References

 

[1]     Burtnyak I.V. and Malytska A.P. The Investigation of Securities Cost Using Methods of Spectral Analysis. International Journal of Economic Research, 14 (15) (2017), 705-715.

[2]     Burtnyak I.V. and Malytska A.P. Spectral study of options based on CEV model with multidimensional volatility. Investment Management and Financial Innovations, 15 (1) (2018), 18-25. doi: 10.21511/imfi.15(1).2018.03

[3]     Cox J. Notes on Option Pricing I: Constant Elasticity of Diffusions. Unpublished draft, Stanford University, 1975.

[4]     Davydov D., Linetsky, V. Structuring, Pricing and Hedging Double-barrier Step Options. Journal of Computational Finance, 5 (2) (2001), 55-88.

[5]     Fouque J-P., Papanicolaou G., and Sircar R. Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press, 2000.

[6]     Gatheral J. The Volatility Surface: a Practitioner`s Guide. John Wiley and Sons, Hoboken, New Jersey, 2006.

[7]     Goldstein R.S., Keirstead W.P. On the Term Structure of Interest Rates in the Presence of Reflecting and Absorbing Boundaries. SSRN, (1997). doi: 10.2139/ssrn.19840

[8]     Lewis A. Applications of Eigenfunction Expansions in Continuous-time Finance. Mathematical Finance, 8 (4) (1998), 349-383. doi: 10.1111/1467-9965.00059

[9]     Linetsky V. Lookback Options and Diusion Hitting Times: A Spectral Expansion Approach. Finance and Stochastics, 8 (3) (2004), 373-398. doi: 10.1007/s00780-003-0120-5

[10]  Lorig M. Pricing Derivatives on Multiscale Diffusions: An Eigenfunction Expansion Approach. Mathematical Finance, 24 (2) (2014), 331-363. doi: 10.1111/mafi.12007

[11]  Pelsser, A. Pricing Double Barrier Options Using Laplace Transforms. Finance and Stochastics, 4 (1) (2000), 95-104. doi: 10.1007/s007800050005