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This paper presents an dementary model of a crystal and its thermodynamic equilibrium state. It was shown
that the thermodynamic characteristics of the crystal at this state are described by the Gibbs grand thermodynamic
potentid. If the crystal is removed away from the equilibrium state, then in this state it will be described by the
set of kinetic properties, and these properties are statistically cal culated with the use of the non-equilibrium Gibbs
grand thermodynamic potentia. Crystals' thermodynamic and kinetic properties have analytical dependence on
the current carriers dispersion law and chemical potential of these carriers. In this work, it was shown that the
determination of the dispersion law and chemical potential — these are complicated problems of statistical and

Kinetic theories of crystals properties.
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An elementary model of a crystal. The
thermal and kinetic properties of
crystals

Crystals are composed of the structurd particles and
they are located within a crystal volume. The structural
particles create the crystal lattice. This lattice has a
symmetry. Points of the location of the structura
particles are called the lattice sites. The space between
these particlesis called the interdtitial site. Asthe crystal
structural particles there are atoms, ions or molecules.
The interaction between these particles holds them in the
lattice sites.

In a cystal can exig the free charge carriers and
when the crystal is in the thermodynamic equilibrium
dtate, these carriers are moving chaotically in the crystal
interstitial Ste. Experiments show that electrons with the
charge e or positive holes with the charge —e can be the
free charge carriersin crystals. A collection of the charge
carriersin the crystal is called the eectron or hole gas, or
called as the gas of the charge carriers.

In thermodynamic equilibrium, there is not any
action of forced fields on the crystal, and its temperature
remains constant and the same value in al its points. In
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al crysta states its structural particles hamonically
vibrate around their nodes, the directions of these
vibrations are varying chaotically, and the charge carriers
gas is moving chacticaly in the interdtitial sites of the
crystal lattice. It is agreed to think that the system of
structural particles and the system of charge carriers only
weakly interact with each other.

Thus, the crystal as a thermodynamic system, is
composed of two thermodynamic subsystems of
particles. One subsystem — this is the gas of charge
carriers, thisgasis considered to be an idedl. The other —
this a set of structure particles, which harmonically and
chaotically vibrate around nodes of crystal lattice.

The thermal properties of conducting crystals are
determined by the concentration of free charge carriers
and the character of their motion in the crystal interdtitial
Site,

In the thermodynamic equilibrium state, the free
charge carriers are moving in a chaotic way, ther
average energy is conserved, and the entropy of the
system of these carriers obtains its maximum value. This
is an equilibrium gas of the charge carriers. As it was
shown in the works [1-5], this gas is described by the
Gibbs grand canonical thermodynamic potential:
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In this formula, V is the crystal volume, f;(e, 1) =
-1
(exp(s;—T”) + 1) is the Fermi-Dirac function, G(g) =

Jy g(e)de, g(e) is the density of the energy states
(DOS) of charge carrierslying in allowed band.

Furthermore, with the use of the potential (1) and
methods of datistica thermodynamics, it can be shown
that the thermodynamic functions of the charge carriers
gas are given by the following general formulas:

aQ aq
v=a-(g)»(&),"
) dQ
H“(@)T“‘(ﬁ)ﬂ
aq
F=a- (dy)
¥ e df

n(mT) = og(e) fo(e myde = OG(E)g

The analysis of the above formulas shows us that the
all set of thermal properties of the charge carriers' gasin
a crystal is fully described by the potential (1) and this
potential depends on the energy dispersion relation via
G (¢) and thereduced chemical potential u°.

Thermal properties of the crystal lattice are described
by the well-known Debye potential [4, 5]:

Wp =W (N,g,T). )

In this formula, N is the general amount of the
crystal structural particles, 6 is the parameter of the
crystal lattice named the Debye temperature.

The calculations of these thermal properties of the
crystal lattice, with the use the potential (2), are given in
the cited literature.

The genera therma properties of a crystal are
additive, and their values for an entire crysta are
calculated by summing the values of thermal properties
of the crystal lattice and the thermal properties of the
charge carriers gasin this crystal.

Under some drift perturbations in a crystal, that is,
the electric field £, the temperature gradient V;:T (these
perturbations may exist smultaneoudy in a crystal), the

¥
de =-2V gG(e) fo(e, myde . (@D}

T

T

Q=-2V fow G(e)fy (e, w)de,
aQ U—-F
5= ‘( ) T

- (8),

-,
N = (dﬂ)
= i
and thus, we have:
e,mo ¥ & dfy(x,m )0
O—:de = BBOOKD: —0 T3,
] dx Q

charge carriers' gaswill go out from equilibrium and turn
into the non-equilibrium particles’ ensemble. In this case,
the drift force ﬁd will be act on every particle of charge
ze [4,5]:

Romsfa B=E-(O)(E)nn ©
where e is the electronic charge, z = 1 is the sign of
charge, ¢ is the average energy of a charge carrier, k is
the Boltzmann's constant, T isthe crystal temperature.

As a result of the action of the drift force Fy, all
current carriers start to move in a rectilinear direction.

Their drift velocity 7, depends on the force ﬁd and the
crystal properties.

The presence of this drift velocity ¥, formsa particle
flux in the crystal. There is éectric charge and heat
(energy) transport in this crystal. Thus, under the drift
fields in the crystal, the set of charge carriers turns into
the non-equilibrium grand canonica ensemble with the
varying amount of the particle. This grand canonica
ensemble, as it was shown in work [1], when the spin
degeneracy was taking into consideration, is defined by
the Gibbs grand canonical thermodynamic potential:

¥ G ¥
W= -2V o ) ~de = - 2V 0G(e) fy (e, m Dmp)de - 4
- m- Dmp 0 O 0
éexpg T+ 1_
2 g

In thisformula, p isthe charge carrier wavevector, & = & isthe charge carriers’ energy dispersion relation, Au(p)
is the change in the one particle chemical potential by the action of these perturbations (these will remove the crystal
away from the equilibrium state). When the perturbations are absent, Au(p) = 0
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The valueAu(p) was calculated in the work[1], where it was shown that Au(p) is an odd function of the vector g,
and in an isotropic crystal under action of the magnetic induction vector B, thisvaueis given as.

o) = ol (B.e) e el Ly ueTaR g 2
i § d(8) gd,d(B):1+(u(e)B). (5)

In this formula, §;; and &;;, are the well-known crystal is described by the Gibbs's grand canonical
Kronecker delta and Levi-Civitasymbols, and u(e) isthe  thermodynamic potential (4)) the electric charge and heat
well-known scattering function and it describesthe effect  transport processes exist, and they are described by the
of scattering processes by crystal lattice defects on the ~ following generalized electrical and heat conduction
crystal kinetic properties. equations:

Analysis of statistical calculations of the
crystals thermal and kinetic
properties

In the cited works, it was shown that in a crystal (this

=(r;(B)i +rR®AB" j|+(a; (B)R;T +N(B)B" RrT]

E J 6
8= pulBl + et - (o B sl my] ,

(")

In equations (6), (7), the symmetric tensors (p;(B)), ~ Pragmatic significance for problems of the crystal
(). ey B). (1 () ~ these are respstvly, PP Hdcton g el e coysasuity
the material tensors of the resistivity, Seebeck effect, b prop ) P o

Peltier effect and thermal conductivity of the crystal. ~ 11€/d in the crystal (when condition (u(¢)B)? « 1

; g ; holds), or when the magnetic field is absent, all four
;hey are even function of the magnetic induction vector kinetic tensors turn into scalars, and therefore all

o o o important kinetic properties of an isotropic crystal are
The coefficients R(B) and P(B) — these ae the  gegryibed by the following set of scalars p(u®,T),
coefficients of transverse galvanomagnetic Hall and a(u,T), n(', T), x(u',T), R, T), N(u", T), P(u", T),
Ettingshausen effects, and the coefficients N(B) and  S§(u°, T) and the concentration of charge carriers (current
S(B) are the coefficient of transverse thermomagnetic carriers) n = n(u", T).
Nerngt-Ettigshausen and Righi-Leduc effects. In the All these kinetic coefficients and n = n(u”, T) for
isotropic crystals they are even and scalar function of the macroscopic crystals, asit was shown in the works [1-5],
magnetic induction vector B, that is. R(E) = R(=B), can be calculated with the use of the following

P(§) = P(=B), N(§) — N(—§), S(E) — S(—ﬁ). algorithmic functional:

The analysis of equations (6), (7) shows that in the _ ¥ j - dfo )0
presence of a magnetic field, an isotropic crystal J(@,j,m ,T) = oxu(xT)" G(x,T)&- Tox (8)
becomes anisotropic, and the relativity simple processes 0 X o
of the eectric and heat conduction will become more With the use of this functional, in the presence of a

complicated. I_n this case, the addi_tional transverse weak magnetic fidd, or when the magnetic fidd is
galvanomagnetic and thermomagnetic effects there  gheent, the full set of kinetic properties of isotropic

occur. crystals will be described by the following formulas:
The galvanomagnetic effects are produced by the 1 J(0,0,u",T)
action of a magnetic field on the omic part of the p(u”,T) S O LTy
electrical current, and the thermomagnetic effect — by the 1 (o, O,#.’, T)I;(O 2,uT)
action of this field on the theema part of the current, R\ T) =— r— ,
accordingly to the generalized equations of the dectric Ze"k 1](10 1_";,'T)
conduction (6). a(u",T) = _(](—”) _ #-),
The kinetic tensors and coefficients in equations (6), ze \J(0,1,p7,T)

(7) describe the nature of the important material N T)=EU ) (/(1:1:#':T)_/(1:2:#':T))
properties of conducting medium and they are of ’ e NN\, 1,pm,T)  J(O,2, 17, T))
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m(u, T) =Ta(u,T),
P(w,T) =TN(",T),

2

ey (BT (J@LET) (L T)Y
24C ’T)_<E) o, T)< 01,4, T)_<1(0,1,l{',T)) )
Un '\ T) = J0E8 Up Qe T) = 140

n(,T) = ](0 0,u°,T).

The above formulas show that an anisotropic crystal
(that its anisotropy was obtained by the action of a
magnetic field) turns into an isotropic crystal, when the
magnetic induction vector B fulfils the condtition
(u()B)? « 1,0rB; = 0.

The Gibbs potential (1) and functional (8) depend on
the energy dispersion relation s(}a_) (via G(¢&)) and the
chemical potentia u ( via the Fermi_Dirac function

fole, ) = (exp( )+1) ). Therefore, the crysta
theemad and kmetlc properties have the same
dependences one(p) and u.

The energy dispersion relation is called the analytical
formula &(p), which describes the dependence of the
crystal charge carrier energy e on this carrier
guasimomentum p.

The energy dispersion relation s(}a_) — this is a
difficult and an essentia quantum-mechanical problem.
For isotropic crystals, the quantum-mechanical
calculations give basis for the following generd isotropic
dispersion relation:

2, .2 2
Px * Py +Px

2
p

2mmy,

=E(e). 9)

2mmy,

In this formula, E(¢) is the guantum mechanical

energy function of the first-order with respect to the

parameter kT, m is the electronic mass, m,, isthe charge
carrier reduced effective massin a crystal.

A function E(¢) is called homogeneous function of

e

u,T)=

~—

&r

=0 Ad(01) +Uod(1,r))+U|d(2,r)§(mn)

the first-order if for all values of parameter kT, the
condition E(kTe) = kTE(¢) holds.

The above analysis of the statigtistical calculations of
the crystals thermal and kinetic properties shows that all
these properties analytically depend on the dispersion
relation (9). and all calculated parameters, in the
algorithmic calculations, depend on the dispersion
relation (9).

There are the following parameters: g(¢) is the
current carriers density of states (DOS) lying in allowed
bands of crystals, G(e) = [, g(e)de, u(e,T) is the
dimensional scattering function which describes the
action of the current carriers scattering processes (in the
defects of crystal lattice) on the crystals kinetic
properties.

For the dispersion relation (9), these quantities take

the forms:
3/2

Ge) = 3\/_ (Zn;lnzmn) E372(¢),
dG 4 (2mmm,\>'? dE

G(x,T) = NC(T)E3/2(x) g(x,T)
1 —NA(T E1/2 d_E
2kT C( ) (x)
Ny = 8 (anmn) 5
C( ) 3\/— h2 1
2
u(e, T) = pOTypr= (Z—p) = w9 ()
E(r—l/z)(x)
dE(x)\?
(%)

In the last formula, U(r,T) is the temperature
function, it has a dimension of the mobility and it is
described by the following formula

u(x, T)=U(r,T)

(1-5/2) 1 (r-1/2) 10)

where Uy, U,, U; are the dimensional crystal constants, which depend on the nature of the crystal and the scattering
mode of current carriers in the crystal lattice, §(m, n) is the known Kronecker symbal, it has the following values:
6(m,n) =1form =n,d(m,n) =0 for m # n, r isthe scattering parameter and it has the following values. r = 0 for
the scattering by the acoustic phononsin the crystal lattice, r = 1 for the scattering by the optical phonons of the crystal
lattice, r = 2 for the scattering by the charged impurities (ions) of the crystal lattice.

For the dispersion relation (9), the algorithmic functional J (i, j, 1°, T) takestheform:

.i _
J(@i,j,m ,T)= OQ_BU(E) G(e)g O-de u(r, T) NC(T)(())X

=u(r, M) NG M)IG g T,

wherethedimensonlessintegral 1(i,j,u°,T) isgiven as.
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L(i, j,m ,b(T)) =

(12)

The algorithmic formulas for the therma and kinetic
properties of crystals have an andytically dependence on
the disperson relation via the function E(x) and on the
reduced chemical potentia u° = u/kT via the Fermi-
Dirac function fo(x, u") = (exp(x — 1) +1)71. Inthese
relationship, the quantity u denotes the charge carrier’s
free energy in acrystal (electron’s or hol€'s energy), and
uw = u/kT is the reduced free energy of this charge
carrier, which is called the reduced chemical potential.

In datistical physics it was shown that u"is aroot of
the known neutrality equation for the fabricated crystals.
Thus, theoretica calculations of the chemica potential u
are associated with algebraic methods of finding
solutions of the neutrality equations for crystals.

Consider n-type semiconductor crystal which is
doped with both type of impurities, donors and acceptors.
The concentrations of donors is Np, and the
concentrations of acceptors is N,. The respective
activation energies of them are Ej, E,. As it was shown
in the cited works [4, 5], there is the impurity screening
by current carriers in such semiconductors, and the
neutrality equation hasthe following form:

*

N
n(m D ~- N

- 3 (13)
1+2F(y- 2 e{Ep F(x y)+m )

N

In this equation, E;, = E,/kT, E; = E,/kT there
are the reduced activation energies of donors and
acceptors,

(', T) =J©0,0,4"T) = [} 6(x,T) (- 2222) gy is
the electron gas concentration in a crystal.

In consequence of this shidding, the donors
activation energy E, depends on the eectron gas

dn _ d(in(m)) KT
TR B B ML
dm dm ype ao
For y < 2, equation (13) has the following form:
= [ 6w (-
0

concentration and temperature, and this energy is given
by the following genera formula:
Ep(T) = EpF(x,y). (14)
In this formula, F(x,y) is the shielding function and
it takes the form:

_ [~ (Re(x)-1)3 _ (Re(x)—1)%+Im(x)?
F(x,y) = [2 S S
1/2
where y =22 = ale < (m,,) (“”"‘ D) s the
shielding parameter, Ty =

. -1/2

ro(u", T)0 | 225 (“”c‘l’;;”) is the shidlding radius. In
these formulas, a,is the radius of a hydrogen atom, D is
the dielectric constant, m is the free electron mass, m,, is
the reduced effective mass of a current carrier in a
crystal, Re(x) and Im(x) are, respectively, the real and
imaginary parts of aroot of the following cubic equation:

x3—yx?—yx+2y=0.

This equation has tree roots. Under the condition of
the calculation problem, which brings to formula (14),
there is only one root having maximal positive value of
Re(x).

The shielding function F(x,y) has the following
properties. F(x,y) <0 for y <2, F(x,y) =0 for y =
2,F(x,y) » 1fory > 2.

The Heaviside function ®(y —2) in eguation (13)
has the following values. ®(y —2) =1 for y > 2 and
d(y—2)=0fory<2.

From the formula for shielding parametr we have the
following equation:

2 68x0%, 2T ém3U
=———(m) —e—uq. (15)
y Dg K g
dfo (x, %)
OT)dx = Np — N,

It should be noted that when y < 2, then by formula (15) the above equation is fulfilled the case of crystals with the
high concentration of degenerate current carriers. In this connection, the integral in this equation can be calculated
reasonable well with the Sommerfeld expansion and the equation obtains the following form

RO T) = 6 o) + (= )9 (o) + - (KT
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In this equation, y, is called the Fermi level. In its
mathematica and physical meaning this equation may be
divided into the following two equations:

G(uo) = Np — Ny = n(uy),

2 d
(= o) + - (k1 G =

A root of this equation hasthe form

0.

_ (1 n?  (kT)? dg(#o))
o=l 6 pnog(o) dug )
thus
. .(1 n? 1 dg(ﬂé))
FRT ) Tag )
here u° = :—T Uy = % are, respectively, the reduced

chemical potential and reduced Fermi level.
Finally, we have that the genera solution of the

neutrality equation (13), when y <2 and -~
6.8- 101

au~

(m N)Z—, will be given by the following two
equatlons

G(my) =Np - NA:n(nb), (16)
I p2 (k1)> da(my)d -
¢ 6 Tmpatmy) dmy 5

These equations show us that under these condition,
heavily doped crystals have signs of metals. In metals,
the current carriers concentration (16) does not depend
on temperature, and the chemical potential decreases
with afall in temperature.

Under a condition that y > 2, the shielding function
F(x,y) = 1, thus equation (13) turns into the following
equation:

& df (xm)o

IZ'

n(m,T)= (ﬁ( )é

- ND
1+2exp(Ep, +m)

(18)

.NA

However, if a condition y > 2 holds, then from
formula (15) it follows that the electron gas
concentration islow and there is a non-degenerate gasin
the crystal.

Then, we have:

nGeT) = [ 60 (-5 dx =
n(y',T)—fO G(x)-e*dx-e* =Z(T) -e”,
Z(T) = fooo G(x) - e *dx.
Therefore, the neutrality equation (13) has the
following form:
Np

z(m)e™

3 =- N (19)
1+ 2exp(ED +m ) A

This equation has the following analytical solution
[4,5]:
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& (Np Nap)

= Ing =
Z(T) o
The notation used in thisformula are listed bel ow:

2
np
n(Np, Ny, np) :T \/(1"' ) +
2N
0+3)
np
E,

= Z(T)exp (— k_T)

The equation Just listed is not adequate to describe
degenerate current carriers.

The general analysis of equation (19) shows that the
chemical potential p° (20) determined from this equation
has a maximum at some temperature T,. The extremum
u; and atemperature value, where the reduced chemical

potential has its maximum value, may be determined
from the following equation system:

(20)

2N,
np

8(Np — Ny)
np

F(u,T)=0
dF (u",T)
a0
where thefunction F(u°, T) isgiven by the formula:
FQu,T) = Z(T) - e* — 2 +N, =0.

1+ 2exp(Ej + 1)

The functional analysis of this system of
transcendental equation shows that its solution always
exists.

If the shielding parameter of a doped crystal y = 2,
then by formula (15) the current carriers in this crystal
are weak degenerate. This makes the solving of the
neutrality equation (13) more complicated. The method
of solving this problem is detaily described in work [5].
This solution is defined by complicated functions and
they are a complex subject of analyses, then in this work
this solution isnot given.

The calculations of the therma and kinetic properties
of conducting crystals given in thiswork show us that all
they are described by the following agorithmic
functional:

¥, & dfo(x m)0
JG,j,m ,T)= ox u(x, T) G(x )% Tdx, (21)
0 2
with theindicesi = 0,1,2; j =0,1,2.
For calculations of the thermal crystal properties this
functional has the such indices: i = 0; j = 0. Therefore,
we have;

jo0u =

0

G(x,T) (— %) dx
dQ

= n(u",T) = ——(d# )
As it was shown above, the thermodynamic Gibbs

potential
a=-2v[° 9

° (exe()

fulfils this equation,

de = =2V |7 G(e)fy (e, w)de

and the genera agorithmic
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functional (21) for the dispersion law (9) hasthe form:

ae dfy 0
J@G,j,m T)= o(;—— u(e) G(e)g

| e 2% o
=u(r,m) NC(T) —g
slE(X) §

dx g
o .E(x)(rj—j/2+3/2)
dE(x)

(-3
( dx )
= U(T, T)JNC(T)I(lrjr #.,T),
Whereadimmsionlessintegral I1(i,j,pu",T) isgiven as.

dfo

= U@ TY N(T) f L

(ri-
i E(¥) /% gedfoo (23)
a@lE(X);
& dx g
In crystals with a narrow energy gap E;, the

1{i, j,m,b(T))= 0<

dx
B e [}

disperson law (9) is described by the Kan€'s
nonparabolic band:
pZ 82 82
= (-4 5) = (50 57)

& |

(x+b(T)x2) (n-

ems of Statistical Calculations...

:de—

of (22)

Yo O = U N @16 jm T,
ng

where B(T) = z—z is the parameter of nonparabalicity.

Hence, the dimensionless integral I(i,j,p°,T) is given
as.

(- )53 oy &
i bmy= ol 220 E

f (1+20(m)%)?
In cystals with a wide energy gap E;, the
nonparabalicity parameter S(T) = z—z &K 1-0. That is

to say in such cysas, the the dispersion law is a
parabolic, and integral (24) takesthe following form:

31X (24)
dx ¢ ]

/%%dfo

G, j.m b (T = &

g

where a(i,j) =i+ rj—j/2+ 3/2. In this formula, the
function F,; j,(1”) is well-known the Fermi integral:

a(l )% dfO(X m )_dX
dx &

For crystals with non-degenerate current carriers,
where their reduced chemical potentiad u° < —4, this
integral isgiven as:

a(, )(m )— C (25)

N . m
Fa(i,j)(m )=Ga(, j)+he ", (25a)
whereT'(a(i,j) + 1) isthe gammafunction.

In acase of a strong degeneracy u° > +4, the Fermi
integral is given as:

1

(1+ 2b(T)x) '

g— E-dx_ = Fa(i,j) (m), (24a)
g =
2 =0
Fag. ) (M) @i )20 (256)

Formulas (26), (27), (28) give the possibility to
calcul ate the kinetic properties of crystal with a parabolic
dispersion law for non-degenerate and strong degenerate
current carriers.

In crystals with a narrow energy gap E;, the non-
parabolicity parameter, as a rule, fulfils the condition

B(T) = z—T < 1. In this connecton we expand the integral
G

I1(i,j,pu", B(T)) in a Taylor series of the parameter B(T)

and we redtrict ourselves to the linear term of this

expansion:

il j,m ,b(T)0 0

1G,j,m ,b(T™) =1, j, m)91+
G, j,m

xb (T)j+ o =
g

) Xg db (T)

00 (T)=0
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e F. iv(m)
j)(m')(?1+(a(i,j)-i-4j)—a("” :
g Fagi,j) (™)

=Faq,

Sinceiin the last formula (a(i, j) — i — 4j)% :
a(ij
B(T) =A@, j, 1) - B(T) < 1then it may be written in a
form to be more conveniently to analysis:
I1G,j, w7, B(T)) = Foqijy(u)exp(AGj, 1) - B(T)).
(29)

Formula (29), together with the algorithmic
functional (29), give us the possibility of anadysis and
calculate al set of the thermal and kinetic properties of
the current carriers gas in conducting crystals with the
Kan€e s dispersion law.

In cystals with a wide energy gap E;, the

nonparabolicity parameter B(T) = z—z «K1-0, as a

rule, fulfils the condition B(T) = :'_Z &« 1 - 0. Hence,
we have:

1, ,m,b(T) @F ) (M) exp(0) =Fy , (M). (260)

Formula (29) implies that in isotropic crystals with a
wide energy gap E;, there is a parabolic energy
dispersion law of current carriers and all set of the
crystals thermal and kinetic properties is given by
formula (30), that is by the appropriate Fermi integral .

In the cited work [5], it was shown that real
semiconductor crystals have fundamental characteristics
ur(Diym,,T) ad n(Dim,T) ad these
characteristics depend on the crystal nature and do not
depend on the concentration of dopant atoms. These
characteristics can be determinated with the use of the
following integral equations:

fowg(x, T) (—W) dx = Z%Zi(%)m,

fow G(x,T) (—

ix )dx =n,(Di,m,,T).

[1]
[2]

3]
[4]
(5]

YaS. Budzhak, T. Wactawski, Physics and
10.15330/pcss.19.2.134-138).

YaS. Budzhak, T. Wactawski,
10.15330/pcss.19.4.303-306).

semiconductor crystals (Liga-Pres, Lviv, 2016).

0 . .
X0 (T)I=Faq jy(M )(1+ D(i, j,m )><b(T))
i}

For the Kane's dispersion law in this formula, the
quantity G(x,T) isgiven by G(x,T) = (x + B(T)x?)3/2,

ad  g(xT) =", y0=35342, B(N) =75

fo(x, 1g) is the known Fermi-Dirac function, Di is the
dielectric constant of the crystal.

Critical values of the reduced chemical potentials
U (Di,m,,T) and concentrations n, (Di,m,,T) give the
condition of turning the semiconductor crystal into
metalic type of crystal. Therefore, if for a crystal the
condition p* < pup(Di,m,,T),n(",T) <n,(Di,m,,T)
haolds, then thisisa semiconductor type crystal, and if the
condition p* > pp(Di,m,,T),n(u",T) > n,(Di,m,,T)
haolds, this crystal has metallic properties.

In crystals of metads the current carriers
concentration does not depend on temperature and the
current cariers  are  strongly  degenerate.  In
semiconductor crystals, they are weakly degenerate
(4 <p’° < +12) or non-degenerate (u° < —4), ther
concentration strongly dependent on temperature. Ther
chemical potential depends on temperature and it has a
maximum in its temperature domain. The existence of
this maximum shows that there are eectron trangtions
from donor energy levels to the conduction band. Thus,
the eectron concentration grows as temperature
increases. The impurity atoms concentrations and donors
ionization energy may be determinated with the use of
this extremum.

Budzhak Ya.S. - Professor, Doctor of Science;
Wactawski T. - Adjunct, Doctor of Philosophy in
Physics.

J.S. Budjak, Physics and Chemistry of Solid State 18(1), 7 (2017) (doi: 10.15330/pcss.18.1.7-14).

Chemigry of Solid State 19(2), 134 (2018) (doi:

Physics and Chemistry of Solid State 19(4), 303 (2018) (doi:
Ya.S. Budzhak, L.O. Vasilechko, Foundations of satistical theory of thermal and kinetic properties of

Ya.S. Budzhak, A.O. Druzhinin, T. Wactawski, Modern Statistical Methods of Investigations of Properties of

Crystalsas Micro- and Nanoel ectronics Materials (Publishing House of Lviv Polytechnic, Lviv, 2018).

352



On the Question of the Problems of Statistical Calculations...

J1.C. BYJI)KaKl, T. BaunaBCBKHﬁZ

/o nMTAHHA PO NMPO0JIEeMH CTATHCTUYHUX PO3PAXYHKIB TEPMOAUHAMIYHHX
Ta KiHETUYHUX BJIACTUBOCTEN MPOBIAHNX KPUCTAJIB

YHayionansnuii ynisepcumem «/Ivsiscora nosimexnixa», m. JIvsis, Ypaina, e-meil; jabudjak@ukr.net
2Kpaki66bka nonimexnixa, m. Kpaxie, [lonewa, e-mail: tadeuszwaclawski 00@gmail.com

B naniif poOOTi omyicaHa eleMeHTapHa MOIENb KPHCTaly Ta HOro TePMOIMHAMIYHO PiBHOBa)KHHI CTaH.
IMokazaHo, W0 TEPMOIAMHAMIYHI XapaKTEPUCTUKM KpHUCTala B TAKOMY CTaHi OINMCYIOTHCS BEJIMKUM
TEpPMOJUHAMIYHUM MoTeHianoM ['i60ca. SIKio KpucTan BUBEICHUH i3 CTaHy TEPMOAMHAMIYHOI PiBHOBArd TO B
L[bOMY CTaHi BiH ONHUCYETbCS MHOXKMHOIO KiHETHYHHX BJIACTHBOCTEH, SIKI CTATUCTHYHO PO3PAaXOBYKOThCS 3a
JIOTIOMOT'OI0  BEJIMKOTO TEPMOIMHAMIYHO HepiBHOBa)XHOro moreHniamy ['100ca. TepmoxmHamiuHi i KiHETH4HI
BJIACTHBOCTI KPHCTaliB MaloTh aHAJITHYHY 3aJEXKHICTb BiJl 3aKOHa Jcrepcii HOCIIB CTpyMy KpHcTana Ta ix
XiMigHOTO moTeHiany. B poboTi mokazaHo, [0 BU3HAYEHHS 3aKOHY AWCIIEpCii Ta XiMIYHOTO MOTEHIialy — Le
CKJIaJHI NPOOJIEMH CTATUCTUYHOI 1 KIHETUYHOI Teopii BIaCTHBOCTEH KPUCTAJIIB.

Kirouosi ci1oBa: norexuiain [i66ca, 3akoH aucriepcii, XiMigHMi oTeHmia, aperidosa cuia.

353


mailto:jabudjak@ukr.net
mailto:tadeuszwaclawski00@gmail.com

