References

 

[1]       Lau D.C., Yan H., Dhillon B. Metabolic syndrome: a marker of patients at high cardiovascular risk. The Canadian journal of cardiology, 22 (Suppl B) (2006), 85B-90B. doi: 10.1016/s0828-282x(06)70992-8

[2]       Santos-Marcos J. A., Perez-Jimenez F., Camargo A. The role of diet and intestinal microbiota in the development of metabolic syndrome. The Journal of nutritional biochemistry, 70 (2019), 1-27. doi: 10.1016/j.jnutbio.2019.03.017

[3]       Samson S.L., Garber A.J. Metabolic syndrome. Endocrinology and metabolism clinics of North America, 43 (1) (2014), 1-23. doi: 10.1016/j.ecl.2013.09.009

[4]       Kylin E. Studien ueber das Hypertonie-Hyperglyka" mie-Hyperurika" miesyndrom. Zentralblatt fuer Innere Medizin, 44 (1923), 105-127.

[5]       Vague J. La differentiation sexuelle facteur determinant des formes de lobesite. La Presse medicale, 30 (1947), 339-340. (in French)

[6]       McCracken E., Monaghan M., Sreenivasan, S. Pathophysiology of the metabolic syndrome. Clinics in dermatology, 36 (1) (2018), 14-20.

[7]       Saklayen M.G. The global epidemic of the metabolic syndrome. Current hypertension reports, 20 (2) (2018), 12. doi: 10.1007/s11906-018-0812-z

[8]       Ferrannini E. Metabolic syndrome: A solution in search of a problem. International journal of women's dermatology, 92 (2007), 396-398. doi: 10.1016/j.ijwd.2017.02.007

[9]       Bruce K.D., Hanson M.A. The developmental origins, mechanisms, and implications of metabolic syndrome. The Journal of nutrition, 140 (3) (2010), 648-652. doi: 10.3945/jn.109.111179

[10]   Oda E. Historical perspectives of the metabolic syndrome. Clinics in dermatology, 36 (1) (2018), 3-8.

[11]   Palaniappan L.P., Wong E.C., Shin J.J., Fortmann S.P., Lauderdale D.S. Asian Americans have greater prevalence of metabolic syndrome despite lower body mass index. International journal of obesity, 35 (3) (2011), 393-400. doi: 10.1038/ijo.2010.152

[12]   Wang Y., Lobstein, T.I.M. Worldwide trends in childhood overweight and obesity. International journal of pediatric obesity, 1 (2006), 11-25. doi: 10.1080/17477160600586747

[13]   Fernández-Sánchez A., Madrigal-Santillán E., Bautista M., Esquivel-Soto J., Morales-González A., Esquivel-Chirino C., Durante-Montiel I., Sánchez-Rivera G., Valadez-Vega C., Morales-González J.A. Inflammation, oxidative stress, and obesity. International journal of molecular sciences, 12 (5) (2011), 3117-3132. doi: 10.3390/ijms12053117

[14]   Baker K.D., Thummel C.S. Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell metabolism, 6 (4) (2007), 257-266. doi: 10.1016/j.cmet.2007.09.002

[15]   Bayliak M.M., Abrat O.B., Storey J.M., Storey K.B., Lushchak V.I. Interplay between diet-induced obesity and oxidative stress: Comparison between Drosophila and mammals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 228 (2019), 18-28. doi: 10.1016/j.cbpa.2018.09.027

[16]   Bharucha K.N. The epicurean fly: using Drosophila melanogaster to study metabolism. Pediatric research, 65 (2) (2009), 132-137. doi: 10.1203/PDR.0b013e318191fc68

[17]   Rajan A., Perrimon N. Drosophila as a model for interorgan communication: lessons from studies on energy homeostasis. Developmental cell, 21 (1) (2011), 29-31. doi: 10.1016/j.devcel.2011.06.034

[18]   Rajan A., Perrimon N. Of flies and men: insights on organismal metabolism from fruit flies. BMC biology11 (2013), 38. doi: 10.1186/1741-7007-11-38

[19]   Rovenko B.M., Perkhulyn N.V., Gospodaryov D.V., Sanz A., Lushchak O.V., Lushchak V.I. High consumption of fructose rather than glucose promotes a diet-induced obese phenotype in Drosophila melanogaster. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 180 (2015), 75-85. doi: 10.1016/j.cbpa.2014.11.008

[20]   Rovenko B.M., Kubrak O.I., Gospodaryov D.V., Perkhulyn N.V., Yurkevych I.S., Sanz A., Lushchak O. V., Lushchak V.I. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. Journal of insect physiology, 79 (2015), 42-54. doi: 10.1016/j.jinsphys.2015.05.007

[21]   Graham P., Pick L. Drosophila as a model for diabetes and diseases of insulin resistance. Current topics in developmental biology, 121 (2017), 397-419. doi: 10.1016/bs.ctdb.2016.07.011

[22]   Musselman L.P., Kühnlein R.P. Drosophila as a model to study obesity and metabolic disease. The Journal of experimental biology, 221 (2018), jeb163881. doi: 10.1242/jeb.163881

[23]   Warr C. G., Shaw K.H., Azim A., Piper M.D., Parsons L.M. Using mouse and Drosophila models to investigate the mechanistic links between diet, obesity, type II diabetes, and cancer. International journal of molecular sciences, 19 (12) (2018), 4110.

[24]   Gáliková M., Klepsatel P. Obesity and aging in the Drosophila model. International journal of molecular sciences, 19 (7) (2018), 1896. doi: 10.3390/ijms19071896

[25]   Skorupa D.A., Dervisefendic A., Zwiener J., Pletcher S.D. Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging cell, 7 (4) (2008), 478-490. doi: 10.1111/j.1474-9726.2008.00400.x

[26]   Smith W.W., Thomas J., Liu J., Li T., Moran T.H. From fat fruit fly to human obesity. Physiology & behavior, 136 (2014), 15-21. doi: 10.1016/j.physbeh.2014.01.017

[27]   Men T.T., Thanh, D.N., Yamaguchi M., Suzuki T., Hattori G., Arii M., Huy N.T., Kamei K. A Drosophila model for screening antiobesity agents. BioMed research international, 2016 (2016), 6293163. doi: 10.1155/2016/6293163

[28]   Bayliak M.M., Abrat O.B. Role of Nrf2 in oxidative and inflammatory processes in obesity and metabolic diseases. In: Deng H. (Eds.) Nrf2 and its Modulation in Inflammation. Progress in Inflammation Research, vol. 85. Springer, Cham, 2020. doi: 10.1007/978-3-030-44599-7_7

[29]   Gao W., DECODE Study Group. Does the constellation of risk factors with and without abdominal adiposity associate with different cardiovascular mortality risk? International journal of obesity, 32 (5) (2008), 757-762. doi: 10.1038/sj.ijo.0803797

[30]   Bussler S., Penke M., Flemming G., Elhassan Y. S., Kratzsch J., Sergeyev E., Lipek T., Vogel M., Spielau U., Körner A., de Giorgis T., Kiess W. Novel insights in the metabolic syndrome in childhood and adolescence. Hormone research in paediatrics, 88 (3-4) (2017), 181-193. doi: 10.1159/000479510

[31]   Aguilar M., Bhuket T., Torres S., Liu B., Wong R.J. Prevalence of the metabolic syndrome in the United States, 2003-2012. JAMA, 313 (19) (2015), 1973-1974. doi: 10.1001/jama.2015.4260

[32]   Beltrán-Sánchez H., Harhay M.O., Harhay M.M., McElligott S. Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999-2010. Journal of the American College of Cardiology, 62 (8) (2013), 697-703. doi: 10.1016/j.jacc.2013.05.064

[33]   Heerwagen M.J., Miller M.R., Barbour L.A., Friedman J.E. Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 299 (2010), R711-R722. doi: 10.1152/ajpregu.00310.2010

[34]   Spencer S. Early life programming of obesity: the impact of the perinatal environment on the development of obesity and metabolic dysfunction in the offspring. Current diabetes reviews, 8 (2012), 55-68. doi: 10.2174/157339912798829214.

[35]   Brookheart R.T., Duncan J.G. Modeling dietary influences on offspring metabolic programming in Drosophila melanogaster. Reproduction, 152 (2016), R79-R90. doi: 10.1530/REP-15-0595.

[36]   Iftikhar I.H., Donley M. A., Mindel J., Pleister A., Soriano S., Magalang U.J. Sleep duration and metabolic syndrome. An updated dose-risk meta-analysis. Annals of the American Thoracic Society, 12 (9) (2015), 1364-1372. doi: 10.1513/AnnalsATS.201504-190OC

[37]   Dominguez L.J., Barbagallo M. The biology of the metabolic syndrome and aging. Current opinion in clinical nutrition and metabolic care, 19 (1) (2016), 5-11. doi: 10.1097/MCO.0000000000000243

[38]   Dunford A.R., Sangster J.M. Maternal and paternal periconceptional nutrition as an indicator of offspring metabolic syndrome risk in later life through epigenetic imprinting: A systematic review. Diabetes & metabolic syndrome, 11 (Suppl 2) (2017), S655-S662. doi: 10.1016/j.dsx.2017.04.021

[39]   Strilbytska O., Velianyk V., Burdyliuk N., Yurkevych I. S., Vaiserman A., Storey K.B., Pospisilik A., Lushchak O. Parental dietary protein-to-carbohydrate ratio affects offspring lifespan and metabolism in drosophila. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 241 (2020), 110622. doi: 10.1016/j.cbpa.2019.110622

[40]   Carson C., Lawson H.A. Epigenetics of metabolic syndrome. Physiological genomics, 50 (11) (2018), 947-955. doi: 10.1152/physiolgenomics.00072.2018 

[41]   Grundy S.M. Metabolic syndrome pandemic. Arteriosclerosis, thrombosis, and vascular biology, 28 (4) (2008), 629-636. doi: 10.1161/ATVBAHA.107.151092

[42]   Gluvic Z., Zaric B., Resanovic I., Obradovic M., Mitrovic A., Radak D., Isenovic E.R. Link between metabolic syndrome and insulin resistance. Current vascular pharmacology, 15 (1) (2017), 30-39. doi: 10.2174/1570161114666161007164510

[43]   Costa F.F., Rosário W.R., Ribeiro Farias A.C., de Souza R.G., Duarte Gondim R.S., Barroso W.A. Metabolic syndrome and COVID-19: An update on the associated comorbidities and proposed therapies. Diabetes & metabolic syndrome, 14 (5) (2020), 809-814. doi: 10.1016/j.dsx.2020.06.016

[44]   Matsuda M., Shimomura I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obesity research & clinical practice, 7 (5) (2013), e330-e341. doi: 10.1016/j.orcp.2013.05.004

[45]   Laclaustra M., Corella D., Ordovas J.M. Metabolic syndrome pathophysiology: the role of adipose tissue. Nutrition, metabolism, and cardiovascular diseases: NMCD, 17 (2) (2007), 125-139. doi: 10.1016/j.numecd.2006.10.005

[46]   Esser N., Legrand-Poels S., Piette J., Scheen A.J., Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes research and clinical practice, 105 (2) (2014), 141-150. doi: 10.1016/j.diabres.2014.04.006

[47]   Trayhurn P., Wood I.S. Adipokines: inflammation and the pleiotropic role of white adipose tissue. The British journal of nutrition, 92 (3) (2004), 347-355. doi: 10.1079/bjn20041213

[48]   Makki K., Froguel P., Wolowczuk I. Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN inflammation, 2013 (2013). doi: 10.1155/2013/139239

[49]   Coelho M., Oliveira T., Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Archives of medical science: AMS, 9 (2) (2013), 191-200. doi: 10.5114/aoms.2013.33181

[50]   Catrysse L., van Loo G. Inflammation and the metabolic syndrome: the tissue-specific functions of NF-κBTrends in cell biology, 27 (6) (2017), 417-429. doi: 10.1016/j.tcb.2017.01.006

[51]   Muñoz A., Costa M. Nutritionally mediated oxidative stress and inflammation. Oxidative medicine and cellular longevity, 2013 (2013). doi: 10.1155/2013/610950

[52]   Castro A.M., Macedo-de la Concha L.E., Pantoja-Meléndez C.A. Low-grade inflammation and its relation to obesity and chronic degenerative diseases. Revista Médica del Hospital General de México, 80 (2) (2017), 101-105.

[53]   Wolowczuk I., Verwaerde C., Viltart O., Delanoye A., Delacre M., Pot B., Grangette C. Feeding our immune system: impact on metabolism. Clinical & developmental immunology, 2008 (2008). doi: 10.1155/2008/639803

[54]   Monteiro R., Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediators of inflammation, 2010 (2010). doi: 10.1155/2010/289645

[55]   Qatanani M., Lazar M.A. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes & development, 21 (12) (2007), 1443-1455. doi: 10.1101/gad.1550907

[56]   Garaschuk O., Semchyshyn H.M., Lushchak V.I. Healthy brain aging: interplay between reactive species, inflammation and energy supply. Ageing research reviews, 43 (2018), 26-45. doi: 10.1016/j.arr.2018.02.003

[57]   Furukawa S., Fujita T., Shimabukuro M., Iwaki M., Yamada Y., Nakajima Y., Nakayama O., Makishima M., Matsuda M., Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of clinical investigation, 114 (12) (2004), 1752-1761. doi: 10.1172/JCI21625

[58]   Reddy P., Lent-Schochet D., Ramakrishnan N., McLaughlin M., Jialal I. Metabolic syndrome is an inflammatory disorder: A conspiracy between adipose tissue and phagocytes. Clinica chimica acta; international journal of clinical chemistry, 496 (2019), 35-44. doi: 10.1016/j.cca.2019.06.019

[59]   Kim S.K., Rulifson E.J. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature, 431 (7006) (2004), 316-320. doi: 10.1038/nature02897.

[60]   Broughton S.J., Piper M.D., Ikeya T., Bass T.M., Jacobson J., Driege Y., Martinez P., Hafen E., Withers D. J., Leevers S.J., Partridge L. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proceedings of the National Academy of Sciences of the United States of America, 102 (8) (2005), 3105-3110. doi: 10.1073/pnas.0405775102

[61]   Pospisilik J.A., Schramek D., Schnidar H., Cronin S.J., Nehme N.T., Zhang X., Knauf C., Cani P.D., Aumayr K., Todoric J., Bayer M., Haschemi A., Puviindran V., Tar K., Orthofer M., Neely G.G., Dietzl G., Manoukian A., Funovics M., Prager G., Penninger J. M. Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell, 140 (1) (2010), 148-160. doi: 10.1016/j.cell.2009.12.027

[62]   Liu J., Li T., Yang D., Ma R., Moran T.H., Smith W.W. Synphilin-1 alters metabolic homeostasis in a novel Drosophila obesity model. International journal of obesity, 36 (12) (2012), 1529-1536. doi: 10.1038/ijo.2012.111

[63]   Semaniuk U.V., Gospodaryov D.V., Feden'ko K.M., Yurkevych I.S., Vaiserman A.M., Storey K.B., Simpson S.J., Lushchak O. Insulin-Like peptides regulate feeding preference and metabolism in Drosophila. Frontiers in physiology, 9 (2018), 1083. doi: 10.3389/fphys.2018.01083

[64]   Bayliak M.M., Demianchuk O.I., Gospodaryov D.V., Abrat O.B., Lylyk M. P., Storey K.B., Lushchak V.I. Mutations in genes cnc or dKeap1 modulate stress resistance and metabolic processes in Drosophila melanogaster. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 248 (2020), 110746. doi: 10.1016/j.cbpa.2020.110746

[65]   Gillette C.M., Hazegh K.E., Nemkov T., Stefanoni D., D'Alessandro A., Taliaferro J.M., Reis T. Gene-diet interactions: Dietary rescue of metabolic effects in spen-depleted Drosophila melanogaster. Genetics, 214 (4) (2020), 961-975. doi: 10.1534/genetics.119.303015

[66]   Lushchak O.V., Rovenko B.M., Gospodaryov D.V., Lushchak V.I. Drosophila melanogaster larvae fed by glucose and fructose demonstrate difference in oxidative stress markers and antioxidant enzymes of adult flies. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 160 (1) (2011), 27-34. doi: 10.1016/j.cbpa.2011.04.019

[67]   Musselman L.P., Fink J.L., Narzinski K., Ramachandran P.V., Hathiramani S.S., Cagan R.L., Baranski T. J. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Disease models & mechanisms, 4 (6) (2011), 842-849. doi: 10.1242/dmm.007948

[68]   Heinrichsen E.T., Zhang H., Robinson J.E., Ngo J., Diop S., Bodmer R., Joiner W.J., Metallo C.M., Haddad G.G. Metabolic and transcriptional response to a high-fat diet in Drosophila melanogaster. Molecular metabolism, 3 (1) (2013), 42-54. doi: 10.1016/j.molmet.2013.10.003

[69]   Abrat O.B., Storey J.M., Storey K.B., Lushchak V.I. High amylose starch consumption induces obesity in Drosophila melanogaster and metformin partially prevents accumulation of storage lipids and shortens lifespan of the insects. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 215 (2018), 55-62. doi: 10.1016/j.cbpa.2017.10.011

[70]   Stobdan T., Sahoo D., Azad P., Hartley I., Heinrichsen E., Zhou D., Haddad G.G. High fat diet induces sex-specific differential gene expression in Drosophila melanogaster. PloS one, 14 (3) (2019), e0213474. doi: 10.1371/journal.pone.0213474

[71]   Palm W., Sampaio J.L., Brankatschk M., Carvalho M., Mahmoud A., Shevchenko A., Eaton S. Lipoproteins in Drosophila melanogaster--assembly, function, and influence on tissue lipid composition. PLoS genetics, 8 (7) (2012), e1002828. doi: 10.1371/journal.pgen.1002828