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In this paper, the important thermal characterigtics of matter (they describe thermodynamic systemsin aate
of thermodynamic equilibrium) were caculated. There are the following important thermodynamic functions:
the system internd energy U , the therma function (or enthalpy) H, the free Helmholtz energy F , the thermo-

dynamic potentid (or Gibbs free energy) G, the Gibbs grand thermodynamic potentia W , theentropy S, the
specific heat capacity CV . These functions are explicit functions of system’s parameters, they fulfil some

mathematical relationships and possess some totd differentials. These functions are calculated in this paper and
their physical senseisgivenin the cited works.
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|. General statistical ther modynamics U = ner2 9@ 3 -
of thermal properties of matter T 2 (1)
In works [1-3] was shown that the thermodynamic H = NkTg +ng > NKT
properties of gaseous state are described by the statistical 81 dT H 2 )
sum Z,, for the classical ided gas, or the grand p L
°N gas, or by the g £ 20, U Een o 0
canonical sum X for the quantum gas. =- NKT +15=N élng =- 1LJ (3)
Moreover, the statistical sum X of the quantum gas e n g u é eZKNg (
describes adequately the therma properties of the ideal & (KT) §
gas and the conducting crystals, as well as the radiation G = NKT In¢ = 4
of bodies. e n g
It was shown that the classical thermodynamic W= - NKT (5)
potentials of the ideal gas are given by the following ’
general formulas:
é kT) 9, - dInZ(kT és5
S= Nkel+|naEZ( )0,  dInE(MU_ 5 | 2 n &
g n ra ar o &2 ez % ©)
aalU 0 N  aWo
Cy =¢—= . (7 n=—=-¢c—+, (9)
edT gy V edmg
PV =-W= NKT, ) In the above formulas, Z(kT) is the statistical sum
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3/2
. 22pmKT O
of the monatomic ideal gasand Z(KT) = ¢ 5T
e h 4]
where m is the mass of the gas particle. Physical sense

of these potentialsis given in the cited works.
The quantity In(X) determines the Gibbs grand

thermodynamic potential W. This potential describes all
thermodynamic properties of the systems being
considering and is given by the following agorithmic
- € 00
W=-KTIn(X) =-kT & +expg

formula:
e
In
i=0 gl e kT %

Applying now to the last formula the formal
transition between summation and integration we have;
¥ Ge
W=-Vo—0de=- VoG(e) fo(e)de
o oe- mo 1O

p@
kT g g
where fo(e) is the known Fermi-Dirac function,

i®¥

(10)

e
G(e) = ¢p(e)de. g(e)is the density of the energy
0
gtates (DOS) lying in allowed bands, € is the quantum
particle energy it depends on the paticle
quasimomentum b The function e(p)is called the
dispersion relation. According to quantum mechanics,
the energy dispersion relation e(p) is a periodic and

even function of the vector b , the density of the energy
gates g(e) and the quantity G(e) are given by the

following formulas: g(e) = 2 oi ,
h S‘f\] rer‘
P p
2¢ S . dG(e) 2 ds
G(e) =— pdep—— , that is o)
S‘NE)EE)‘ de hS‘N rer‘

These formulas show that systems which may be
described by the grand statistical sum (that is by the
grand thermodynamic potential W), strongly depend on
the structure of the energy dispersion relation. Besides,
in these systems, there may be degenerate or non-
degenerate quantum gas particles.

The thermodynamic potentials (1-8) and their
physical meaning are described in the cited works [2, 3].
These thermodynamic potentials (1-8) are expressed in
terms of the Gibbs grand thermodynamic canonical
potential and are given here by the following general
algorithmic formulas:

O 1
e dT gy

o= 0

X e

x & O

J(9@®)

J(eg(e)

,(12)
J(9(e)

Up=Wh- g—i'+ m-
e dm gr

_ EWO

ang
(12)

n

m —T:
STy
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o) & J(G(e)d
Fq =W, - C—1+ m=NpCm- (13)
N a8 I g
Gn:-gﬁﬂg m= Npym, 14
e dm gr
J(G(e))
W, =-KT In(Xp) =- N , (15)
" oo J( )
eG(e) -
_ @G0 _Un-Fy_ =N gg -mf,(lG)
&dT g T ¢ Jg©) N
2}
a@IUno
17
Cun = Sar o (17)
PV = - W, = KT In(Xpy) = NnM (18)

J(g(e))

N W, o ¥
v ETQZ: 29(@) fo(e)de = I(g(e) =, (19)

In the above formulas, the calculated quantities of
the electron or hole gas of the current carriersin a crystal
are denoted by the subscript N. Theintegral isdefine as:

¥
J( (e)) :(gj (e) fp(e)de.

For non-degenerate current carriers, when < _4,

KT
theintegral J(j (e)) hasthe following form:
. ¥ a&em 0
J( (e)) = g (e) exp(- e)de xexpC— -+, (20)
0 ekT @
For a strong degeneracy, when k£>+4, this
T

integral may be approximated by the function of the
form:

D é 2 2 al
3G ©)= o] @cea+— (kﬁzln(g ol (e)objn?—wm,(zn
0 @ 6 0 g g(rrb) Eﬂ

d In(y(my))
where Intty(rrb)) = d—”b

, and My is the wdll-
known Fermi-Level.

Explication of a physical meaning of the degeneracy
and non-degeneracy is given in the cited works.

Results of calculations of the thermal properties of
the non-degenerate current carriers gas (when formula
(20) holds) fully agree with formulas (1-9) describing the
thermal properties of the classical ideal gas.

When formulas (11-19) are compared with formulas
(1-9), we must constantly keep in mind that the non-
degenerate particles of the quantum gas fulfil the
following relationships:
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¥ ¥ - € N L ¥ - €
n= og(e)fy(e)de = og(e)e KT deekT =z(kT)eKT; z(kT) = 8g(e)e KT ge
0 0

L
n 9 n 0 m_ . 22)
Z(kT) eZ(KT) g kT

These calculations show that the statistical sum of relation e(p) of the quantum particles.
the non-degenerate quantum gas Z(kT) is different from When the reduced chemical potentia y =V s 44
the satiicd sum of the idea  gas m =t

mkT &2 ) ) the quantum gas may be in a degenerate state. It is easy
Z(k-l')—ﬁp O, where m is the ideal gaS o show that in this case the particles density of
e [}

particle mass. Therefore, the quantum gas having this ~ degenerate gas n=N, according to formulas (19) and
density is similar to the classical ideal gas, and its v
thermal properties are fully described by formulas (1-9).

It can be seen from this analysis that the grand N B 5
thermodynamic potentiad W (formula (10)) describes n= v 8 g(e)de = G(my), (23)
adequately the thermodynamic functions of the quantum We <hall use the dassca Sommerfdd
gas and thermodynamic functions of the classical idedl  grnroximation to evaluate the integral in formula (19) to

gas. And these gases are not identical each other. It is . .
associated with the fact the statisticl sum of the ideal ~ S1OW the relations between the Fermi level Iy and the

chemical potential M of the Fermi-particles. Thus, we

(21) isgiven by:

3/2
gas 7 (kT) = ; pkag , and the statistical sum of the

have:
a
¥ e
ideal quantum gas Z(kT):(‘p(e)e kKTde. This
0
guantum dstatistical sum depends on the dispersion
2 2
N ¥ m p 2 dg(m) 2 dg(my)
n=—= pg(e) f,(e)de = pg(e)de + — (KT —@ g(e)de+ m- g(my) +—
M = gt o(exe = gutere + 2 (k7 )P L S
From this approximation and taking into In the case of the ideal Fermi gas for a parabolic
consideration equality (23), it follows the equation: dispersion relation ( b) , we have:
2
2 dg(ny) 3/2
(m- rrb)g(rrb)+p?(kT) d—nb:O, (29) G(my) = 8 an_mg 3/2
"0 3\/_eh [0}

This equation is called the equation of neutrality of a 2/3 2
degenerate Fermi-gas. This equation provides a aBno
possibility to determinate the chemical potentia Im of ~ Thus, My = gga %
the degenerate Fermi-particles and to find the relations

) ] ) ] It can be seen that in the case of isotropic crystals
between this chemical potential and the Fermi level My. i the jsotropic parabolic dispersion relations e(p)
An dementary solution of this equation has the following

(when the the current carriers are strongly degenerate),

form: the chemical potentid 1T and the Fermi level have the
21 p? (kT)2 dg(my)u 25) following form:
u:
S 6 mo(m) dm § . xgl_ b2 @T O
From equation (23), it can be found the Fermi level - >§rrb s
G(my) =n. It is clear from this relaionship that the
Fermi level 1My depends on the Fermi particles’ density _ a@ 03 ﬁ (26)
and their dispersion relation e(p) via the function "o ng g 2m’
G(my) -
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[I. An elementary model of a crystal.
The statistical sum of a crystal.

The crystal of interest to us is a thermodynamic
system. This system is composed of two thermodynamic
subsystems of particles. One system — this is a gas of
charge carriers to be considered as a grand canonical
ensemble of particles. The other — this is a set of
structure particles. These particles vibrate around ther
fixed equilibrium in the crystal lattice.

The gatigtical sum Xy of thismodel of the crystal is
equal to the product of two statistical sums: the statistical
sum of the charge carriers’ gasinthecrystal Xy, and the

statistical sum of the structure particles gas Xy, . Thus,
we have X, =X X
In the cited works it was shown that the thermal

properties (potentials) of large thermodynamic system
are described in terms of the logarithm of a statistical

sum. But the logaritm InX, =InX, +InX

Physically, it means that the thermal potentials of the
crystal should be additive added the thermal potentials of
the crystal lattice and the thermal potentials of the charge
carriers’ gas.

According to statistica physics, in the conducting
crystals, the therma properties of the current carriers
gas may be described by the Gibbs grand potential:

¥ G(e)

oaeaemoo

GeXPG

de =-V oG(e) fo(e)de , (27)

—+1+

e ekl g g

and therefore, we get formulas (11-19) providing
algorithms for the computations of these thermal
potentials.

In the case of the crystal lattice, according to the
Debye approximation, the Gibbs grand potential may be
described by the following formula:

a8 (U

Wy —3NkTe3In(?i expg- —@ Dg—%, (28)

T 2o
Commonly, th|s formula is called the Debye's
interpolation formula In this formula q is the Debye

3Z x3ux
—5 O
23 0(exp(x) - 1)
the density of the crystal’s structure particles.

Having the thermodynamic potentiad Wy, the
known algorithmic formulas permit the calculation of al
thermodynamic properties of the crystal lattice, when the
chemical potential of phononsis equa to zero, (m: 0).
Thus, we have:

D(2)= is the Debye function, N is

; Wy 8 O

temperature which depends on the nature of the crystal, Uy =Wy - g = T 3NkTD(;—— (29)

ﬂ

q 60U
Hy =-6——— T U F NkTe4Dg——- glnﬁ eXpg- — =
N N~ "N~ G
g 2 e efTg ¢ T o (30)
é ene
Fy =Wy = NKT@ING- exps 12 B Y (31)
e € e Tag eT
GN =0 , (32)
€ 2qe0 g
Wy = 3NkT(.::.3In§ expg- — - Dg—% (33)
e e
Wy 6 Uy - é 3

sy = Nz= NN - nap@E 0 o1 e a o

dr g T 8 eTg e e zeaH
(34)
g . 8 (PV)N =-Wy —3NkTéDg——- 3Ir§ exp;- ——-—' (36)

Cyn = 3Nk k&ap& 9. 3 a (35) g elg ﬂzbl

é éTg a0 o The general thermal properties of the crystal should
g gexpg? 5 1;8 be additive added the thermal properties of the crystal

lattice and the thermal properties of the Fermi gas
particles. The therma properties of this Fermi gas are
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described by the general formulas (11)-(19). Because of
this, the general thermodynamic properties of the crystal
are given by the following relationships:
€ u N u

Uk :UN +Un :UNel-'-_

In the above formulas, the subscripts K, N, n are

for the thermodynamic properties of the crystal, the
crystal lattice, and the charge carriers' gas, respectively.

Practical computations show that formulas (1)—(VI1)
adequately describe the therma functions of simple
crystals. Theoretical analysis of these formulas also

In conclusions, the Gibbs grand thermodynamic
potential W adequately describes the thermal functions
of smple crystals. This potentia can be used to justify
and determine to the Gibbs canonical distribution, the
Gibbs grand canonical distribution, the Maxwellian and
Maxwell-Boltzmann digributions. This same potential
can successfully be used to determine the thermal
properties of matter, and it describes (as was shown in
theworks[2, 3]), laws of the thermal radiation of bodies.

Budjak Ja.S. - Professor, Doctor of Physical and
Mathematical Sciences;
Wactawski T. - PhD adjunct.

a. ()
e Ung
é Hiy O confirmsthis fact.
Hi =Hy +Hp =Hy g+ g, (n
e "Nd Conclusions
é Fi u
Fe = Fn +Fn = Fy@ e, ()
e "NU
Gk = 0, (lV)
6 w0
Wie =W +Wn =Wy 8+ o0, V)
e NU
=
Cvic=Cyp *Oyp =y &+ 0 (V)
e “vno
6wyt
(PV) =-Wp - We =- Wy g+ ta. (VI
e NU
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BaxmBi TenJIoBi XapaKTepUCTHUKU PEYOBHH TA iX PO3PAXYHKH 32
J0MOMOTroIo nmorenmiajgiB I'i00ca
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B naniit po6oTi po3paxoBaHi Ba)JIMBI TEIUIOBI XapaKTEPUCTUKH PEUOBHH, SIKi OMMCYIOTh T€PMOIMHAMIUHI
CHCTEeMHU B CTaHI T€pPMOJMHAMIuHOi piBHOBaru. /lo BajIMBHX TEPMOAMHAMIYHUX (QYHKILIH, K MaTepiajbHHUX
BIIACTUBOCTEN CUCTEMH, BIIHOCATBCS: BHYTpiluHs eHepris cucremu U |, TeruioBa GyHkuis, aGo entansmis H,

BinbHa ewepris enpmronbia F, Tepmonuuamiunmii moredmian (abo BinbHa enepris [i66ca) G, Bemukuit

TepMoauHamiuHMil noreHiian [i66ca W, enrpomist S, muroma TeruioemHicTh C\/ . i dyskuii € sBHUME

GYHKLISMU TI€BHUX IapaMeTpiB CHUCTEMH, BiJIIOBiJAIOTh NMEBHUM MAaTeMaTHYHUM BiJHOIICHHSM i BOJOMIIOTH
NEeBHUMHU IIOBHUMH 1udepeniianamMu. Boru po3paxoaHi B npuBezieHiit po0oTi, a X ¢i3nuHuil 3MicT onucaHuii B

LIUTOBAHIM JIiTeparypi.
Kmouosi cioBa:
HEWTPaILHOCTI.

noreniian I['166ca,

XIMIYHHI  TIOTEHIaI,
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