ISSN 2075-9827 e-ISSN 2313-0210 https://journals.pnu.edu.ua/index.php/cmp
Carpathian Math. Publ. 2025, 17 (2), 579-590 KapmaTcbki MaTem. my6a. 2025, T.17, N2, C.579-590
doi:10.15330/cmp.17.2.579-590

[\

Kolmogorov-type inequalities in semilinear metric spaces

Babenko V.1, Kolesnyk V.2, Kovalenko O.1, Parfinovych N.LE<

For functions that take values in an isotropic semilinear metric space we prove two sharp
Kolmogorov-type inequalities. In the first one we obtain an estimate for the uniform norm of the
derivative (in the Rddstrom sense) of a function using the uniform norm of the function and the
H®“-norm of the function’s derivative; here w is an arbitrary modulus of continuity. The second one
gives an estimate of the uniform norm of a generalized fractional derivative of a function via its
uniform norm and its H“-norm.
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1 Introduction

Inequalities for derivatives of real-valued functions of one and several variables (often
called Kolmogorov-type inequalities) are important in many areas of mathematics and ap-
plications. A presentation of many sharp inequalities of this type, a description of their appli-
cations, and the corresponding references can be found in monographs [8,11]. Inequalities for
functions with more general ranges are also important. We are interested in inequalities for
derivatives of functions taking values in semilinear metric spaces. Some known inequalities
for Hukuhara-type derivatives of integer and fractional orders can be found in [2,3].

In this article, we prove two sharp Kolmogorov-type inequalities for functions that take
values in semilinear metric spaces, where the definition of the derivative is based on the well-
known Rddstrom embedding theorem [13].

Let G be line R, or semi-line R, and (X, hx) be a semilinear metric space (precise defi-
nitions are given in Section 2). Let w(t) be a modulus of continuity, i.e. a non-decreasing on
R, continuous and semiadditive function such that w(0) = 0. Denote by H* (G, X) the set of
continuous functions f: G — X such that

< 00,

Il = sup XL 1f0)

u,veG w(‘u - UD
UFv

We obtain a sharp inequality that estimates the uniform norm of the derivative (in the
Radstrom sense) of a function f: G — X using the uniform norm of the function and the
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H“-norm of the function’s derivative. An analogue of this result for the derivatives in the sense
of Hukuhara can be found in [2, Theorems 5.1 and 6.1]. Inequalities that estimate the uniform
norm of a mixed derivative of a multivariate real-valued function using the uniform norm of
the function and the || - || gj«-norm of the mixed derivative were obtained in [5, Theorem 6];
using the the uniform norm of the function and the || - [|,-norm, p € [1, o], of the gradient of
the mixed derivative were obtained in [4, Theorem 5] and [6, Theorem 4]. Articles [4-6] also
contain related inequalities for charges.

We also prove a sharp inequality that estimates the uniform norm of a generalized frac-
tional derivative of a function via its uniform norm and its H“-norm. Many results on in-
equalities for fractional derivatives are known. We refer to [7, Section 1.3], [11, Chapter 2],
and [9] for a survey of results and further references.

The article is organized as follows. In Section 2 we give necessary definitions and adduce
several theorems that will be needed in the article. Section 3 contains the main results of the
article.

2 Semilinear metric spaces
2.1 Definitions

Definition 1. A set X is called a semilinear space, if the operations of addition of elements
and their multiplication on real numbers are defined in X, and the following conditions are
satisfied for all x,y,z € X and A,y € R:

) x+y=y+x;
2)x+Wy+z)=(x+y) +z
3) 30eX:x+0=x;

4) AMx+y) =Ax+ Ay,

5) Aux) = (Ap)x;
6)1-x=x,0-x=6.

Definition 2. We call an element x € X convex, if for all , B > 0 we have (« + f)x = ax + Bx.
Denote by X the subspace of the space X that consists of all convex elements.

Definition 3. We say that an element x € X is invertible if there exists an element x' € X such
that x + x' = 6. In this case the element x" is called the inverse to x. Denote by X™ the set of
all invertible elements of the space X.

Definition 4. A semilinear space X endowed with a metric hy is called a semilinear metric
space if the following conditions are satistied for all x,y,z € X and A € R:

1) hx(Ax, Ay) = [A| - hx(x,y);

2) hx(x+z,y+z) < hx(x,y).
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Due to these properties and the triangle inequality one has
Ix(x+ g, +0) < (x4 %+ 0) + hx(x +0,u+0) <y (y,0) + Iy (x,u)
forall x,y,u,v € X.
Definition 5. A semilinear metric space X is called isotropic if
hx(x+2,y +2) = hx(x,y)
forallx,y,z € X.
Everywhere below we assume that X is isotropic and X = X¢.

2.2 Differences in semilinear spaces. Radstrom’s theorem

We start from the definition of Hukuhara-type differences.

Definition 6. Let X be a semilinear metric space. We say that z € X is a Hukuhara type
ditference of x,y € X if x = y + z. We denote this difference by z = x —g y.

Note that in an isotropic semilinear metric space, the Hukuhara difference x —p y is unique,
provided it exists.

Another approach to the definition of a difference is based on Radstrom’s theorem [13].
Let X be an isotropic semilinear metric space that consists of convex elements. Note that
if for some a,b,c € X onehasa+c¢ = b+c¢, then0 = hx(a+c,b+c) = hx(a,b), hence
a+c=Db+c = a = b.Itfollows from Radstrom’s theorem [13] that the set X can be isomet-
rically embedded into some normed space as a convex cone. The outline of the proof of this
fact is as follows. Consider the set X x X. Define an equivalence relation on this set by setting
(x,y) ~ (4,v) <= x+v =y+ u.LetB denote the quotient set B := (X x X)/ ~ and (x,y)
denote the equivalence class containing the pair (x,y). For x,y € X and « € R define addition
in B and scalar multiplication by

(x,y) + (u,v) == (x+u,y+0v), a(x,y) = {((xx, ay), x>0,

(|laly, |a|x), « <O.

Define a metric on B by the formula 6((x, y), (1,v)) := hx(x + v,y + u), where hx is the given
metric on X. Next, define the norm in B as ||(x, y)||s := d((x,y), (6,0)) = hx(x,y). Define the
embedding operator 77 : X — B by 71(x) := (x,0). We can then define the difference between
elements x,y € X asx —ry := (x,0) —n (y,0) = (x,y). This difference is not necessarily an
element of X, but if for elements x,y € X the Hukuhara-type difference x —p y exists, then

X—ny=(xy)=(x—ny0).
2.3 Derivatives of a function with values in semilinear metric spaces

Let G = R or G = R;. As it is known for a function f: G — B and a point t € G, the
derivative at the point ¢ € G is defined by the equality

Goy—t v—t

4

where the limit is understood as the limit in the norm of the space B.
In particular, if we identify a function f: G — X with the function t — (f(t),8), then we
arrive at the following definition.
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Definition 7. For a function f: G — X and a pointt € G, the derivative in the sense of
Rédstrom (m-derivative) at the point t € G is defined by the equality

Drf(t) = D(f(-),0)(t) = lim ——(f(7), f(t)),
where the limit is understood as the limit in the norm of the space ‘5.

If t € G, t # 0, and for all small enough v > 0 there exist Hukuhara-type differences
f(t+y)—pg f(t) and f(t) —g f(t — ), and both limits

tim 97 (f(t+7) —u f(5) and lim o (£~ f(E= )

exist and are equal to each other, then the function f is said to be differentiable in the sense
of Hukuhara at the point ¢; in the case t = 0 one only requires existence of one limit. The
Hukuhara-type derivative is defined as

Dyf(t) := nggofl(f(t +9) —u f(1)).

Observe that if a function f is differentiable in the sense of Hukuhara at a point ¢, then it is
rt-differentiable at ¢, and

Drf(t) = (Duf(t),0). Q)

A discussion of various ways to define differences and derivatives of multi-valued map-

pings can be found in [12, Section 2.1] (see also references therein). In [1], elements of calculus

for functions with values in semilinear metric spaces were developed based on the Hukuhara-
type differences.

2.4 Integral of functions with values in the space 5

Although B is a normed space and one might try to use standard definitions of integrals for
such functions, the following problem arise: completeness of X does not, generally speaking,
imply completeness of ‘B, see e.g. [10, p. 363].

We will use the following definition of the integral (we give this definition only for contin-
uous functions).

Let f1, f» : R — X be continuous functions, and let 4,b € R, a < b. Then the functions
f1, f2: [a,b] — X are Riemann integrable. Define

/ o), ) dt = { / ", / " pttyar),

Note that this definition is consistent with the definition of the Riemann integral as the limit
of Riemann sums. This definition is correct, and the integral so defined will have all the prop-
erties we require. These properties are as follows:
1) if0 <a<b<c<oo,then
b
a

[ pd = [ po)a+ [0, R0)

|

2) b b
/Q<f1(t),fz(t)>dtH%§/a IA(E), fo(£)) || dE.
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We will also need the definition of the improper integral. Let f1, fo: (0,00) — X be continuous
functions, and let 4, b € IR,a < b. Then the improper integral is defined as follows

;0= tim 450 0

(if the limit on the right-hand side exists in the space B). It is not difficult to verify that ana-
logues of the above properties of proper integrals are preserved for improper integrals.

2.5 Elements of calculus

We need the Finite-increment Theorem (see e.g. [15, Section 10.4, Theorem 1]), which we
formulate in a convenient for our purposes form.

Theorem 1. Assume that f: [a,b] — B is a continuously differentiable on [a, b] function. Then

L (6) —n f@)ln < sup [DF(D)a

te(a,b]

As a corollary, one obtains the following result.

Theorem 2. Let us assume that f,g: [a,b] — B are two differentiable functions such that
Df(t) = Dg(t) forallt € [a,b]. Then the function f —s g is constant on [a, b].

We also need an analogue of the Newton-Leibniz formula.

Theorem 3. Let a function f: [a,b] — X be rt-differentiable at each point t € [a,b], and
Drf(t) = (A(t), B(t)), where the functions A and B are continuous. Then

o). fa@) = [ Dapar={ [ awar, [ Bjar).

Proof. Consider the function ®: [4,b] — B, defined as follows

O(t) = /at D f(s)ds = </atA(t)dt,/atB(t)dt>.

We compute the derivative D®(t) for a fixed ¢ € [a,b]. Let v # 0be such thatt + v € [, b] and
consider the quantity A(f;t,y) = (®(t + ) —x P(t))/7. Using additivity of the integral and
the definitions of the elements of the space ‘B and of the operations on the elements, we prove
that for v > 0 we have

A(Fity) = %</ttﬂA(s)ds,/th(s)ds>,

and for v < 0 we have

A(Fit ) = |17|< t;A(s)ds,/tt B(s)ds).
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We start with the proof of the first equality.

st = ([ s, [ Bds) —a ([ A6, / B(s >ds>
L o s [
:% /a A(s)ds—i—/ttﬂA(s)ds+/a B(s)ds,/ ds+/t+ d5+/
= %</tt+7A(s)ds,/tt+7B(s)ds>.

If v < 0, then analogously we obtain

A(f;t,y) = |i|</tﬂB(S)ds,/tﬂA( )ds> -8 ﬁ</atB(s)ds /atA(s)ds>

:L</t” s+/ Sds+ [ A(s)ds,

”Y\ t+y

t+'y b+ t
/ 5)ds +/ s)ds+ [ B(s)ds)

t+y
1 t
:m< t+'yA(S)ds /t+’yB(s)ds>.

Next, for v > 0 one has
I8t~ Daf Wl = |2 [ aeds, [ Bs)ds) — (40, 50|
_ hx(% /ttﬂA(s)ds +B(1), % /ttﬂ B(s)ds + A(1))

< hx<%/tf”A(s)ds,A(t)) +hx(%/tt+73(s)ds,B(f))

_hX< / tHA(s)dS,% /t tﬂA(t)ds) +hx<% /t t”B(s)dS,% /t tﬂB(t)ds)
—/tH ))ds + ~ / B(#))ds.

Thus, in this case we get

IA(fit,7) — Drf ()l < %/;ﬂ I (A(s), A())ds +%/ttﬂhx(3(s),3(t))ds.

Analogously, in the case v < 0 we obtain

t

IA(f;t,7) — Drf(t)]ls < i/t hx(A(s), A(t))ds + — ! hx(B(S)rB(f))dS-
7| Sty

Iyl Ji

Taking into account continuity of the functions A and B we obtain A(f;t,v) — Dxf(t) as
v — 0. Thus for all ¢ € [a, b] we have

D [ Daf(5)ds = Daf(t) = DU (1), 6).
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Using Theorem 2, we obtain

(£10,0) s [ Daf(s)ds = {fa),6)

for all t € [a,b], or, equivalently,

[ Daf(s)ds = {(6),6) —s (f(a),0) = (0), F(a),

which implies the statement of the theorem. O

3 Kolmogorov-type inequalities
3.1 Auxiliary results

Recall that in this paper X is assumed to be an isotropic semilinear metric space that con-
sists of convex elements. By G we denote a segment [a,b] C R, line R, or semi-line R ..

Definition 8. For a function f: G — R and x € X™ define a function

Foi G X, fult) = fo(t) x4 £ (1) -,

where fort € G, f+(t) := (f(t))+, and for a real {, {+ := max{=£¢,0}.

In this section, we state several properties of the functions f,, which will be used during
the construction of extremal functions for inequalities for derivatives.

Denote by C(G, X) the set of all continuous functions f: G — X and for a bounded function
f e C(G,X) let

I fllce,x) = sup [ f(t)llx-
teG

Let w(t) be some modulus of continuity.

Definition 9. Denote by H“ (G, X) the set of functions f € C(G, X) such that
hx(f(u), f(v

1 £l e (G,x) := sup u), o)

u,veG w(|u - U|)
UFv

< ©0.

Due to the definition of the metric in the space 9B, for a function f: G — B,
f(-) = (f1(-), f2()), this definition can be rewritten as follows: we say that f € H“(G,B),

if
1l (G 1= sup H<f1(u),fz(uc)d>(|;9i<ﬁ)(v),f2(v)>|y93 o
o

The following two lemmas are known, see [3, Lemmas 6,7].

Lemmal. Let f € H¥([a,b],R) and x € X™ be such thathx(x,0) = 1. Then f, € H*([a,b], X)
and

/abfx(t)dt - /fmt)dt x+ /abf—(t)dt .

Lemma 2. Let x € X, and f: [a,b] — R be a continuously differentiable function. Then the
derivative Dy f+(t) exists at each pointt € [a,b] and Dy f+(t) = (f'(t))x-
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Lemma 3. Letx € X and A, B > 0. Then (Ax, Bx) = (A — B)(x,0).

Proof. Assume that A > B. Then (A — B)(x,0) = ((A — B)x,0) = ((A — B)x+ Bx,Bx) =
(Ax,Bx).If A < B,then (A — B)(x,0) = (6, (B— A)x) = (Ax,(B— A)x+ Ax) = (Ax,Bx). O

Lemma 4. Let ¢, ¢: [a,b] — R be two continuous functions and x € XV, Then
b b
| o0 pu0at = [ (o(t) = p(0)at - (x,0).

Proof. Using Lemmas 1 and 3 we obtain

/ab<€0x(t)/ll)x(t)>dt = </b px(t dt,/b Ps(t) dt

g0+ dtx—{—/go dtx/t/)+ dtx+/1/1 dtx>
q)+ dtx+/¢ dtx/1p+ dtx+/(p dtx>
a

{
{
</q)+ dt+/1/1 dt /lp+ dt+/q0 dt
|
A

H

q)+ dt—{—/t/J t)dt — /1[4 dt—/go dt <x0>

(o(t) t-(x,0).

a

0

3.2 Inequalities on the class of functions with given majorant of modulus of continuity

Theorem 4. Let G = R or G = R4, f: G = X be a bounded function such that for every
t € G the Rddstrom derivative Dy f(t) exists, and || D f || (¢ ) < 0. Then for any vy > 0 the
following inequality

«(G)

1 1
IDrfllccs) < ;/0 w(t)dt - | Drfll e cm) + Ifllccex) (2)

holds, where a(G) = 1ifG = R, and «(G) = 2 if G = Ry. If X™V # {6}, then the inequality
is sharp.

Proof. We start with the case G = IR. For arbitrary t € R using the equality
1 t+y 1 t+y
Duf(t) —w 5 [ Daf(u)du =5 [ (Daf(t) = Daf(w)dn
27 Jt—y 27 Ji—y

we obtain

[Dar) =25 [ Daftuiu] < 5 [ IDwF(0) 2 Dflo)
1

t+y
sg/ D 11 2 0 — )

== [ w@do- D fle G
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Using Theorem 3, we obtain
Eey
|55 [ Pafwdu] = S+ 5 =)
- Ehx(f(f ), £t =) < 2 lewx-

Using the obtained estimates, we have

[Pas@)] < [er®) —a g5, [ Prestwae] + g [ Pafu]
< %/va(v)dUHanHHw(G,sB) + ;Hf”c(lR,X)r

as required in the case G = RR.
In the case G = IR, we use averaging operator

1 t+y 1 t+y
fH;l D f (u)du m%Md,ﬂ»h/ D f (u)du

and analogous arguments to obtain the inequality

2
[Drf ()]s < —/ (0)do|| Dr fl| g (G,3) ;Hf”c(c,xy

Next, we prove sharpness of the obtained inequalities. We start from the case G = R first.
Choose y € X such that

1y, 0)lls = hx(y,0) = 1. 3)
Set
_Jw(r) —w(|t]), 0< [t <7,
%@—{Q |t >,
and

t
t / ¢py(s)ds-y, t>0,
= ([ en(e)ds) =<,
0 y / Py (s)ds -y, t<O.
t
Using Lemma 2 and relation (1), we obtain
Dripy (t) = (¢ (£))y, 0) = Py (t) - (v, 6) (4)
for all t € R. From this equality and (3) it follows that
|Drapq |l o rm) = 191 lHerr) =1 and || Dy llcrs) = 19y llcrr) = @ (7)-
Moreover, )
[9sllcms = Isllemm = () = [ w(s)ds

Substituting these values into inequality (2) one can see that it becomes equality.
In order to prove sharpness of (2) in the case G = R, set

_Jwlr) —w(t), 0<t<y,
Pq(t) = {0, ..
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Let ty € [0, 7] be such that

Define

t
py(s)ds -y, 0<t<t,
t

o (t) = (/to %(S)ds)y = /t o (s)ds -y, t> to

Again, by Lemma 2, we obtain that for all > 0 equalities (4) hold, hence one has

Dyl geo(r,,3) = 1
and || D, [lc(r ) = w(7). Moreover,

1 1 77
195 Ollcw, x) = 57000 = 5 [ wlsis

Substituting these values into inequality (2) one can see that it becomes equality. O

3.3 Inequalities for generalized derivatives of fractional order

Let Q: (0,00) — (0, 0) be a non-negative continuous function. For a continuous function
f:[0,00) — X define

(9]

Draf(t)i= [ (F(8) = f(t+ u)Qw)du = ["(7(8), £t + u))Ofu)du

0

In the case when Q(u) = 1/ ult® 0 < a < 1,and X = R, this gives, up to a constant factor,
the definition of the fractional derivative of order « in the sense of Marchaud (see e.g. [14, §5]).

Theorem 5. Let a modulus of continuity w and a continuous non-negative function
O: (0,00) — (0,00)
be such that for some ¢ > 0 we have
/ng(u)Q(u)du < oo and /goo Q(u)du < co. (5)
Then for any function f € H“(Ry, X) and arbitrary v > 0 the following inequality

0% oo
IDrof lemem < [ @O f w0 +2 |~ Owdu- | fllem, x)

holds. If X™ = {0}, then the inequality is sharp and becomes an equality for the function
fy = (¢)x, where

1
sw(y) —w(t), 0<t<y,

py(t) =42 (6)
—Ew(W)r t>1,

and x € X™ js such that hx(x,0) = 1.



Kolmogorov-type inequalities in semilinear metric spaces 589

Proof. Observe that if condition (5) holds for some ¢ > 0, then it holds for all ¢ > 0. For any
t € Ry we get

Draf(t) = [ (F(8), £t +w)0(wdu

:/7<f(t),f(t+u du—l—/ F(E+1))O(u)du.
0
Therefore
IDraf®lls < [ 1) £+ )l + [ I, 0+ ) O
< fllor, ) /0 "0 +2] flew, x A ")
Hence,
IDxofller, ) < ) €000 | f om0 +2 |~ 0 fllew, )

Next, we show that the inequality becomes an equality for the function f,. Note that due to
definition (6), one has ¢, € H*(R4,R), and hence by Lemma 1, f, € H“(R4, X). Moreover,
using Lemma 4, we obtain

[, fr ) Q@dn = [(9,©0)0m)x, (9 (1))} du

= /7(4) (0) — ¢ (u))Q(u)du - (x,0) = /Vw(u)()(u)du X
0 v Y ’ 0 ’
and analogously
/oo<f'y(0)rf'y(”)>9(u)du = w(7y) /ooﬂ(u)du - X.
gt gt

Taking into account that

1
1A llewy,x) = lPrllcr r) = EW(Y) and | fyllgow,,x) = loylHo®,r) =1

we obtain that

IDrofyllcw, s) > IDzafy(0)|s
¥ (0]
= Ifliwim, 0 ) @00+ 20y lem, ) | O

which finishes the proof of the theorem. O
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Aast pyHKUIM, 10 HabyBalOTh 3HaUeHDb Y HaIliBAIHIIHOMY METPUYHOMY IIPOCTOpPi, MM AOBOAM-
Mo ABi HepiBHOCTI Ty KoaMoroposa. VY mepiiiit My OTPMMYEMO OLIIHKY AASI PiBHOMIpHOI HOpMM
rioxiaHOI (y ceHci PaacTpboMa) YHKIIIT, BUKOPMCTOBYIOUM piBHOMIpHY HOpMY dpyHKIII i HY-HOpMy
ii moXiAHOI, Ae W — 1le AeSKUI MOAYAb HellepepBHOCTi. Apyra HepiBHICTb OLHIOE PiBHOMipHY
HOpMY y3araabHeHOI Apo60Boi TToXiaAHOI pyHKIIIT 3a AoTIoMOTOI0 piBHOMipHOI HOpMM pyHKIII i il
H“-sopMu.

Kntouosi croea i ppasu: BepisHicTh THITy KoAMOropoBa, HepiBHICTD AAS TTOXiAHIX, HaIli BAIHIVHIA
METPVIHIIA IIPOCTip, MOAYAD HellepepBHOCTI, Apo6oBa ToXiAHa.



