PHYSICS AND CHEMISTRY OF SOLID STATE

V. 20, № 4 (2019) p. 376-383

DOI: 10.15330/pcss.20.4.376-383

ФІЗИКА І ХІМІЯ ТВЕРДОГО ТІЛА Т. 20, № 4 (2019) С. 376-383

UDK 546.882

ISSN 1729-4428

M. Konyk¹, L. Romaka¹, Yu. Stadnyk¹, V.V. Romaka², R. Serkiz³, A. Horyn¹

Er-Cr-Ge Ternary System

¹Ivan Franko L'viv National University, L'viv, Ukraine, <u>mariya.konyk@lnu.edu.ua</u> ²Lviv Polytechnic National University, Lviv, Ukraine, <u>vromaka@gmail.com</u> ³Scientific-technical and Educational Centre of low Temperature Studies, Ivan Franko National University of Lviv, Lviv, Ukraine, <u>rserkiz@gmail.com</u>

The isothermal section of the phase diagram of the Er–Cr–Ge ternary system was constructed at 1070 K over the whole concentration range using X-ray diffractometry, metallography and electron microprobe (EPM) analysis. The interaction between the elements in the Er–Cr–Ge system results in the formation of two ternary compounds: ErCr₆Ge₆ (MgFe₆Ge₆-type, space group *P6/mmm*, Pearson symbol *hP*13; a = 5.15149(3), c = 8.26250(7) Å; $R_{\text{Bragg}} = 0.0493$, $R_{\text{F}} = 0.0574$) and ErCr_{1-x}Ge₂ (CeNiSi₂-type, space group *Cmcm*, Pearson symbol *oS*16, a = 4.10271(5), b = 15.66525(17), c = 3.99017(4) Å; $R_{\text{Bragg}} = 0.0473$, $R_{\text{F}} = 0.0433$) at investigated temperature. For the ErCr_{1-x}Ge₂ compound, the homogeneity region was determined (ErCr_{0.28-0.38}Ge₂; a = 4.10271(5)-4.1418(9), b = 15.6652(1)-15.7581(4), c = 3.99017(4)-3.9291(1) Å).

Keywords: intermetallics; ternary system; phase equilibria; crystal structure.

Article acted received 15.08.2019; accepted for publication 15.12.2019.

Introduction

Fundamental studies of the interaction of components in the metallic systems with rare earth elements (R), transition metals (M) and p-elements, in particular germanium, provide important information on the formation, temperature and concentration stability of compounds to search for new materials with valuable properties.

A review of the literature data showed that the R–M–Ge systems with the participation of chromium as *d*-metal in comparison with other 3*d*-elements of the IV period (manganese, iron, cobalt, nickel, or copper) have not been sufficiently studied. An isothermal cross-section of the state diagram constructed for the Y–Cr–Ge system at 870 K showed that no ternary compounds were detected at the studied temperature [1]. In the following works the results of the crystal structure and magnetic property studies of two series of isostructural germanides were reported: RCr₆Ge₆ (R = Y, Tb–Er) [2, 3] and RCr_xGe₂ (R = Sm, Y, Gd–Er) [4, 5]. Both series of the compounds were studied at the temperature of annealing 1 070 K. An existence of isotypic compounds YCr₆Ge₆

(MgFe₆Ge₆-type) and YCr_{0.23}Ge₂ (CeNiSi₂-type) was confirmed in the Y–Cr–Ge system at 1 070 K and their crystal structure was refined by X-ray powder diffraction method [6].

In this paper, we present the results of experimental investigation of the Er–Cr–Ge (1070 K) ternary system and an analysis of an influence of d-element on the component interaction in the R–M–Ge systems.

I. Experimental details

The alloys were prepared by a direct twofold arc melting of the constituent elements (erbium, purity of 99.9 wt.%; chromium, purity of 99.99 wt.%) under protected argon atmosphere on a water-cooled copper crucible. For better homogenization the samples were melted twice. The weight losses of the initial total mass after arc-melting were lower than 1 wt. %. The pieces of the ascast buttons were homogenized for one month at 1070 K in evacuated silica tubes and then water quenched. Phase analysis was performed using X-ray powder diffractions of the synthesized samples (DRON-4.0, Fe K_{α} radiation).

Table 1

	Space group	Structure type	Lattice parameters, Å			
Phase			а	b	С	Reference
ErGe _{2.83}	Стст	DyGe ₃	3.997	2.0605	3.887	[11]
En Co	Damag	Er ₂ Ge ₅	3.872	3.993	18.125	[11]
EI_2Oe_5	Pmmn		3.879(4)	4.005(4)	18.128(5)	this work
ErGe _{1.83}	Cmcm	DyGe _{1.85}	4.068	2.957	3.900	[12]
ErGo	D6/mmm	AlB ₂	3.89		4.09	[14]
LIGe _{1.5}	10/11/11		3.886(2)		4.088(3)	this work
FraGe.	Cmcm	Er Co	4.005	10.542	14.137	[13]
E13004	Cmcm	L13004	4.005(3)	10.541(5)	14.134(4)	this work
FrGe	Cmam	CrB	4.2199	10.581	3.906	[17]
LIOC	Cmcm		4.220(2)	10.581(4)	3.896(3)	this work
Er. Gen	I4/mmm	Ho ₁₁ Ge ₁₀	10.76		16.09	[16]
			10.763(3)		16.089(5)	this work
Fr-Ge	Pnma	Sm-Ge	7.54	14.49	7.57	[15]
L13004	1 111110	51115004	7.549(3)	14.496(6)	7.576(4)	this work
Er Go	P6 ₃ /mcm	Mn ₅ Si ₃	8.35		6.27	[15]
L15003			8.317(3)		6.297(3)	this work
$Cr_{11}Ge_{19}$	P-4n2	$Mn_{11}Si_{19}$	5.79		51.87	[18]
CrGa	P2 ₁ 3	FeSi	4.797			[20]
			4.796(3)			this work
CruGec	Pnam	Cr ₁₁ Ge ₈	13.15	4.94	15.75	[19]
			13.079(5)	4.954(4)	15.721(5)	this work
CroGe	Pm-3n	Cr ₃ Si	4.631			[18]
C130e			4.6303(1)			this work

Crystallographic characteristic of the binary phases in the Er–Ge and Cr–Ge systems at 1070 K

The observed diffraction intensities were compared with reference powder patterns of the pure elements, binary and known ternary phases. The chemical and phase compositions of the obtained samples were examined by Scanning Electron Microscopy (SEM) using REMMA-102-02 scanning microscope. Quantitative electron probe microanalysis (EPMA) of the samples was carried out by using an energy-dispersive X-ray analyzer with the pure elements as standards (an acceleration voltage was 20 kV; K- and L-lines were used). The data for the crystal structure refinements were collected at room temperature using STOE STADI P diffractometer (Cu $K_{\alpha 1}$ radiation). Calculations of the crystallographic parameters and theoretical diffraction patterns were performed using WinCSD program package [7]. Rietveld refinement was performed using the Fullprof suite program package [8].

II. Results and discussion

2.1. Phase equilibria in the Er-Cr-Ge ternary system.

The binary boundary Er-Ge, Er-Cr and Cr-Ge systems which limit the studied Er-Cr-Ge system, have

been investigated earlier and their phase diagrams are well known in the literature [9, 10]. In the Cr–Ge and Er–Ge binary systems, the existence of 4 and 9 binary compounds, respectively, were confirmed under used in our work conditions: $Cr_{11}Ge_{19}$, CrGe, $Cr_{11}Ge_8$, Cr_3Ge , $ErGe_{2.83}$, Er_2Ge_5 , $ErGe_{1.83}$, $ErGe_{1.5}$, Er_3Ge_4 , ErGe, $Er_{11}Ge_{10}$, Er_5Ge_4 , and Er_5Ge_3 . Crystallographic characteristics of the Er-Ge and Cr-Ge binary compounds are listed in Table 1.

The Cr_5Ge_3 binary compound (W_5Si_3 -type) was not identified at the temperature of annealing. According to the X-ray phase analysis, the sample of the corresponding composition contained two binary phases in equilibrium: Cr_3Ge and $Cr_{11}Ge_8$. According to the literature, the Cr_5Ge_3 phase is stable only at elevated temperatures; formed by peritectic reaction at 1262°C and decomposed eutectoid at 996°C. Below this temperature, Cr_3Ge is in equilibrium with $Cr_{11}Ge_8$ [21].

The phase equilibria in the Er–Cr–Ge system have been established at 1070 K using the X-ray and metallographic analyses of the examined 14 binary and 33 ternary alloys. The isothermal section of the Er–Cr– Ge ternary system at corresponding temperature is illustrated in Fig. 1. The phase compositions of the selected alloys are presented in Table 2. The electron

Fig. 1. Isothermal sections of the Er–Cr–Ge phase diagram at 1070 K.

Table 2

Phase/Component content	Ег, ат.%	Сг, ат.%	Ge, at.%
	$Er_{10}Cr_{60}Ge_{30}$		
Cr ₃ Ge		75.34	24.66
Er ₃ Ge ₄	43.18		56.82
	$Er_{20}Cr_{20}Ge_{60}$		
ErCr ₆ Ge ₆	8.74	45.52	45.74
$\text{ErCr}_{1-x}\text{Ge}_2$	31.75	6.45	51.80
(Ge)			99.96
	$Er_{28}Cr_9Ge_{63}$		
$\text{ErCr}_{1-x}\text{Ge}_2$	30.28	9.12	60.60
ErGe _{2,83}	28.30		71.70
(Ge)			99.96
	$Er_{50}Cr_{25}Ge_{25}$		
Er ₅ Ge ₃	62.50		37.50
(Cr)		99.98	
(Er)			99.98
	$Er_{50}Cr_{13}Ge_{37}$		
Er ₅ Ge ₄	55.67		44.33
Er ₅ Ge ₃	62.50		37.50
Cr ₃ Ge		72.57	27.43
	$Er_{14}Cr_{44}Ge_{42}$		
ErCr ₆ Ge ₆	8.91	45.23	45.86
ErCr _{1-x} Ge ₂	29.98	11.84	58.18
Cr ₃ Ge		72.57	27.43

Phase composition	of the selected	Er-Cr-Ge	alloys	according to	o EPMA	data
1			~	0		

microphotographs of the some alloys are shown in Fig. 2. No binary phases were observed in the Er–Cr system at investigated temperature [10]. The corresponding ternary samples in the region $\text{Er-Er}_5\text{Ge}_3$ -Cr contain three phases in equilibrium – Er_5Ge_3 , Er, and Cr. The solubility of the third component in the Cr–Ge and Er–Ge binaries

Fig. 2. Electron microphotographs of the Er–Cr–Ge alloys: a) $Er_{10}Cr_{60}Ge_{30} - Cr_3Ge$ (dark phase); Er_3Ge_4 (light phase); b) $Er_{20}Cr_{20}Ge_{60} - ErCr_6Ge_6$ (grey phase); ErCr $_{1-x}Ge_2$ (light grey phase); (Ge) (dark phase); c) $Er_{28}Cr_9Ge_{63} - ErCr_{1-x}Ge_2$ (grey phase); ErGe_{2,83} (light phase); (Ge) (dark phase); d) $Er_{50}Cr_{25}Ge_{25} - Er_5Ge_3$ (grey phase); (Cr) (light phase); (Er) (dark phase); e) $Er_{50}Cr_{13}Ge_{37} - Er_5Ge_4$ (grey phase); Er_5Ge_3 (light phase); Cr_3Ge (dark phase); f) $Er_{14}Cr_{44}Ge_{42} - ErCr_6Ge_6$ (grey phase); $ErCr_{1-x}Ge_2$ (light phase); Cr_3Ge (dark phase); f) $Er_{14}Cr_{44}Ge_{42} - ErCr_6Ge_6$ (grey phase); $ErCr_{1-x}Ge_2$ (light phase); Cr_3Ge (dark phase).

is less than 1-2 at. % under our conditions.

2.2. Crystal structure.

According to the performed X-ray phase analysis, two ternary compounds are formed in the Er–Cr–Ge system at 1070 K. The crystal structure refinements of the ternary compounds were performed using powder diffraction data of the $Er_{10}Cr_{45}Ge_{45}$ and $Er_{30.3}Cr_{9.1}Ge_{60.6}$ samples (Figs. 3, 4). The experimental conditions of the structure refinements and the results of the structure calculation are given in Table 3, final atomic coordinates, site occupancies, and isotropic displacement parameters are presented in Table. 4.

As reported above, the authors of Ref. [1] did not establish the existence of the YCr_6Ge_6 germanide during the study of the Y–Cr–Ge system at 870 K. Further investigation of the Y–Cr–Ge system at 1070 K [6]

Fig. 3. The observed, calculated and difference X-ray patterns of the $Er_{10}Cr_{45}Ge_{45}$ alloy.

Fig. 4. The observed, calculated and difference X-ray patterns of the ErCr_{0.28}Ge₂ phase

Table 3

Experimental	details and	crystallog	raphic data	a for ErCr ₆ Ge	5 and ErCr _{0.28} Ge
--------------	-------------	------------	-------------	----------------------------	-------------------------------

Alloy composition	$Er_{10}Cr_{45}Ge_{45}$	$Er_{30,3}Cr_{9,1}Ge_{60,6}$		
Refined composition	ErCr ₆ Ge ₆	$ErCr_{0,28(1)}Ge_2$		
Overall composition from EPMA data	Er _{8.74} Cr _{45.52} Ge _{45.74}	Er _{30.28} Cr _{9.12} Ge _{60.60}		
Structure type	MgFe ₆ Ge ₆	CeNiSi ₂		
Pearson symbol	hP13	oS16		
Space group; Z	<i>P6/mmm</i> (No. 191); 2	<i>Cmcm</i> (No. 63) 4		
Unit-cell parameters: a, b, c, Å	5.15149(3); 8.26250(7)	4.10271(5); 15.6652(1);		
		3.99017(4)		
Cell volume V , Å ³	189.892	256.448		
Calculated density D_x , g/cm ³	8.000	8.474		
Diffractometer	STOE STADI P (transm	nission mode, curved Ge(111)		
	monochromat	or on primary beam)		
Radiation, wavelength λ (Å)	Cu <i>K</i> _α , 1,54056			
Angular range for data collection / increment ($^{\circ}2q$)	6.000≤2 <i>q</i> ≤110.6255 / 0.015			
Linear PSD step ($^{\circ}2q$) /time (sec/step)	0.480 / 220	0.480 / 250		
Half width parameters: U, V,	0.003(1), -0.006(2),	0.081(4), -0.028(4),		
Ψ, η	0.006(2), -0.33(1)	0.0152(8), 0.428(8)		
Asymmetry parameters	0.0076(0), 0.0154(0)	0.043(3), 0.014(1)		
Reliability factors: R_{Bragg} ; R_{F}	0.0493; 0.0574	0.0473; 0.0433		
Content of $ErCr_{c}Ge_{c} / ErCr_{0.28}Ge_{2} / Ge phases (wt. %)$	93 48 / 2 55 / 3 97			

Atom	Wyckoff position	X	у	Z	G	B_{iso} , Å ²
			ErCr ₆ Ge ₆			
Er	1 <i>a</i>	0	0	0	1	1.21(7)
Cr	6 <i>i</i>	1/2	0	0.2510(2)	1	0.51(5)
Ge1	2e	0	0	0.3503(3)	1	1.12(7)
Ge2	2d	1/3	2/3	1/2	1	0.28(7)
Ge3	2c	1/3	2/3	0	1	0.11(7)
			ErCr _{0.28} Ge ₂			
Er	4c	0	0.3969(8)	1/4	1	0.24(4)
Cr	4c	0	0.2034(7)	1/4	0.28(1)	0.51(0)
Ge1	4c	0	0.0534(1)	1/4	1	0.56(2)
Ge2	4 <i>c</i>	0	0.7518(1)	1/4	1	1.72(5)

Atomic coordinates, site occupancies and isotropic displacement parameters for ErCr_6Ge_6 and $\text{ErCr}_{0.28}\text{Ge}_2$

Fig. 5. DTA curve for the ErCr₆Ge₆ compound (crystallization and melting curve (inset).

revealed the formation of the YCr₆Ge₆ compound, and DTA indicated its existence in a rather wide temperature range up to 1120 K. As reported in Refs. [2, 3] isotypic RCr₆Ge₆ germanides where R = Tb-Er, were also obtained at annealing temperature 1070 K. To check the temperature interval of stability of the ErCr₆Ge₆ compound, a differential thermal analysis (synchronous LINSEIS STA PT 1600 thermoanalyzer) was performed, according to which the ErCr₆Ge₆ compound exists up to temperature of 1126 K, above which it decomposes (Fig. 5).

Conclusions

An experimental study of the interaction of components in the Er–Cr–Ge ternary system at 1070 K confirmed the formation of two ternary germanides,

 ErCr_6Ge_6 and $\text{ErCr}_{1-x}\text{Ge}_2$, which were reported earlier. Compound ErCr₆Ge₆ is characterized by stoichiometric composition, while for $ErCr_{1-x}Ge_2$ compound with the CeNiSi₂ structure type the small homogeneity range was established. ErCr_{0.30}Ge₂ composition reported in Ref. [4] is included into the homogeneity region of the ErCr_{1-x}Ge₂ compound which was established in our work. The investigated Er-Cr-Ge system by the nature of phase equilibria, the number of ternary compounds and their crystal structure is similar to the studied Y-Cr-Ge (1070 K) system [6]. The similar interaction of components can be predicted for the systems with other rare earth metals, including gadolinium, terbium, dysprosium, for which RCr₆Ge₆ and RCr_{1-x}Ge₂ compounds are known. The formation of isostructural compounds RCr₆Ge₆ and RCr_{1-x}Ge₂ also with Tm, Yb, Lu is not excluded.

In contrast to the RCr₆Ge₆ and RCr_{1-x}Ge₂ germanides

formed with rare earth elements of the Yttrium group, an isostructural series of RCrGe₃ compounds (R = La-Nd, Sm, BaNiO₃-type, space group $P6_3/mmc$) is realized for the rare earths of cerium group [31]. Similar compounds with the perovskite-type structure are also formed with the vanadium RVGe₃ (R = La-Nd, Sm) [32]. It worth to note, that this structure type is not peculiar to the germanides with other transition metals. Additionally, R₁₁₇Cr₅₂Ge₁₁₂ compounds with a cubic Tb₁₁₇Fe₅₂Ge₁₁₂ structure type were found for Nd and Sm [33, 34].

Ternary $RM_{1-x}Ge_2$ compounds with the CeNiSi₂ structure type are most often realized in the R–M–Ge systems, as indicated by the isostructural series $RCr_{1-x}Ge_2$ (R = Y, Sm, Gd-Er), $RMn_{1-x}Ge_2$ (R = Y, Nd, Sm, Gd-Tm, Lu), $RFe_{1-x}Ge_2$ (R = Y, La-Sm, Gd-Lu), $RNi_{1-x}Ge_2$ (R = Y, La-Lu), $RCu_{1-x}Ge_2$ (R = Y, La-Sm, Gd-Lu), $RNi_{1-x}Ge_2$ (R = Y, La-Lu), $RCu_{1-x}Ge_2$ (R = La-Sm, Gd-Tm, Lu) [25-28].

Comparison of the studied Er–Cr–Ge system with other Er–M–Ge systems where M = Mn, Fe, Co, Ni, or Cu [22–24], indicates that the character of phase equilibria, the number of ternary compounds and the type of their crystal structure are depend on the M-component. Passing from chromium to the metals of iron group indicates the complicated character of the component interaction in the Er–M–Ge systems with increasing the number of the ternary compounds. In the Er–Mn–Ge (870 K) system, 4 ternary compounds were formed, and in the Er–{Fe, Co, Ni}–Ge (1070 K) systems, 8, 16, 14

are realized at annealing ternary germanides temperatures, respectively. Passing to the copper leads to a decrease in the number of ternary compounds. Subsequently only six ternary compounds were observed in the Er–Cu–Ge system at 870 K [23]. Similar tendency is observed for other R-M-Ge systems. For example, for the yttrium, the interaction of the components in the Y-{V, Cr, Mn, Fe, Ni}-Ge systems was investigated over the whole concentration range [6, 24, 29, 30]. In the Y-{Co, Cu}-Ge systems some intermetallics as representatives of isostructural series were studied only [24]. When V is replaced by Cr, Mn, Fe, Co, and Ni, the number of the ternary germanides increases significantly $1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 7 \rightarrow 10$, and decreases to six when passing to the Y-Cu-Ge system.

Acknowledgement

We would like to acknowledge financial support of the Ministry of Education and Science of Ukraine under Grant No 0118U003609.

Konyk M. - Ph.D., Senior Research; Romaka L. - Ph.D., Senior Scientist; Stadnyk Yu. - Ph.D., Senior Scientist; Romaka V. - D.Sc., Assoc. Professor; Serkiz R. - Senior Research; Horyn A. - Ph.D., Senior Research.

- [1] O.I. Bodak, E.I. Gladyshevsky, Ternary systems containing rare earth metals (Vyshcha shkola, Lviv, 1985).
- [2] J.H.V.J. Brabers, K.H.J. Buschow, F.R. de Boer, J. Alloys Compd. 77, 205 (1994). (DOI: 10.1016/0925-8388(94)90769-2).
- P. Schobinger-Papamantelljsa, J. Rodriguez-Carvajalb, K.H.J. Buschow, J. Alloys Compd. 92, 256 (1997). (doi.org/S0925-8388(96)03109-X).
- [4] H. Bie, A. Tkachuk, A.Mar, J. Solid State Chemistry 182(1), 122 (2009). (doi.org/10.1016/j.jssc.2008.10.013).
- [5] A. Gil, D. Kaczorowski, B. Penc, A. Hoser, A. Szytula, J. Solid State Chem. 227, 184(2) (2011). (doi.org/10.1016/j.jssc.2010.10.026/).
- [6] M. Konyk, L. Romaka, L. Orovčik, V.V. Romaka, Yu. Stadnyk, Visnyk Lviv Univ. Ser. Chem. Bich. 38, 60(1) (2019). (doi.org/10.30970/vch.6001.038).
- [7] L. Akselrud, Yu. Grin. WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Cryst. 47, 803 (2014). (doi.org/10.1107/S1600576714001058).
- [8] T. Roisnel, J. Rodriguez-Carvajal, WinPLOTR: a Windows tool for powder diffraction patterns analysis. Mater. Sci. Forum. 378, 118 (2001).
- [9] T.B. Massalski, in: Binary Alloy Phase Diagrams (ASM, Metals Park, Ohio, 1990).
- [10] Okamoto H. Desk Handbook: Phase Diagrams for Binary Alloys (Materials Park (OH), American Society for Metals, 2000).
- [11] G. Venturini, I. Ijjaali, B. Malaman, J. Alloys Compd. 288(1-2), 183 (1999). (doi.org/10.1016/S0925-8388(99)00088-2).
- [12] O. Oleksyn, P. Schobinger-Papamantellos, C. Ritter, C.H. Groot, K.H.J. Buschow, J. Alloys Compd. 252(1-2), 53 (1997). (doi.org/10.1016/S0925-8388(96)02714-4).
- [13] O.Ya. Oleksyn, O.I. Bodak, J. Alloys Compd., 210(1-2), 19 (1994). (doi.org/10.1016/0925-8388(94)90108-2).
- [14] G. Venturini, I. Ijjaali, B. Malaman, J. Alloys Compd. 284(1-2), 262 (1999). (doi.org/10.1016/S0925-8388(98)00958-X).
- [15] G.S. Smith, A.G. Tharp, Q. Johnson, J. Acta Crystallogr. 22, 940 (1967). (doi.org/10.1107/S0363110X67001902).
- [16] V.N. Eremenko, I.M. Obuschenko, Sov. Non-Ferrous Met. Res. 216, 9 (1981).
- [17] P. Schobinger-Papamantellos, K.H.J. Buschow, J. Less Common Met. 111(1-2), 117 (1985). (doi.org/10.1016/0022-5088(85)90177-8).

- [18] M. Kolenda, J. Stoch, A. Szytula, J. Magn. Magn. Mater. 20(1), 99 (1980). (doi.org/10.1016/0304-8853(80)90532-6)
- [19] B. Rawal, K.P. Gupta, J. Less Common Met. 27(1), 65 (1972). (doi.org/10.1016/0022-5088(72)90105-1).
- [20] T. Sato, E. Ohta, M. Sakata, J. Magn. Magn. Mater. 61(1-2), 205 (1986). (doi.org/10.1016/0304-8853(86)90085-5).
- [21] I. Jandl, K.W. Richter, J. Alloys Compd. 500(1), L6 (2010). (DOI: 10.1016/j.jallcom.2010.03.200).
- [22] M.B. Konyk, L.P. Romaka, V.V. Romaka, R.Ya. Serkiz, Phys. Chem. Solid State 13(4), 956, (2012).
- [23] M. Konyk, A. Horyn, R. Serkiz, Visnyk Lviv. Univ. Ser. Chem. 42, 53 (2012).
- [24] P.S. Salamakha, O.L. Sologub, O.I. Bodak, In: Gschneidner K. A. et al (Eds.), Ternary rare-earth germanium systems, Handbook on the Physics and Chemistry of Rare Earths, Vol 27 (The Netherlands, Amsterdam, 1999).
- [25] V.K. Pecharsky, O.Ya. Mruz, M.B. Konyk, P.S. Salamakha, P.K. Starodub, M.F. Fedyna, O.I. Bodak, J. Struct. Chem. 30(5), 96 (1989).
- [26] M. Francois, G. Venturini, B. Malaman, B. Roques, J. Less-Common Met. 160(2), 197 (1990). (doi.org/10.1016/0022-5088(90)90381-S).
- [27] R. Duraj, M. Konyk, J. Przewoznik, L. Romaka, A. Szytula, Solid State Sci. 25, 11 (2013). (dx.doi.org/10.1016/j.solidstatesciences.2013.07.019)
- [28] L. Romaka, M. Konyk, Yu. Stadnyk, V.V. Romaka, R. Serkiz, Phys. Chem. Solid State 20(1), 69, (2019). (DOI: 10.15330/pcss.20.1.69-76).
- [29] M. Konyk, L. Romaka, A. Horyn, N. German, R. Serkiz, Visnyk Lviv Univ. Ser. Chem. 56, 25 (2015).
- [30] M. Konyk, L. Romaka, Yu. Stadnyk, V.V. Romaka, R. Serkiz, Visnyk Lviv Univ. Ser. Chem. 59(1), 11 (2018). (doi.org/10/30970/vch.5901.011).
- [31] H. Bie, O.Ya. Zelinska, A.V. Tkachuk, A. Mar, J. Mater. Chem. 19(18), 4613 (2007). (doi.org/10.1021/cm0727+).
- [32] H. Bie, A. Mar, J. Mater. Chem., 19, 6225 (2009) (doi.org/10.1039/B908781H).
- [33] A.V. Morozkin, Y.D. Seropegin, V. K. Portnoy, I.A. Sviridov, A.V. Leonov, Mater. Res. Bull. 33(6), 903 (1998). (doi.org/10.1016/S0025-5408(98)00051-8).
- [34] P.S. Salamakha, Yu.M. Prots, O.L. Sologub, O.I. Bodak, J. Alloys Compd. 51, 215 (1994). (doi.org/10.1016/0925-8388(94)908817-6).

М. Коник¹, Л. Ромака¹, Ю. Стадник¹, В.В. Ромака², Р. Серкіз³, А. Горинь¹

Потрійна система Er-Cr-Ge

¹Львівський національний університет ім. І.Франка, Львів, Україна, <u>mariya.konyk@lnu.edu.ua</u>,

²Національний університет "Львівська політехніка", Львів, Україна, <u>vromaka@gmail.com</u>

³Науково-технічний і навчальний центр низькотемпературних досліджень, Львівський національний університет імені І. Франка, Львів, Україна, e-mail: <u>rserkiz@gmail.com</u>

Ізотермічний переріз діаграми стану потрійної системи Ег–Сг–Ge побудований за температури 1070 К в повному концентраційному інтервалі методами рентгенофазового, рентгеноструктурного і мікроструктурного аналізів. Взаємодія компонентів у системі Ег–Сг–Ge за температури дослідження характеризується утворенням двох тернарних сполук ErCr₆Ge₆ (структурний тип MgFe₆Ge₆, просторова група *P6/mmm*, символ Пірсона *hP*13; a = 5,15149(3), c = 8,26250(7) Å; $R_{\text{Bragg}} = 0,0493$, $R_{\text{F}} = 0,0574$) і ErCr_{1-X}Ge₂ (структурний тип CeNiSi₂, просторова група *Cmcm*, символ Пірсона *oS*16, a = 4,10271(5), b = 15,6652(1), c = 3,99017(4) Å; $R_{\text{Bragg}} = 0,0473$, $R_{\text{F}} = 0,0433$). Для сполуки ErCr_{1-X}Ge₂ визначена область гомогенності (ErCr_{0,28-0,38}Ge₂; a = 4,10271(5)-4,1418(9), b = 15,6652(1)-15,7581(4), c = 3,99017(4)-3,9291(1) Å).

Ключові слова: інтерметаліди, потрійна система, фазові рівноваги, кристалічна структура.