References
[1] Lau D.C., Yan H.,
Dhillon B. Metabolic syndrome: a marker of patients at high cardiovascular
risk. The Canadian journal of cardiology, 22 (Suppl B) (2006),
85B-90B. doi: 10.1016/s0828-282x(06)70992-8
[2] Santos-Marcos J. A.,
Perez-Jimenez F., Camargo A. The role of diet and intestinal microbiota in the
development of metabolic syndrome. The Journal of nutritional biochemistry,
70
(2019), 1-27. doi: 10.1016/j.jnutbio.2019.03.017
[3] Samson S.L., Garber A.J.
Metabolic syndrome. Endocrinology and metabolism clinics of North
America, 43
(1) (2014), 1-23. doi:
10.1016/j.ecl.2013.09.009
[4] Kylin E. Studien ueber das Hypertonie-Hyperglyka"
mie-Hyperurika" miesyndrom.
Zentralblatt fuer Innere Medizin, 44 (1923), 105-127.
[5] Vague J. La differentiation sexuelle facteur determinant des formes de lobesite. La Presse
medicale, 30 (1947), 339-340. (in French)
[6] McCracken E., Monaghan M., Sreenivasan, S. Pathophysiology of the metabolic syndrome. Clinics
in dermatology, 36 (1) (2018), 14-20.
[7] Saklayen M.G. The global
epidemic of the metabolic syndrome. Current hypertension reports, 20 (2) (2018), 12. doi:
10.1007/s11906-018-0812-z
[8] Ferrannini E. Metabolic syndrome: A
solution in search of a problem. International
journal of women's dermatology, 92
(2007), 396-398. doi:
10.1016/j.ijwd.2017.02.007
[9] Bruce K.D., Hanson M.A. The
developmental origins, mechanisms, and implications of metabolic syndrome. The Journal of nutrition, 140 (3) (2010), 648-652. doi:
10.3945/jn.109.111179
[10] Oda E. Historical perspectives
of the metabolic syndrome. Clinics in dermatology, 36 (1) (2018), 3-8.
[11] Palaniappan L.P., Wong E.C., Shin
J.J., Fortmann S.P., Lauderdale D.S. Asian Americans have greater prevalence of metabolic syndrome despite lower
body mass index. International journal of obesity, 35 (3) (2011), 393-400. doi: 10.1038/ijo.2010.152
[12] Wang Y., Lobstein, T.I.M. Worldwide trends in childhood overweight
and obesity. International journal of pediatric obesity, 1 (2006), 11-25. doi: 10.1080/17477160600586747
[13] Fernández-Sánchez A.,
Madrigal-Santillán E., Bautista M.,
Esquivel-Soto J., Morales-González A., Esquivel-Chirino
C., Durante-Montiel I., Sánchez-Rivera G.,
Valadez-Vega C., Morales-González J.A. Inflammation, oxidative stress,
and obesity. International journal of molecular sciences, 12 (5) (2011), 3117-3132. doi: 10.3390/ijms12053117
[14] Baker K.D., Thummel C.S. Diabetic larvae and obese flies-emerging
studies of metabolism in Drosophila. Cell metabolism, 6 (4) (2007), 257-266. doi: 10.1016/j.cmet.2007.09.002
[15] Bayliak M.M., Abrat
O.B., Storey J.M., Storey
K.B., Lushchak V.I. Interplay between diet-induced
obesity and oxidative stress: Comparison between Drosophila and mammals. Comparative Biochemistry and Physiology
Part A: Molecular & Integrative Physiology, 228 (2019), 18-28. doi: 10.1016/j.cbpa.2018.09.027
[16] Bharucha K.N. The epicurean fly:
using Drosophila melanogaster to
study metabolism. Pediatric research, 65 (2) (2009), 132-137. doi: 10.1203/PDR.0b013e318191fc68
[17] Rajan A., Perrimon
N. Drosophila as a model for interorgan
communication: lessons from studies on energy homeostasis. Developmental
cell, 21
(1) (2011), 29-31. doi: 10.1016/j.devcel.2011.06.034
[18] Rajan A., Perrimon
N. Of flies and men: insights on organismal metabolism from fruit flies. BMC
biology, 11 (2013), 38. doi: 10.1186/1741-7007-11-38
[19] Rovenko B.M., Perkhulyn N.V., Gospodaryov D.V.,
Sanz A., Lushchak O.V., Lushchak V.I. High consumption of fructose rather than
glucose promotes a diet-induced obese phenotype in Drosophila melanogaster. Comparative biochemistry and
physiology. Part A, Molecular & integrative physiology, 180 (2015), 75-85. doi:
10.1016/j.cbpa.2014.11.008
[20] Rovenko B.M., Kubrak O.I., Gospodaryov D.V., Perkhulyn N.V., Yurkevych I.S., Sanz A., Lushchak O. V., Lushchak
V.I. High sucrose consumption promotes obesity whereas its low consumption
induces oxidative stress in Drosophila melanogaster. Journal of
insect physiology, 79 (2015), 42-54. doi:
10.1016/j.jinsphys.2015.05.007
[21] Graham P., Pick L. Drosophila as a model for diabetes and
diseases of insulin resistance. Current topics in developmental biology,
121
(2017), 397-419. doi: 10.1016/bs.ctdb.2016.07.011
[22] Musselman L.P., Kühnlein R.P. Drosophila as a model to
study obesity and metabolic disease. The Journal of experimental
biology, 221
(2018), jeb163881. doi: 10.1242/jeb.163881
[23] Warr C. G., Shaw K.H., Azim A.,
Piper M.D., Parsons L.M. Using mouse and Drosophila
models to investigate the mechanistic links between diet, obesity, type II
diabetes, and cancer. International journal of molecular sciences, 19 (12) (2018), 4110.
[24] Gáliková M., Klepsatel
P. Obesity and aging in the Drosophila model. International journal of
molecular sciences, 19
(7) (2018), 1896. doi:
10.3390/ijms19071896
[25] Skorupa D.A., Dervisefendic A., Zwiener J., Pletcher S.D. Dietary composition specifies consumption,
obesity, and lifespan in Drosophila
melanogaster. Aging cell, 7
(4) (2008), 478-490. doi: 10.1111/j.1474-9726.2008.00400.x
[26] Smith W.W., Thomas J., Liu J.,
Li T., Moran T.H. From fat fruit fly to human obesity. Physiology &
behavior, 136 (2014), 15-21. doi:
10.1016/j.physbeh.2014.01.017
[27] Men T.T., Thanh, D.N.,
Yamaguchi M., Suzuki T., Hattori G., Arii M., Huy N.T., Kamei K. A Drosophila
model for screening antiobesity agents. BioMed research international, 2016
(2016), 6293163. doi:
10.1155/2016/6293163
[28] Bayliak M.M., Abrat
O.B. Role of Nrf2 in oxidative and inflammatory processes in obesity and
metabolic diseases. In: Deng H. (Eds.) Nrf2
and its Modulation in Inflammation. Progress in Inflammation Research, vol.
85. Springer, Cham, 2020. doi:
10.1007/978-3-030-44599-7_7
[29] Gao W., DECODE Study
Group. Does the constellation of risk factors with and without abdominal
adiposity associate with different cardiovascular mortality risk? International
journal of obesity, 32
(5) (2008), 757-762. doi: 10.1038/sj.ijo.0803797
[30] Bussler S., Penke
M., Flemming G., Elhassan Y. S., Kratzsch
J., Sergeyev E., Lipek T.,
Vogel M., Spielau U., Körner
A., de Giorgis T., Kiess W.
Novel insights in the metabolic syndrome in childhood and adolescence. Hormone
research in paediatrics, 88 (3-4) (2017), 181-193. doi:
10.1159/000479510
[31] Aguilar M., Bhuket T., Torres S., Liu B., Wong R.J. Prevalence of the
metabolic syndrome in the United States, 2003-2012. JAMA, 313 (19) (2015), 1973-1974. doi:
10.1001/jama.2015.4260
[32] Beltrán-Sánchez H., Harhay M.O., Harhay M.M., McElligott S. Prevalence and trends of metabolic syndrome
in the adult U.S. population, 1999-2010. Journal of the American College of
Cardiology, 62
(8) (2013), 697-703. doi: 10.1016/j.jacc.2013.05.064
[33] Heerwagen M.J., Miller
M.R., Barbour L.A., Friedman J.E. Maternal obesity and fetal metabolic
programming: a fertile epigenetic soil. American Journal of
Physiology-Regulatory, Integrative
and Comparative Physiology, 299 (2010), R711-R722. doi:
10.1152/ajpregu.00310.2010
[34] Spencer S.
Early life programming of obesity: the impact of the perinatal environment on
the development of obesity and metabolic dysfunction in the offspring. Current
diabetes reviews, 8 (2012), 55-68. doi: 10.2174/157339912798829214.
[35] Brookheart R.T., Duncan
J.G. Modeling dietary influences on offspring metabolic programming in
Drosophila melanogaster. Reproduction, 152 (2016),
R79-R90. doi: 10.1530/REP-15-0595.
[36] Iftikhar I.H., Donley M. A., Mindel J., Pleister A., Soriano
S., Magalang U.J. Sleep duration and metabolic
syndrome. An updated dose-risk meta-analysis. Annals of the American
Thoracic Society, 12
(9) (2015), 1364-1372. doi:
10.1513/AnnalsATS.201504-190OC
[37] Dominguez L.J., Barbagallo M. The biology of the metabolic syndrome and
aging. Current opinion in clinical nutrition and metabolic care, 19 (1) (2016), 5-11. doi:
10.1097/MCO.0000000000000243
[38] Dunford A.R., Sangster J.M.
Maternal and paternal periconceptional nutrition as
an indicator of offspring metabolic syndrome risk in later life through
epigenetic imprinting: A systematic review. Diabetes & metabolic
syndrome, 11
(Suppl
2) (2017), S655-S662. doi:
10.1016/j.dsx.2017.04.021
[39] Strilbytska O., Velianyk
V., Burdyliuk N., Yurkevych
I. S., Vaiserman A., Storey
K.B., Pospisilik A., Lushchak O. Parental dietary protein-to-carbohydrate
ratio affects offspring lifespan and metabolism in drosophila. Comparative
biochemistry and physiology. Part A, Molecular & integrative physiology,
241
(2020), 110622. doi:
10.1016/j.cbpa.2019.110622
[40] Carson C., Lawson H.A.
Epigenetics of metabolic syndrome. Physiological genomics, 50 (11) (2018), 947-955. doi: 10.1152/physiolgenomics.00072.2018
[41] Grundy S.M. Metabolic
syndrome pandemic. Arteriosclerosis, thrombosis, and vascular biology, 28 (4) (2008), 629-636. doi:
10.1161/ATVBAHA.107.151092
[42] Gluvic Z., Zaric
B., Resanovic I., Obradovic
M., Mitrovic A., Radak D., Isenovic E.R. Link between metabolic syndrome and insulin
resistance. Current vascular pharmacology, 15 (1) (2017), 30-39. doi:
10.2174/1570161114666161007164510
[43] Costa F.F., Rosário W.R., Ribeiro Farias A.C., de Souza R.G.,
Duarte Gondim R.S., Barroso W.A. Metabolic syndrome
and COVID-19: An update on the associated comorbidities and proposed therapies.
Diabetes & metabolic syndrome, 14
(5) (2020), 809-814. doi:
10.1016/j.dsx.2020.06.016
[44] Matsuda M., Shimomura I.
Increased oxidative stress in obesity: implications for metabolic syndrome,
diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obesity
research & clinical practice, 7
(5) (2013), e330-e341. doi: 10.1016/j.orcp.2013.05.004
[45] Laclaustra M., Corella D., Ordovas J.M. Metabolic syndrome pathophysiology: the role
of adipose tissue. Nutrition, metabolism, and cardiovascular diseases: NMCD,
17 (2) (2007), 125-139. doi: 10.1016/j.numecd.2006.10.005
[46] Esser N., Legrand-Poels S., Piette J., Scheen A.J., Paquot N.
Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes.
Diabetes research and clinical practice, 105 (2) (2014), 141-150. doi: 10.1016/j.diabres.2014.04.006
[47] Trayhurn P., Wood I.S. Adipokines: inflammation and the pleiotropic role of white
adipose tissue. The British journal of nutrition, 92 (3) (2004), 347-355. doi: 10.1079/bjn20041213
[48] Makki K., Froguel
P., Wolowczuk I. Adipose tissue in obesity-related
inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN
inflammation, 2013 (2013). doi:
10.1155/2013/139239
[49] Coelho M., Oliveira T., Fernandes R. Biochemistry of adipose tissue: an endocrine
organ. Archives of medical science: AMS, 9 (2) (2013), 191-200. doi: 10.5114/aoms.2013.33181
[50] Catrysse L., van Loo G.
Inflammation and the metabolic syndrome: the tissue-specific functions of NF-κB. Trends in cell biology, 27 (6) (2017), 417-429. doi: 10.1016/j.tcb.2017.01.006
[51] Muñoz A., Costa
M. Nutritionally mediated oxidative stress and
inflammation. Oxidative medicine and cellular longevity, 2013
(2013). doi: 10.1155/2013/610950
[52] Castro A.M., Macedo-de la Concha L.E., Pantoja-Meléndez
C.A. Low-grade inflammation and its relation to obesity and chronic
degenerative diseases. Revista Médica del Hospital General
de México, 80 (2) (2017), 101-105.
[53] Wolowczuk I., Verwaerde
C., Viltart O., Delanoye
A., Delacre M., Pot B., Grangette
C. Feeding our immune system: impact on metabolism. Clinical &
developmental immunology, 2008 (2008). doi:
10.1155/2008/639803
[54] Monteiro R., Azevedo I. Chronic inflammation in obesity and the
metabolic syndrome. Mediators of inflammation, 2010 (2010). doi: 10.1155/2010/289645
[55] Qatanani M., Lazar M.A.
Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes
& development, 21
(12) (2007), 1443-1455. doi: 10.1101/gad.1550907
[56] Garaschuk O., Semchyshyn H.M., Lushchak V.I.
Healthy brain aging: interplay between reactive species, inflammation and
energy supply. Ageing research reviews, 43 (2018), 26-45. doi: 10.1016/j.arr.2018.02.003
[57] Furukawa S., Fujita T.,
Shimabukuro M., Iwaki M., Yamada Y., Nakajima Y., Nakayama O., Makishima M., Matsuda M., Shimomura I. Increased oxidative
stress in obesity and its impact on metabolic syndrome. The Journal of
clinical investigation, 114
(12) (2004), 1752-1761. doi: 10.1172/JCI21625
[58] Reddy P., Lent-Schochet D., Ramakrishnan N., McLaughlin
M., Jialal I. Metabolic syndrome is an inflammatory
disorder: A conspiracy between adipose tissue and phagocytes. Clinica chimica acta; international journal of clinical chemistry, 496
(2019), 35-44. doi:
10.1016/j.cca.2019.06.019
[59] Kim S.K., Rulifson E.J. Conserved mechanisms of glucose sensing and
regulation by Drosophila corpora cardiaca cells. Nature, 431 (7006) (2004), 316-320. doi: 10.1038/nature02897.
[60] Broughton S.J., Piper
M.D., Ikeya T., Bass T.M., Jacobson J., Driege Y., Martinez P., Hafen E.,
Withers D. J., Leevers S.J., Partridge
L. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making
insulin-like ligands. Proceedings of the National Academy of Sciences of the
United States of America, 102
(8) (2005), 3105-3110. doi:
10.1073/pnas.0405775102
[61] Pospisilik J.A., Schramek D., Schnidar H., Cronin
S.J., Nehme N.T., Zhang X., Knauf
C., Cani P.D., Aumayr K., Todoric J., Bayer M., Haschemi
A., Puviindran V., Tar K., Orthofer
M., Neely G.G., Dietzl G., Manoukian A., Funovics M., Prager G., Penninger
J. M. Drosophila genome-wide obesity
screen reveals hedgehog as a determinant of brown versus white adipose cell
fate. Cell, 140
(1) (2010), 148-160. doi:
10.1016/j.cell.2009.12.027
[62] Liu J., Li T., Yang D.,
Ma R., Moran T.H., Smith W.W. Synphilin-1 alters metabolic homeostasis in a
novel Drosophila obesity model. International
journal of obesity, 36 (12) (2012), 1529-1536. doi:
10.1038/ijo.2012.111
[63] Semaniuk U.V., Gospodaryov D.V., Feden'ko K.M., Yurkevych I.S., Vaiserman A.M., Storey K.B., Simpson S.J., Lushchak
O. Insulin-Like peptides regulate feeding preference and metabolism in Drosophila.
Frontiers in physiology, 9 (2018), 1083. doi:
10.3389/fphys.2018.01083
[64] Bayliak M.M., Demianchuk O.I., Gospodaryov
D.V., Abrat O.B., Lylyk M.
P., Storey K.B., Lushchak
V.I. Mutations in genes cnc
or dKeap1 modulate
stress resistance and metabolic processes in Drosophila melanogaster. Comparative biochemistry and
physiology. Part A, Molecular & integrative physiology, 248
(2020), 110746. doi:
10.1016/j.cbpa.2020.110746
[65] Gillette C.M., Hazegh K.E., Nemkov T., Stefanoni D., D'Alessandro A., Taliaferro J.M., Reis T.
Gene-diet interactions: Dietary rescue of metabolic effects in spen-depleted Drosophila melanogaster. Genetics,
214 (4) (2020), 961-975. doi:
10.1534/genetics.119.303015
[66] Lushchak O.V., Rovenko B.M., Gospodaryov D.V., Lushchak V.I. Drosophila
melanogaster larvae fed by glucose and fructose demonstrate difference in
oxidative stress markers and antioxidant enzymes of adult flies. Comparative
biochemistry and physiology. Part A, Molecular & integrative physiology,
160 (1) (2011), 27-34. doi:
10.1016/j.cbpa.2011.04.019
[67] Musselman L.P., Fink J.L., Narzinski K., Ramachandran P.V., Hathiramani
S.S., Cagan R.L., Baranski T. J. A high-sugar diet produces obesity and insulin
resistance in wild-type Drosophila. Disease
models & mechanisms, 4
(6) (2011), 842-849. doi:
10.1242/dmm.007948
[68] Heinrichsen E.T., Zhang H.,
Robinson J.E., Ngo J., Diop S., Bodmer
R., Joiner W.J., Metallo C.M., Haddad G.G. Metabolic
and transcriptional response to a high-fat diet in Drosophila melanogaster. Molecular metabolism, 3 (1) (2013), 42-54. doi:
10.1016/j.molmet.2013.10.003
[69] Abrat O.B., Storey J.M., Storey K.B., Lushchak V.I. High amylose starch consumption induces
obesity in Drosophila melanogaster
and metformin partially prevents accumulation of storage lipids and shortens
lifespan of the insects. Comparative biochemistry and physiology. Part
A, Molecular & integrative physiology, 215 (2018), 55-62. doi: 10.1016/j.cbpa.2017.10.011
[70] Stobdan T., Sahoo
D., Azad P., Hartley I., Heinrichsen E., Zhou D.,
Haddad G.G. High fat diet induces sex-specific differential gene expression in Drosophila melanogaster. PloS one, 14 (3) (2019), e0213474. doi:
10.1371/journal.pone.0213474
[71] Palm W., Sampaio J.L., Brankatschk M., Carvalho M., Mahmoud A., Shevchenko A., Eaton S.
Lipoproteins in Drosophila melanogaster--assembly,
function, and influence on tissue lipid composition. PLoS
genetics, 8
(7) (2012), e1002828. doi: 10.1371/journal.pgen.1002828