized derivatives of fractional order

Let Ω : (0, ∞) → (0, ∞) be a non-negative continuous function. For a continuous function

f : [0, ∞) → X define

Dπ,Ω f (t) :=
∫

∞

0
( f (t) −π f (t + u))Ω(u)du =

∫

∞

0
〈 f (t), f (t + u)〉Ω(u)du.

In the case when Ω(u) = 1/u1+α, 0 < α < 1, and X = R, this gives, up to a constant factor,

the definition of the fractional derivative of order α in the sense of Marchaud (see e.g. [14, §5]).

Theorem 5. Let a modulus of continuity ω and a continuous non-negative function

Ω : (0, ∞) → (0, ∞)

be such that for some ε > 0 we have
∫ ε

0
ω(u)Ω(u)du < ∞ and

∫

∞

ε
Ω(u)du < ∞. (5)

Then for any function f ∈ Hω(R+, X) and arbitrary γ > 0 the following inequality

‖Dπ,Ω f‖C(R+ ,B) ≤
∫ γ

0
ω(u)Ω(u)du · ‖ f‖Hω (R+,X) + 2

∫

∞

γ
Ω(u)du · ‖ f‖C(R+ ,X)

holds. If Xinv 6= {θ}, then the inequality is sharp and becomes an equality for the function

fγ = (φγ)x, where

φγ(t) =











1

2
ω(γ)− ω(t), 0 ≤ t ≤ γ,

−
1

2
ω(γ), t ≥ γ,

(6)

and x ∈ Xinv is such that hX(x, θ) = 1.
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Proof. Observe that if condition (5) holds for some ε > 0, then it holds for all ε > 0. For any

t ∈ R+ we get

Dπ,Ω f (t) =
∫

∞

0
〈 f (t), f (t + u)〉Ω(u)du

=
∫ γ

0
〈 f (t), f (t + u)〉Ω(u)du +

∫

∞

γ
〈 f (t), f (t + u)〉Ω(u)du.

Therefore

‖Dπ,Ω f (t)‖B ≤
∫ γ

0
‖〈 f (t), f (t + u)〉‖BΩ(u)du +

∫

∞

γ
‖〈 f (t), f (t + u)〉‖BΩ(u)du

≤ ‖ f‖Hω (R+,B)

∫ γ

0
ω(u)Ω(u)du + 2‖ f‖C(R+ ,X)

∫

∞

γ
Ω(u)du.

Hence,

‖Dπ,Ω f‖C(R+ ,B) ≤
∫ γ

0
ω(u)Ω(u)du · ‖ f‖Hω (R+,X) + 2

∫

∞

γ
Ω(u)du · ‖ f‖C(R+ ,X).

Next, we show that the inequality becomes an equality for the function fγ. Note that due to

definition (6), one has φγ ∈ Hω(R+, R), and hence by Lemma 1, fγ ∈ Hω(R+, X). Moreover,

using Lemma 4, we obtain

∫ γ

0
〈 fγ(0), fγ(u)〉Ω(u)du =

∫ γ

0
〈(φγ(0)Ω(u))x , (φγ(u)Ω(u))x〉du

=
∫ γ

0
(φγ(0)− φγ(u))Ω(u)du · 〈x, θ〉 =

∫ γ

0
ω(u)Ω(u)du · x,

and analogously

∫

∞

γ
〈 fγ(0), fγ(u)〉Ω(u)du = ω(γ)

∫

∞

γ
Ω(u)du · x.

Taking into account that

‖ fγ‖C(R+,X) = ‖φγ‖C(R+,R) =
1

2
ω(γ) and ‖ fγ‖Hω(R+,X) = ‖φγ‖Hω(R+,R) = 1,

we obtain that

‖Dπ,Ω fγ‖C(R+ ,B) ≥ ‖Dπ,Ω fγ(0)‖B

= ‖ fγ‖Hω(R+,X)

∫ γ

0
ω(u)Ω(u)du + 2‖ fγ‖C(R+,X)

∫

∞

γ
Ω(u)du,

which finishes the proof of the theorem.
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Бабенко В., Колесник В., Коваленко О., Парфiнович Н. Нерiвностi типу Колмогорова у напiвлi-

нiйних метричних просторах // Карпатськi матем. публ. — 2025. — Т.17, №2. — C. 579–590.

Для функцiй, що набувають значень у напiвлiнiйному метричному просторi, ми доводи-

мо двi нерiвностi типу Колмогорова. У першiй ми отримуємо оцiнку для рiвномiрної норми

похiдної (у сенсi Радстрьома) функцiї, використовуючи рiвномiрну норму функцiї i Hω-норму

її похiдної, де ω — це деякий модуль неперервностi. Друга нерiвнiсть оцiнює рiвномiрну

норму узагальненої дробової похiдної функцiї за допомогою рiвномiрної норми функцiї i її

Hω-норми.

Ключовi слова i фрази: нерiвнiсть типу Колмогорова, нерiвнiсть для похiдних, напiвлiнiйний

метричний простiр, модуль неперервностi, дробова похiдна.


