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The paper deals with the patterns of quasicrystalline decagonal Al69Co21Ni10 and icosahedral Al63Cu25Fe12 

phases from the standpoint of the model of anisotropic crystals. In the xy plane, the structure of quasicrystalline 

decagonal phase features the quasicrystalline pattern and the dispersive law is represented by a quadratic 

dependence. In contrast, the dispersive law is linear in the direction of z axis, because of crystalline pattern of the 

structure. The dispersive law for the icosahedral phase in all directions is represented by quadratic dependence, 

since the structure of this phase is isotropic one. After calculations it is found that heat capacity of 

quasicrystalline phases at high temperatures exceeds the level of 3R, i.e. the Dulong-Petit law is not complied 

with. Therefore, with the use of the model described in this paper we explain the previously established 

phenomenon of excessive heat capacity of quasicrystalline phases at high temperatures. It is also found that the 

heat capacity of the decagonal phase Al69Co21Ni10 remains the excessive one to higher temperatures, compared to 

the icosahedral phase Al63Cu25Fe12. According to the Gruneisen law, it indicates the greater stability of the 

decagonal phase at high temperatures. 
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Introduction 

The unique structure of quasicrystals determines 

their unusual physical and chemical properties. 

Quasicrystals have low coefficients of friction and 

surface tension, as well as high hardness, durability and 

corrosion resistance. Owing to these properties, 

quasicrystals find their practical use in the form of films, 

coatings and components of the composite materials. In 

the course of manufacturing of the composite materials 

with quasicrystalline fillers, the question arises with 

regard to stability of quasicrystalline phases to the 

temperature action of the molten binder. In the systems 

of Al–Cu–Fe and Al–Ni–Co the icosahedral Al63Cu25Fe12 

and decagonal Al69Co21Ni10 quasicrystalline phases, 

respectively [1, 2], are found. These phases are formed 

from the melt at the normal cooling rates and kept after 

long-term heat treatment, i.e. they belong to equilibrium 

ones. However, the quasicrystalline decagonal phases are 

destroyed at higher temperatures [3, 4] than the 

icosahedral phases. 

At present time, the attention of researchers is 

attracted by so called excessive heat capacity of 

quasicrystalline phases in the high temperature range 

[1, 5]. The excessive heat capacity is manifested in the 

system heat capacity excess of the 3R value in the Debye 

model and deviation from the Dulong-Petit law at the 

temperatures above 300 К. The heat capacity follows the 

Gruneisen law and depends on the coefficient of linear 

expansion. Thus, it can be said that the heat capacity 

reflects the quasicrystalline phases’ stability to the 

temperature action. The first studies of this phenomenon 

of excessive heat capacity were conducted in the papers 

[6, 7]. О.F. Prekul et al. [1, 5] have found that the heat 

capacity of icosahedral phases Al63Cu25Fe12 starting from 

the temperature of nearly 300 K rose continuously, 

reaching a maximum at about 1300 K and then dropped 

slowly. However, the phenomenon of excessing heat 
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capacity has not been adequately explained yet.  

In order to explain the phenomenon of the excessive 

heat capacity of quasicrystalline phases, as well as the 

fact of stability of decagonal phases at higher 

temperatures, this paper deals with the heat capacity of 

phases from the standpoint of the model of anisotropic 

crystals [8].  

I. Model representation of the structure 

of crystalline phase 

Pursuant to the Gruneisen law [8], if there are no 

significant variations in the pressure, it can be assumed 

that the coefficient of thermal expansion of the crystal 

lattice is linearly dependent on the heat capacity. As the 

coefficient of thermal expansion of the lattice grows the 

plasticity of the structure and, accordingly, its resistance 

to fracture. Therefore, heat capacity is an energy 

characteristic of the phase stability. 

Free energy of the body F according to [8] is: 

 2 ln 1
2 3 02

VT TF e d
u



 


 
  
 
 

,  (1) 

where V – body volume, Т – temperature, u – group 

velocity,  – Plank’s constant. Because of the isotropic 

structure of the crystalline phase, only one direction of 

polarization is considered in (1). The dispersion relation 

has a linear dependence: 

 uk , (2) 

where k – wave vector. Using the Debye formalism [8], 

we replace the upper integration limit in (1) 

with
T

y D


, where ωD – Debye frequency, and 

substitute (2) in (1); after that we obtain: 
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  . After integrating by parts, we obtain: 
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We expand the function exp( )x  у (4) to the second 

term and after integration obtain the expression 
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where kD – Debye wave vector. Hence, entropy of the 

body: 

 

3
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. (6) 

Internal energy of the body E and heat capacity C, 

accordingly, take the form of 

3
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Vk
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   ,  

 

3
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. (7) 

It can be seen from expression (7) that the heat 

capacity of the crystalline phase is equal to the Debye 

sphere 

3

3
22 3

Vk
DR


 . This corresponds to the fact that the 

heat capacity of the crystalline phase at high 

temperatures is equal to 3R, i.e. the Dulong-Petit law is 

complied with. 

II. Representation of the structure of 

quasicrystalline decagonal phase 

from the standpoint of the model of 

anisotropic crystals 

Structure of the quasicrystalline decagonal phase 

Al69Co21Ni10 of the Al–Co–Ni alloy is anisotropic one, 

i.e. it features the quasicrystalline pattern in the xy plane 

and crystalline pattern in the direction of the z axis [9]. 

We’ll describe the pattern of the structure of 

quasicrystalline decagonal phase with the use of the 

model of highly anisotropic crystals [8]. The decagonal 

phase can be considered as a layered structure with the 

interaction between its layers. The structure features the 

oscillations in the layers themselves and of the layers 

relative to each other. Oscillations in the bends of the 

layers are found as well. We assume that anisotropy of 

the quasicrystalline decagonal phase is manifested in the 

difference of the dispersive laws in the xy plane and in 

the z direction. In the xy plane for the quasicrystalline 

pattern [10] the dispersive law is represented by the 

quadratic dependence 
2 (

2 2 2k kx y   ), where  

γ - group velocity in the plane, and in the z direction for 

the crystalline pattern it has the linear dependence zuk . 

The sum frequency of sound waves can be expressed as 

follows, according to [8]: 

 
42222  zku . (8) 

Taking into account the contribution from sound 

oscillations, free energy of quasicrystalline decagonal 

phase is determined by formula [8]: 
 

 

2/ /max max8 2 2 2 4ln 1 exp 2
3 0 0(2 )

uk T T
VT

F dk u k dz z
T


   



  
       

  
. (9) 

In (9) the upper integration limits are replaced using the Debye formalism for the model of anisotropic crystals. 

Then formula (9) will be true for the case of high temperatures as well, as in the Debye model [8]. For the internal 

integral, we obtain the following expression: 



Yu.V. Syrovatko, О.О. Levkovich
 

 262 

    ln 1 ln 1 3
10 0

x xT T zdzz xe dz x e ze

 

 

       
 

, (10) 

 

where 2 4z a
T

   , а – parameter ~
22

zku , 

2 4
maxx a

T
    – integration limit. Coefficient 3 in 

(10) takes into account small oscillations of the lattice 

nodes lying in the integration plane in three directions. 

After expansion in the series 
ze  to the third term, and in 

xe to the second term, we obtain the expression: 
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. (11) 

 

For the further integration in the direction of wave 

vector zk , we additionally expand the function ln 1
2

x 
 

 
 

to the sixth term. Then the internal integral of expression 

(9) will take the form: 
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Next, we make an additional replacement of the 

variable 2 2x u k bz
T

  , where 2 4
maxb    – 

parameter, 2 2
maxy u k bz

T
  . 

Then, taking into account the coefficient preceding 

the double integral in (9), we obtain: 
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After integration, free energy takes the form of: 
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where 
2 2 2 4

max maxL u kz    . After simple calculations of the entropy 
F

S
T


 


 and the internal energy of the 

system E F TS  , we obtain for the heat capacity the expression below:  
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The expression 
2 2 2 4

max maxL u kz     in its 

content is similar to the Debye temperature ~ 
D

  , 

since maxukz  and 
2
max , in fact, are the components 

of the expression for the maximal frequency of the 

oscillating system generalized by space. Factor 
2

22

VL

u 
 is 

similar in its content to the Debye sphere 

4 3 3
3 3(2 )

V
k R
D




 . Indeed, we assume that velocity of 

sound γ in the xy plane is equal to velocity of sound u in 

the z direction, and has some value u. Then the factor is 

equal to 
 2 2 4

max max

2 22

u kzV

u






. Vector χ

2
 in the xy 

plane is determined by the sum of squares of vectors kx і 

ky: χ
2 

= kx
2
+ky

2
. Further, we’ll add the vector directed 

along the axis z kzmax to vector χ
2
 formed by vectors kx 

and ky in the plane. Hence we have the wave vector K in 

the space xyz, which is equal to К
2
 = kzmax

2
 + (χmax

2
)

2
. 

Then the factor in the expression for heat capacity 

becomes equal to 2
22

V
K


. Quasicrystalline decagonal 

phases have the ordered structure, but not the periodic 

one. Their atomic structure is characterized by the 

presence of highly symmetrical Mackay clusters [11]. It 

causes the shift of vectors kzmax and χmax
2
. Therefore К

2
 

should be considered as a certain variable, and it is 

necessary to integrate the factor which will be equal to 
3

2
2 2 302 2

kV V k
K dK

 
 . If we assume 

Dkk  , the factor in 

the expression for heat capacity matches the generally 

valid 3R. In this case (15) can be represented in the form 

of: 
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. (16) 

 

III. Model representation of the structure 

of quasicrystalline icosahedral phase 

Structure of quasicrystalline icosahedral phase 

Al63Cu25Fe12 of the Al–Cu–Fe has a quasicrystalline 

pattern in all directions. Therefore, the dispersive law 

will have the quadratic dependence both in the xy plane 

and in the direction of z axis. According to [8], sum 

frequency of the sound waves will be expressed as: 

 2 2 4 2 4u kz    . (17) 

Since the pattern of the icosahedral phase is an 

isotropic one, and only one direction of polarization is 

considered, expression (9) should be divided by 3. 

Besides, in (9) the integration limit will change: 
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We integrate over dχ in the internal integral as in the 

previous case for the decagonal phase, and obtain: 
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where 2 4x u k bz
T

  , where 2 4
maxb    – parameter, 

2 4
maxy u k bz

T
   – integration limit. We multiply the 

numerator and denominator under the integral by k
2
, and 

then allow k within the differential sign. We obtain: 
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where k is factored outside the integral sign as a value 

which varies only slightly. After expansion of the 

ln 1
2
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 to the sixth term and integration, free energy 

will take the form: 
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where 2 4 2 4
max maxL u kz    . After calculation of the 

entropy and internal energy we obtain for the heat 

capacity of the icosahedral phase: 
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where expression 
2 4 2 4

max maxL u kz    in its 

content is similar to the Debye temperature. The factor 

26

VLk

 
 is similar in the content to the Debye sphere 3R. 

Indeed, we assume that velocity of sound γ in the xy 

plane is equal to velocity of sound u in the z direction, 

and has some u. Then the factor is equal to 
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. Further, we’ll add the vector 

directed along the axis z kzmax
2
 to vector χ

2
, which is 

formed by vectors kx and ky in the plane. Hence we have 

the wave vector К in the space xyz, which is equal to 

К
4
 = kzmax

4
 + χmax

4
. If we assume that 

DkKk  , the 

factor will be equal to 

3

3
26
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 . 

IV. Analysis of results 

From expressions (16) and (22) it is evident that heat 

capacity of the decagonal and icosahedral 

quasicrystalline phases at high temperatures will exceed 

the Dulong-Petit value 3R as distinct from crystalline 

phases. This result is confirmed by studies of the 

phenomenon of excessive heat capacity of 

quasicrystalline phases at high temperatures in the works 

[1, 5, 6, 7]. Consequently, according to the Gruneisen 

law, quasicrystalline phases have higher resistance to the 

temperature action, than crystalline ones. The Debye 

temperature according to [1, 12] for the icosahedral 

phase Al63Cu25Fe12 of the Al–Cu–Fe alloy is 510 K, and 

for the decagonal phase Al69Co21Ni10 of the Al–Co–Ni 
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alloy – 602 К. The temperature dependence for these 

quasicrystalline phases is shown in Fig. 1.  

The figure shows that heat capacity of 

quasicrystalline phases exceeds the level of 3R, with the 

maximums at 500 К – 26.5 J/mol·К for the icosahedral 

phase and at 620 К – 27.0 J/mol·К for the decagonal 

phase. Further the heat capacity begins to decrease, but 

remains elevated to the temperatures of ~1120 K for the 

icosahedral phase and ~1500 K for the decagonal phase. 

Accordingly, the decagonal quasicrystalline Al69Co21Ni10 

phase remains stable to higher temperatures, than the 

icosahedral phase of Al63Cu25Fe12. This result is 

consistent with the literature data. Therefore, composite 

materials with the decagonal quasicrystalline fillers can 

be manufactured at higher temperatures, compared to 

icosahedral quasicrystals. Therefore, the usage of 

decagonal quasicrystals is more promising one [13, 14]. 

In contrast to the results given in this paper, in the 

works [1, 5] the heat capacity of quasicrystalline phases 

increases continuously to 1300 К. It can be connected 

with the fact that the authors measured the heat capacity 

of the pure quasicrystalline phase. Bat in real structure in 

the state of high temperatures it will be possibly to create  

defects of the quasicrystalline phase, as described in [15] 

or, possibly, quasicrystalline phase is transformed into 

crystalline approximants, which are implemented at high 

temperatures [16, 17, 18]. Therefore, due to reduction of 

the amount of quasicrystalline phase the heat capacity of 

the structure begins to decrease.  

Conclusions 

1. Structure of the quasicrystalline phase can be 

considered in the anisotropic crystals’ model 

representation, according to which the dispersive law for 

the crystalline pattern is represented as a linear one, and 

for the quasicrystalline pattern – as a quadratic one. As a 

result, we obtained the expressions for the heat capacity 

of quasicrystalline phases at high temperatures, which 

exceeds the heat capacity of the crystalline phase 3R. 

Therefore, with the use of the model of anisotropic 

crystals we can explain the phenomenon of excessive 

heat capacity of quasicrystalline phases at high 

temperatures. 

2. According to the results of calculations of the 

temperature heat capacity dependence of quasicrystalline 

phases, it is seen that the heat capacity of the decagonal 

phase Al69Co21Ni10 of the Al–Co–Ni alloy has a higher 

maximum and remains excessive. That is, it exceeds the 

Dulong-Petit value up to higher temperatures, than the 

icosahedral phase Al63Cu25Fe12 of the Al–Cu–Fe alloy. 

Pursuant to the Gruneisen law, it means that the 

decagonal phase is more stable at higher temperatures, 

than the icosahedral phase. 
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В роботі розраховано теплоємність квазікристалічних декагональних Al69Co21Ni10 та ікосаедричних 

Al63Cu25Fe12 квазікристалічних фаз сплавів Al–Co–Ni і Al–Cu–Fe відповідно. Згідно з законом Грюнейзена 

теплоємність є енергетичною характеристикою, яка відображає стійкість фаз до руйнування. Для 

розрахунків теплоємності структуру квазікристалічних фаз розглянуто в уявленні моделі анізотропних 

кристалів. У результаті отримано, що теплоємність квазікристалічних фаз при високих температурах є 

надлишковою, тобто перевищує рівень Дюлонга-Пті. Таким чином квазікристалічні фази при високих 

температурах є більш стабільними, ніж кристалічна фаза. Для декагональної квазікристалічної фази 

теплоємність більше 3R в інтервалі температур ~ 480 - 1500 К, а для ікосаедричної квазікристалічної 

фази – в інтервалі температур ~ 380 – 1120 К. З цього випливає, що декагональні фази залишаються 

стійкими при високих температурах, за яких ікосаедричні фази руйнуються. 

Ключові слова: квазікристали, декагональна фаза, ікосаедрична фаза, дисперсійний закон, 

анізотропія, ізотропія, температурна залежність теплоємності, надлишкова теплоємність, закон 

Дюлонга-Пті. 
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