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CEV MODEL WITH STOCHASTIC VOLATILITY
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Abstract. This paper develops a systematic method for calculating approximate prices for a wide
range of securities implying the tools of spectral analysis, singular and regular perturbation theory.
Price options depend on stochastic volatility, which may be multiscale, in the sense that it may be
driven by one fast-varying and one slow-varying factor. The found the approximate price of two-
barrier options with multifactor volatility as a schedule for own functions. The theorem of
estimation of accuracy of approximation of option prices is established. Explicit formulas have
been found for finding the value of derivatives based on the development of eigenfunctions and
eigenvalues of self-adjoint operators using boundary-value problems for singular and regular
perturbations. This article develops a general method of obtaining a guide price for a broad class of
securities. A general theory of derivative valuation of options generated by diffusion processes is
developed. The algorithm of calculating the approximate price is given. The accuracy of the
estimates is established. The theory developed is applied to a diffusion operator, which is
decomposed by eigenfunctions and eigenvalues. The purpose of the article is to develop an
algorithm for finding the approximate price of two-barrier options and to find explicit formulas for
finding the value of derivatives based on the development of self-functions and eigenvalues of self-
adjoint operators using boundary-value problems for singular and regular perturbations. Price
finding is reduced to the problem solving of eigenvalues and eigenfunctions of a certain equation.
The main advantage of our pricing methodology is that, by combining methods in spectral theory,
regular perturbation theory, and singular perturbation theory, we reduce everything to equations
to find eigenfunctions and eigenvalues.

Keywords: derivative pricing, stochastic volatility, local volatility, spectral theory, singular
perturbation theory, regular perturbation theory.

1. INTRODUCTION

Spectral theory was widely used in the second half of the 20* century by many economists. In
recent years spectral analysis has become an increasingly popular tool for use in financial mathematics
to analyze diffusion models which are based on the expansion of eigenfunctions and eigenvalues of
linear operators. For example, it is used to find the price of a European option using Black-Scholes
model [8]. Among the scientific problems that can be solved by applying spectral methods: predicting
option prices, [5] securities interest rates [11], modeling the volatility of financial assets [4].

Assets estimation problems are solved analytically by methods of spectral theory [5]. Spectral
theory as well as stochastic volatility models has become an indispensable tool in financial
mathematics, for the matter of that, twobarrier option prices are subjected to Brownian motion and are
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correlated with volatility [6]. The study of stochastic volatility, volatility assets in particular, underlies
the derivative and is controlled by nonlocal diffusion.

In this article we continue the area of our research [1; 2], expending it on the theory model CEV
(constant elasticity of variance model), which was designed by John Cox in 1975, employing his
methods [3; 9; 10].

Combining the methods of spectral theory and regular perturbance, we are able to calculate
approximately the opportunity cost as expansion of eigenfunctions. We will work with infinitesimal
generators of three-dimensional diffusion.

2. PROBLEM STATEMENT

First, consider the one-dimensional diffusion dX, = v(X,)dt + a(X;)dW, which has the possibility
to show default jump at a speed h(X;) >0, W,— geometric Brownian motion, X is always strictly
positive. We add two nonlocal volatility factors to the total diffusion: a(X;) = a(X,)f (Y;,Z;). The first
factor Y is dynamic. The second factor Z changes slowly. So, our model is a multidimensional volatile
stochastic model.

Let (Q, F, P) denote probability space that supports correlated Brownian motion (W* W>,W#) and
an exponential random variable e~Exp(1), which is not independent of (W*, W”,W?). We assume that
the economy with three factors is described by homogeneous time, continuous Markov process
x = (X,Y,Z), which takes values in some state space E=1 X R X R, [ =(ej,6,), —0<e; <e, <oo.
Suppose that x begins in E and instantly disappears once X ¢ I, that is:

The dynamics of x according to the physical value PP, is as follows:

_ {(Xt, Yi,Z:), T, <t
A

Xt = ’ o>t 7, =inf(t > 0: X, ¢ 1),

where (X,Y,Z) are assigned

(dX, = v(X)dt + a(X,)f (Y, Z,)dW,

1 1
dYt = ;all(yt)dt + \/_Ealz(yt)dWy’

dZ, = 8ay,(Z)dt + VS ay,(Z,)dW/?,
dW™, W), = pyydt,
dW*,w#), = pxydtf
dW?, W), = p,,,dt,
Xo,Y,Zy) = (x,y,2) EE.

A<

where (pxyfpxz' pyz) such as |pxy 'lple' |pyZ| <1and 1+ szypxzpyz - pxyz _pxz2 _pyz2 >0, and
matrix correlation of Brownian model is positive. The process X can display, for instance, index value,
short interest rates, option pricing. The physical value IP of the process X, we consider as an instant drift
v(X,) and stochastic volatility a(X,)f(¥;,Z,) > 0, which has two components: local a(X;) and nonlocal
f (Y, Z,). Nonlocal volatility component f(Y;,Z;) is based on two factors: Y and Z, so for infinitesimal
generators have

1(1 1
Mz = ;(E a%Z(y)ajzzy + a11(}’)ay); Mg =6 (gagz(z)agz + a21(z)62),
Therefore, Y and Z have an internal timeline € > 0 and 1/8 > 0. We assume that € << 1 and § <<

1, the internal timeline Y is small, whereas the internal timeline Z is large. So, Y is volatility of fast
variable factor, whereas Z is vitality of a slow variable factor. Note that My and M4t are

L =5a?(0)0% + a,(¥)d, — ay (xy X € (e1,€). M



24  Ivan Burtnyak, Anna Malytska

Suppose you have to pay share dividends S; = I nX;, S > 0. then the state space X will be e;,e, =
(0,0). Consider a multidimensional diffusion process at Killing (default jumps) of constant variable
model. In particular, P dynamics of X default is set as

n+1

dX, = (u+ cX;")X,dt + f(Y,, Z)X,

AWy, h(X,) =u+ Cthn.

To simplify calculations assume that the risk-free interest rates r = 0, u > 0, ¢ > 0, Y and Z are fast
and slow variables of volatility, which are defined

dX, = (a,(Xp) — aX)f (Y, Z)A(Y,, Z,))dt + a(X,)f (Y, Z,)d W,
L 1 1 _
ay, = (E a1 () — Tga12(yt)A(Yt'Zt)> dt + Tgalz(Yt)dWy,
dZ, = (5a21(Zt) - \/gazz(zt)F(Yt,Zt)) dt + \/SaZZ(Zt)dV'VtZ,

d(Wx, Wy)t = pxydt,
d(Wx'Wz>t = Pyt
AT, W), = pydt,

‘ X0, Y0, Zo) = (x,¥,2) €EE,

where

U(Xt) —b(X;)
——————+ 0(Y,,Z,) |dt,
FEATIAARECED
AWy = aw? + A(Y,, Z,)dt,

AW? == dW/? + I'(Y,, Z,)dt,

AW = dWX + (

In our study, there may be two possible ways of default when X is beyond the time-frame /, or at
random time 7, (h(X;) = 0 stochastic value (the so-called level of danger). Mathematically default time
7 can be expressed as follows [2].

Volatility X includes the local component X ;7 and nonlocal component of multidimensionality
f(Ye,Z;). We assume, 1) <0, that is local volatility component X ;7 increases when X;, decreases. It means

that prices and volatility have negative correlation. Stochastic danger level h(X,) increases when X
decreases. Now let’s calculate the approximate price of European option for assets S. The European
option price can be defined by the formula (2).

(My) = 25227282, + (u + cx?Mxd, — (u + cx™), @)

M,- infinitesimal generator, the end of the time-frame that is the point e, = o is a natural border.
However, the dassification of point e; = 0 depends on the value n and ¢/&% Therefore, we present the
following classification:

1) ¢/a2>1/2, <0, e; =0 — trivial case,

2) ¢/d*€(0,1/2), n€ [é —1/2,0), e; = 0 — this number serves as the initial moment,

3) ¢/a%*€(0,1/2), n< %—%, e; =0 under such circumstances the start of time-frame is
stable.

If parameters (c, ,1) aresatisfying ¢/3% € (0,1/2),and n € [é— %, 0), e; = 0, then e, is considered
as Killing border. To calculate the approximate price of the European option, we must find
eigenfunctions {y,}, eigenvalues {A,} operator (M,). Note that (M;), presented in (2), looks like

infinitesimal generator of the one-dimensional diffusion (1) with volatility ga(x), deviation (a1 (x) —
f_ﬂa(x)) and Killing a, (x), dom({M,)) includes marginal conditions which are to be imposed at the end

e; and e, equation —(M, W, = 1,3, P, € dom({M,)), at the interval (0, ©) with (M,) is defined as (5)
follows



CEV Model with Stochastic Volatility 25

lim,_o %, = 0, if S €(03)

3. RESULTS

The results of this research result from the article [2]

v [(n—1)!
P, = Az /%x exp(—Ax2NLY (Ax721), n=1.23,...,

A==t dp=2ulnl(+v) 1+ 26
= — B = n 1)) , V= —_— Y,
2n| n = o 2Inl
@) _ wn (N + VY. . . . .
where L;” = Y7 o(—1) (n _ i) is the generalized Laguerre polynomials. Write expressions for the
operators A and B:
A = —vy3x™19, x?M292 — v, x?™M292  B=—v, x"19, —v,.

Analytical expressions for Ay ,, By nand By, can be obtained by making a change of variables [1]
Ax72" - y, using

ayL5 () = Ly P @) and [Py eV 1O ()LD ()dy =" 6,

where 8, — Kronecker symbol. Formulas for determining Ay ,, By, ni By, have the following form [3]

2
=Wl = _—FNnAne_AZM'
O\ K
The European option profit with strike price K> 0 can be decomposed as follows [9]:
(K - St)+ = (K- Xt)+]1{r>t} + K(l - ]l{r>t})- (3)

The first item on the right hand side (3) profit option is submitted to default at time t. The second
item is profit option which is submitted after the default, which occurs at time t. So, the value of the
option with strike price K — is denoted as u€®(t, x; K) and can be expressed as the sum of:

w0 (t,x;K) = uSd (6, x;: K) + us° (6,5, K),

where
ug® (6,1 K) = By, [(K = X) M izsgy),

[ee)

,0 = = '
ug (t,X;K) =K- KEx,y,Z[H{‘Dt}] =K - Kfo IIE:X,y,z [5x’ (Xt)ﬂ{‘r>t}]dx
=K —Kf ui"s(t,x;x’)dx’,
0

Uy (6353") = By o[ Klimg]. 1€ (R, m)
Weused that1 = fooogx, (X,)dx' ontheset {t>T}.

So, as the functions of profit Hy(x) = (K —x)*and H; (x) = 8, (x) are L*(R*,m), we can calculate:

Con = (lpn()' (k _')+): Cin = (lpn' 5x’)-

Expressions for ¢, ,, and ¢; ncan be found in [10].
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The estimated value of the European option can now be calculated using the theorems 1, 2, 3 [2].
For the European variant the option volatility 1¢% with price u®® (t, x; K) is determined by using

usS(t,x; K) = uPS(t, x,19%;K)

where 18 (t, x, 190 K ) Black-Scholes price with volatility I €9
The calculation results are presented in Figure 1
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»— volatility of the fast variables —a— volaility of the full cost —s— volatility of the slow variables .

Fig. 1. Volatility Dynamics

Volatility is constructed on the left hand side of Figure 1 depends on the price, the option for the
model, which has only volatility of the fast variables. Dynamics Y and volatility function f are defined
by the formula.

a exp(¥,)

1 1 .
ay, = <__Yt - _a12Erf(Yt)> dt +apdW, f(Y,) = zZ
€ Ve ( 212)

._i g —t?
Erf(y) = N fo e

Volatility was built for comparison of full value u® and on the right hand side of Figure 1 is shown
volatility caused by approximate price, the option for the model with volatility of the slow variables.
Dynamics Z and volatility function f are set

aexp(Z;)

dz, = (—5Zt - \/SazzErf(Zt))dt +aydWE, f(Z) = exp(z) -

As expected, ¢ and 0 which move to the zero, volatility moves to volatility price implied by full
value.
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4. CONCLUSIONS

This paper, extends the method of finding approximate price for a wide range of derivative assets.
One of the main advantages of our pricing methodology is that by combining methods of the spectral
theory of singular and regular perturbance, the calculation of asset prices leads to solving the equation
by eigenvalues and eigenfuntion methods as well as by solving Poisson equation. Once this equation is
solved, the approximate price of a derivative asset may be calculated formulaically.

Price finding is reduced to the problem solving of eigenvalues and eigenfunctions of a certain
equation. The main advantage of our pricing methodology is that, by combining methods in spectral
theory, regular perturbation theory, and singular perturbation theory, we reduce everything to
equations to find eigenfunctions and eigenvalues.
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byptasak Isan, Maaunpka I'anna. CEV Mozeap ctoxactmynoi BoaatnasHOCTL. 2Kypraa Ipuxapnamcobkozo
yrisepcumemy imeni Bacuas Cmedanuxa, 6 (3-4) (2019), 22-28.

Y nminn poboTi po3poOaeHO CHCTeEMAaTUYHUI METO/J PO3paxyHKy HaOAVKEHUX IiH AAd BEAUKOTO
CIIEKTPY UIHHUX IIaIlepiB, IO IlepegDavya€ BUKOPUCTAaHHS IHCTPYMEHTIB CIIeKTPaAbHOIO aHaAi3y,
CHUHTY/PHOI Ta peryAApHoi Teopii 30ypeHs. LliHn sepuBaTBiB 3a4eKaTh Bi4 CTOXaCTUYHOI BOAATUABHOCTI,
sIKa Mo>ke Oy Ty OaraToBMMIipHOIO, B TOMY CeHC, II10 BOHa MO>Ke OyTr 0OyMOBAeHa O AHVM IIBUAKO3MIHHUM i
OJHUM TIOBiAbHO 3MiHHMM ¢QakTopoM. 3HalidzeHa HaOAMKeHa IIiHa ABOOap'€pHUX OIIOHIB 3
H6arato¢gakTopHOIO. BcTaHOBAEHO TeOpeMy OLIIHKN TOYHOCTI HaOAVDKEHHs IIiH ONIioHiB. 3HalAeHi ABHI
dopmyan Aas 3HAXOAKEHHS 3HA4YeHHs MOXIAHMX LIHHMUX IIallepiB, IO I'PYHTYIOTbCA Ha 3aCTOCYBaHHI
BAaCHMX PYHKIIiI Ta BAACHMX 3Ha4eHb CAMOCIIPSIKEH VX OTIepaTOPiB 3 BUKOPUCTAHHAM KpaloBUX 3a4ad A4
CUHTYASPHIX Ta peryAsIpHNX 30ypeHs. Y 11iil cTaTTi po3po0.4eHo 3araabHII MeToA OTpMMaHH I OPi€HTOBHOI
LIiHM A48 IIMPOKOTO KJacy IIiHHMX mnanepis. Pospobaena saraabHa Teopis OLIIHKM LIiHM AepuUBaTHUBiB,
nopoaxeHnx AndysiiHuMu mnponecamu. HasejeHO aaroput™ po3paxyHKy HabAM>KeHOTO pPiBHs IIiH
omnIrioHiB. BctaHoBAIOETHCS TOUHICTS Hab AN KeHH:1. Po3po6.aeHa Teopist 3aCTOCOBYETHCS A0 AUPY3iTHOTO
omepaTtopa, SKUI PO3KAaAA€ThCS 3a BAaCHUMM (QYHKIIAMU Ta BAACHUMM 3HadYeHHsMU. MeTa cTatti -
PO3pOOUTH aATOPUTM IIOIIYKY HaOAM>KeHOI iHM AepMBaTUBiB Ta 3HATU TOYHI (POPMYAN 3HAXOAKEHH I
3HaueHb ITOXIJHMX LIHHUX IIallepiB Ha OCHOBi 3HaXOAXKEHHA BAACHMX (PYHKIIiNI Ta BAACHUX 3HAYEHb
CaMOCIIpsDKeHUX OIlepaToOpiB 3 BUKOPUCTAHHAM IPaHMYHUX 3HAUYEHb A48 CUHTIYAIPHMX 1 peryAsapHUX
30ypeHb. 3HaXOA>KeHHsI LIiH AepUBaTUBiB 3BOAUTLCS A0 PO3B sA3yBaHH: 3ajayd Ha 3HAXOAKeHHS BAaC HUX
3HaueHb Ta BAACHUX QPYHKIIiil 1mepHOTO piBHAHH:A. OCHOBHA IlepeBara Hallloi MeTOA0AOTii IIiIHOYTBOpeHH s
IIOAITa€ B TOMY, IO, IOE€AHYIOUM MeTO A CIIeKTpaAbHOI Teopil, peryAspHOi Teopii 30ypeHb Ta CUHTYASAPHOI
Teopii 30ypeHb, MM 3BOAUMO BCe A0 PO3B sI3aHHs PIiBHSHB, SAKi 4alOTh MOXKAMBICTb A/ MOIIYKY BAaCHMX
(pyHKIIi Ta BAaCHUX 3HAaYeHb OIIepaToOpiB.

KarouoBi caoBa: miHOyTBOpeHHSI JepuBaTUBiB, CTOXacTMYHA BOJATUABHICT, JOKaJbHa
BOAATUABHICTb, CIIEKTpaAbHa TeOPis, CMHTYAIpHA Teopisl 30ypeHb, peryAipHa Teopisl 30ypeHb.



