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The bulk modulus is one of the most important characteristic features of solids. Accordingly, it have been 

developed a statistical-mechanical treatment based on an equation which allows to calculate the bulk modulus for 

solids with the minimum manifold of input data. In our model, a conjunction between Gruneisen parameter and 

canonical partition function has been established. We have found out that the volume dependency of Gruneisen 

parameter is critical in estimating bulk modulus. The result for hexagonal closed- packed (hcp) iron is very good 

and commensurate with the best measurements. This framework can be extended to the other elemental solids or 

a variety of compounds.   
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Introduction 

Nowadays, it is desirable for molecular physicists to 

estimate, predict and calculate thermophysical properties 

of matter [1-10]. These methods are more efficient and 

cost effectively in respect to experimental procedures. 

Indeed, ability to understand fundamental equations 

of thermodynamics on purely molecular level, using 

nothing other than the above information and the tools of 

equilibrium statistical mechanics, has been a challenge 

since over a century ago and is still an open problem in 

the research frontiers of the present era. That is why, 

these approaches have attracted the attention of 

physicists [11-13]. 

Moreover, thermodynamic systems are described by 

macroscopic parameters, such as density, elasticity, 

temperature, entropy, and others [14]. These parameters, 

which define adequately the state of such systems, are 

uniquely connected by various relations, so that 

thermodynamics like mechanics is a dynamic theory15. In 

those cases when the thermodynamic relations do not 

satisfy our requirements and we wish to establish the 

properties of a many-particle system by starting from the 

properties of the particles themselves, we must turn to 

the molecular theory of these systems, i.e., to statistical 

physics [11-13, 16-17].  

Furthermore, bulk modulus is an important physical 

quantity, characterizing the an-harmonic dynamic 

properties18 under the effect of pressure [19-20]. 

Additionally, bulk modulus, which is defined as the 

inversion of isothermal compressibility factor, is critical 

for understanding thermodynamics and thermo-elastics 

behavior of solids at high temperatures [21-22]. 

Henceforth, reliable estimation of aforesaid property is 

important in solid state sciences [23]. 

The experimental determination of bulk modulus for 

solids at high temperature is extremely difficult. Also, 

accurate data are often scarce or non-existent in these 

conditions. It is, therefore, desirable to develop an 

analytical model from first principles to predict bulk 

modulus in those areas where no experimental data are 

available. It should also be mentioned that the 

development of an analytical model for predicting bulk 

modulus prevents most of the serious errors in the 

calculations of thermodynamics functions which arise 

from the uncertainty of bulk modulus at high pressures. 

Therefore, toward the eventual goal of a fundamental and 

unambiguous methodology of the microscopic 

thermodynamics, the objective of the present paper is to 

develop microscopic recipe based on statistical-
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mechanical treatment to estimate bulk modulus for 

solids. 

I. Theory 

o calculate thermodynamic functions of state we 

applied the canonical ensemble24-25. Utilizing the semi-

classical formulation for the purpose of the canonical 

ensemble for the N indistinguishable molecules, the 

partition function Z can be expressed as follows15: 

   NpdpdpdNrdrdrd
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where S - stands for the number of degrees of freedom of 

individual molecules, H - designates the Hamiltonian 

molecule system, vectors Nrrr


......21  describes the 

positions of N molecules and Nppp
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......21  indicates 

their linear conjugate momentums, k and h  Boltzmann’s 

and Planck’s constants, respectively. 

In the canonical ensemble, the equation of state is 

given by [15]: 
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where T is the temperature and V is the volume of 

molecular system. 

Our thermodynamic system consists of N particles 

associated by attractive forces. Atoms in their crystal 

lattices are not motionless but they oscillate thermally 

near their equilibrium positions. This assembly of atoms 

has 3N-6 vibration degrees of freedom (One can ignores 

the number of translational and rotational degrees of 

freedom in comparison to the total normal mode of 

vibrations because the number of later is so large in 

solids).  

Henceforth, the canonical partition function is given 

[26]: 
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where 
D  is Debye characteristic temperature. The 

Debye model of solids treats a solid as an isotropic 

elastic substance26. Using the canonical partition 

function, the above relation could be cast into [26] 

: 
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The Debye characteristic temperature will be 

determined by means of Gruneisen parameter   [27-28]: 
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where   is the density. We have fitted the Gruneisen 

parameter 28-29] with density [30]. Our typical result for 

iron is as follows: 

 2)(  cba  , (6) 

where a = 2.966051, b = -0.1841206, and c = 

0.004033906. Finding the Debye characteristic 

temperature from Gruneisen parameter by means of Eq. 

(5) gives the following expression: 

 )exp( 2 cbd a

D  , (7) 

where d= 2.754820453. 

On the other hand, Eq. (2) can be re-arranged as: 
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This is the key equation that we acquired in our 

mathematical model for the calculation of bulk modulus 

in solid crystals. In continuation, we are going to focus 

on the bulk modulus, TB , the  inversion of the 

isothermal compressibility factor, T ,as follows: 
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From Eq. (9) with a simple algebra one can find the 

following equation: 
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The aforementioned equation is the central part of 

our procedure for estimating the bulk modulus of solids 

based on the statistical-mechanical treatment. 

II. Results and Discussion 

Knowing the density dependence of Gruneisen 

parameter on the one hand and the utilization of the basic 

statistical-mechanical relation on the other hand enables 

us to compute the bulk modulus of solids with reasonable 

accuracy. Apart from such applications of the present 

theoretical approach, the statistical-mechanically-based 

formula of bulk modulus presented in this work is also 

significant in elucidating the molecular model for 

thermophysical properties of solids. Another significant 

importance of the proposed relation is its obvious linkage 

to the microscopic characteristic features of concerned 

solids from the statistical- mechanical viewpoint [31-32]. 
Therefore, the problem of deriving an analytical 

expression for thermophysical properties of fluids and 

solids has remained an important problem in the field of 

thermodynamics [33-34]. By proposing the definition of 

canonical partition function from statistical mechanics, 

i.e. Eq. (1) and its refinement according to Debye model 

of solids in the first step, i.e. Eq. (4), and the insertion of 

this outcome in the purely statistical-mechanical relation 

for pressure, i.e. Eq. (2), in the second step, are admitted, 
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we are able to derive an expression for pressure in terms 

of Debye characteristic temperature. Due to exactness of 

our results we are able to manipulate Eq. (8) in 

conjunction with bulk modulus, i.e. Eq. (10). By 

adopting the density dependence of Debye characteristic 

temperature (by defining Gruneisen parameter) which 

has been introduced by Anderson27-28, 35, i.e. Eq. (5), we 

deduced the closed-form for Debye characteristic 

temperature in terms of density for hcp iron, i.e. Eq. (7). 

It should also be notified that for this purpose we are 

determined to fit Gruneisen parameter with density, i.e. 

Eq. (6). 

The paper presents the mathematical model for 

computation of thermodynamic properties, especially the 

 
 

Fig. 1. Bulk modulus of iron (hcp) at 300 K as a function of density (g/cm3). (♦) is the experimental value [Ref.35] 

and (∆) is the calculated one. 

 
 

Fig. 2. Gruneisen Parameters( γ(ρ) ) of  iron (hcp) at 300 K as a function of )(Ln . 
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bulk modulus, for pure solids. At the first glance, our 

analytical results are compared with the experimental 

data of iron. In Fig. 1 curve of bulk modulus has been 

graphed versus density. We have confined ourselves to 

the available experimental values which have been 

reported by Anderson et al. [35]. The scarcity of 

experimental data is the main reason of limitation in our 

calculations on bulk modulus. Despite lack of the 

experimental data, there is reasonable correctness in our 

computational method. We performed calculations 

exactly on the available experimental data datum by 

datum. As may be observed, there is one datum below 

the 9 g/cm3. It seems that beyond this density an 

adequate accordance is observed and there are 

insignificant deviations which are below 12 g/cm3 but the 

overall or correspondence is fairly good. The density 

dependence of the Gruneisen parameter is illustrated in 

Figure 2. The original idea for choosing the temperature 

as 300 K to fit the value of )(  for iron (hcp) has been 

the existence of relevant data in order to check our 

theoretical outcomes by the experimental data. As we 

expected according to Eq. (6), which has been fitted in 

the present work, it is obvious that )(  decayed as the 

density increased. The lack of calculated data between 8 

g/cm3 and 10 g/cm3  are due to un-availability of pertinent 

isothermal compressibility factor datum. It must be 

mentioned that for executing our procedure we seriously 

need the closed-form for density dependency of Debye 

characteristic temperature. For this purpose we utilized 

the definition of Gruneisen parameter. It should also be 

notified that the scarcity of data36-37 forced us to estimate 

)(  for iron (hcp) by fitting the data which ultimately 

corresponds to the latest result of isothermal 

compressibility factor datum. The calculated values of 

Debye temperature of iron (hcp) at 300 K as a function of 

density is illustrated in Fig. 3. As it is apparent from Fig. 

3 linear increase in density against Debye characteristic 

temperature is expected as we used Eq. (7) to acquire 

density variations of Debye characteristic temperature. 

Indeed our graph is the exact illustration of Eq. (7). It is 

worthy to note that the a, b and c coefficients are exactly 

the same as in Eq. (6).  

In Table I the connection was made between our 

outcomes and Anderson et al. results [35]. It should also 

be mentioned that the inverse of isothermal 

compressibility factor gives the value of bulk modulus 

according to Eq. (9). 

Despite little discrepancy of data with respect to 

Table 1 

The connection between our outcomes and Anderson et al. (35) 

Y*10 V (cm3 mole-1) (g cm-3) ΘD (K) BT(this work) BT (reference) 

1.85 6.73 8.321 422 163.9 164 

2.2 5.9 9.491 524 318.82 318.8 

2.24 5.8 9.655 539 347.33 346.1 

2.27 5.7 9.825 554 375.34 375.8 

2.31 5.6 10 569 408.94 408.3 

2.34 5.5 10.18 585 442.92 444 

2.37 5.4 10.37 602 482.5 483.2 

2.41 5.3 10.566 618 525.05 526.2 

2.45 5.2 10.77 636 575.62 573.7 

2.48 5.1 10.98 654 625.79 625 

2.51 5 11.2 673 695.91 638.8 

2.55 4.9 11.42 692 747.15 747.8 

2.58 4.8 11.667 712 815.27 818.9 

2.62 4.7 11.915 733 896.73 897.8 

2.66 4.6 12.174 754 985.43 985.7 

2.7 4.5 12.444 776 1084.05 1083.8 

2.74 4.4 12.727 799 1193.77 1193.5 

2.78 4.3 13.023 822 1313.19 1316.6 

2.82 4.2 13.333 847 1448.42 1454.9 

2.87 4.1 13.658 872 1606.54 1610.7 

2.92 4 14 898 1782.8 1786.8 
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Anderson et al. data [35], we believe that the main 

reason might be the multiple fitting which caused these 

discrepancies. In general, there are few available data on 

Gruneisen parameter or on the Debye characteristic 

temperature (especially its density dependency) in the 

literature, so it seems wise for us to have some deviations 

from calculated bulk modulus (or isothermal 

compressibility factor) with experimental one [37]. 

Conclusions 

The present method is able to predict the bulk 

modulus of solids over a wide range of density. Only one 

scaling constant, the Gruneisen parameter, )(  in this 

case is needed. We believe that our method can be 

utilized in its usual form exactly because the present 

framework has been reinforced by using the well-

established analytical equation of statistical physics.  In 

our work, we used the experimental data for iron to fit 

Gruneisen parameter, )(  as a function of the density. 

Moreover, it should be emphasized that we do not need 

the large assembly of input data for executing the 

procedure. This is a very important advantage compared 

to the other estimation methods [22-23, 38-39]. 

By paying meticulous attention to details of the other 

proposed methods for predicting the bulk modulus for 

solids which are specific for a narrow range of density, it 

seems wise to clarify that the unique novelty of the 

present work is to predict bulk modulus at high-density 

regime and to calculate with simplicity and reasonable 

accuracy the bulk modulus for solid crystals knowing 

)(  (only input) as a function of density at any 

desirable ranges. Additionally, the present work 

demonstrates a microscopic recipe of calculation of bulk 

modulus based on statistical-mechanical treatment 

producing reliable information.  
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Застосування розрахунків з перших принципів для оцінки об'ємного 

модуля на основі явного вираження канонічної функції розподілу 
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1Фархангійський університет, Бойнорд, провінція Північний Хорасан, Іран, e-mail: Haghighi.behzad@gmail.com  

Об’ємний модуль є однією із найважливіших характерних твердих тіл. У статті розроблено 

статистико-механічну обробку на основі рівняння, що дозволяє обчислити об'ємний модуль для твердих 

тіл із мінімальною кількістю початкових даних. У запропонованій моделі встановлено взаємозв'язок між 

параметром Грюнайзена і канонічною функцією розподілу. Показано, що об'ємна залежність параметра 

Gruneisen є критичною при оцінці об'ємного модуля. Результати для гексагонального щільно упакованого 

заліза показали дуже добре узгодження із експериментом. Таке наближення можна екстраполювати і для 

інших елементарних твердих тіл чи різних сполук.  

Ключові слова: об’ємний модуль, канонічна функція розподілу, густина, параметр Грюнайзена, 

статистична механіка.  
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