Gadolinium Doping Influence on the Properties of Carbon Nanotubes

R.G. Abaszade¹, O.A. Kapush², S.A. Mamedova¹, A.M. Nabiev³, S.Z. Melikova⁴, S.I. Budzulyak²

¹Institute of Physics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan, abaszada@gmail.com
²V.E. Lashkarev Institute of Semiconductor Physics NAS of Ukraine, Kyiv, Ukraine, savchuk-olja@ukr.net
³Baku State University, Baku, Azerbaijan, afig.nabiev@hotmail.com
⁴Institute of Radiation Problems, Azerbaijan National Academy of Sciences, Baku, Azerbaijan, gevinc.m@rambler.ru

This article is devoted to the analysis of a carbon nanotube, a functionalized b-carboxyl group of a carbon nanotube and a gadolinium-doped carbon nanotube. Were analyzed the structure, purity, quality, and surface morphology, as well as the homogeneity (heterogeneity) of nanotubes. The analysis of a carbon nanotube were performed using a scanning electron microscope (SEM), energy dispersive analysis (EDX), X-ray diffraction analysis, Raman scattering, and IR luminescence. It was found that 10 % doping with gadolinium strongly affects the physical properties of carbon nanotubes functionalized by a carboxyl group.

Key words: carbon nanotube, functionalized carbon nanotube, gadolinium, Raman analysis, X-ray analysis, IR luminescent analysis.

Received 07 September 2020; Accepted 15 September 2020.

Introduction

Carbon nanotubes differ from other structures in their mechanical, electrical, magnetic, and optical properties [1, 2]. Carbon nanoribbons differ from carbon nanotubes is that nanoribbons have edges, whereas nanotubes have terminations only at their two ends [3]. These nanostructured materials have attracted particular attention because of their simplicity, small physical size and the exciting new science they have introduced. Changes in nanotube compositions significantly influence their electronic structure and morphological properties [4]. The structure, specificity, and size of carbon nanotubes were studied in [5-8]. Doping carbon nanotubes with rare earth metals is one of the promising areas in nanotechnology. It was shown in [9] that gadolinium (Gd) and europium (Eu) catalyze the growth of single-walled carbon nanotubes using chemical vapor deposition. Characterization using transmission electron microscopy and Raman spectroscopy confirmed the presence of single-walled carbon nanotubes catalyzed by Gd and Eu with an average diameter of 2.05 nm.

This paper reports an investigation into rare earth metal doping effects on properties of carbon nanotubes. Experimental tools were SEM, EDX, X-ray, Raman scattering, FTIR.

I. Experimental details

Specimen synthesis

Functionalization of carbon nanotubes. Carbon nanotubes were initially functionalized. Obtained by the arc discharge method, 0.5 g of high purity carbon nanotubes were mixed with 250 ml of 8 M sulfuric acid in a 500 mm beaker. In a magnetic mixer equipped with a heater, sulfuric acid was continuously mixed with carbon nanotubes [10]. The process was carried out at 50°C for 3 hours. The resulting compound (functionalized carbon nanotubes) was washed and filtered with distilled water until a neutral medium was removed, and dried in a vacuum dryer in a Petri dish.
Doping with gadolinium process. 0.01 grams of Gd$_2$S$_3$ and 0.1 grams (1 - 10 %) of functionalized carbon nanotubes were mixed together in a Petri dish and placed in a 150 milliliter flask. 50 milliliters of distilled water were added to this solution. The mixture was stirred for 6 hours at 750°C in a magnetic stirrer equipped with a reflux condenser and a thermometer. The new compound was filtered, separated and dried in vacuum.

Characterization. The structure and purity, quality, and surface morphology of carbon nanotubes, functionalized carbon nanotubes, and gadolinium-doped carbon nanotubes were analyzed by scanning electron microscopy, X-ray structural analysis, Raman spectroscopy and IR luminescent analysis.

SEM and EDX spectroscopy. Twenty-four hours after functionalized carbon nanotubes and gadolinium-doped carbon nanotubes were obtained to study the structure, purity, quality, and surface morphology, as well as the homogeneity (heterogeneity) of nanotubes. Using a JOINT-JOB-7600F scanning electron microscope, SEM images and EDX spectra were analyzed. Images of carbon nanotubes were enlarged up to 100,000 times, and measurements were carried out at intervals of 1 - 100 μm.

From SEM images it is seen, that carbon nanotubes have a inner diameter of 16.8 nm and a outer diameter of 18.8 nm.

X-ray diffraction analysis. X-ray diffraction analysis of the spectra of carbon nanotubes, functionalized carbon nanotubes, and gadolinium-doped carbon nanotubes was carried out using a D2 Phaser (Bruker) diffractometer with CuKα rays (λ = 1.5406 Å) at 2θ = 0.50 - 800 angles. Diffraction peaks, the intensity of which depends on the morphological characteristics of the samples, allows one to obtain data on the distance between the layers and walls of nanotubes. The data of x-ray diffraction analysis of the samples are shown in Table 1.

Raman analysis. Based on the Raman analysis, the
properties of carbon nanotubes, functionalized carbon nanotubes, and carbon nanotubes doped with gadolinium were analyzed. As can be seen, in the scattering spectra a decrease in the intensities and a shift of the peaks at higher frequencies are observed. Changes in the peaks in the Raman spectrum are related to the concentration of defects. The results of the Raman analysis are shown in Table 2.

<table>
<thead>
<tr>
<th>Sample</th>
<th>I maximum</th>
<th>Intensity (cm⁻¹)</th>
<th>II maximum</th>
<th>Intensity (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Carbon nanotube</td>
<td>26.3°</td>
<td>1550</td>
<td>42.5°</td>
<td>480</td>
</tr>
<tr>
<td>2 Functionalized carbon Nanotube</td>
<td>26.5°</td>
<td>1950</td>
<td>43.3°</td>
<td>550</td>
</tr>
<tr>
<td>3 Gadolinium-doped carbon nanotube</td>
<td>26.7°</td>
<td>1340</td>
<td>43°</td>
<td>460</td>
</tr>
</tbody>
</table>

Luminescent analysis. Fourier-IR absorption spectra of CNT samples were obtained in the range of 4000 - 400 cm⁻¹ on a Varian-640IR IR spectrometer. For this, 50 - 100 μm thick nanotubes were pressed. KBr powders (1:299 mg) were used as a binder.

Fig. 2a shows the Fourier-IR absorption spectrum of

![Fig. 2](image-url)

Fig. 2. IR spectrum of a carbon nanotube (a), a functionalized carbon nanotube (b), and a gadolinium-doped carbon nanotube (c).
Raman scattering, and IR luminescence. Dispersive analysis (E analysé by and and with deformation vibrations of the sample doped with gadolinium shift to higher frequencies, and their intensities decreased accordingly. It has been seen that intensity peaks of doped nanotubes exceed those of carbon nanotubes which is associated with the higher the defect concentration compared to carbon nanotubes the defect concentration in doped nanotubes compared to carbon nanotubes.

Conclusions

Carbon nanotubes, functionalized carbon nanotubes, and 10% gadolinium-doped carbon nanotubes were analysed by scanning electron microscope (SEM), energy dispersive analysis (EDX), X-ray diffraction analysis, Raman scattering, and IR luminescence. The energy-dispersed spectroscopy shows that nanotubes are homogeneously distributed. The results of Raman analysis are confirmed by those of SEM analysis. The analysis of Raman spectra revealed that the peaks and overtones. When Gd is introduced into the sample, an increase in intensity is observed. The absorption band 3283 cm⁻¹ observed in Fig. 2b is associated with valence vibrations of the same-phase and reverse-phase of C-H bonds. Observed in Fig. 2c, the absorption band of 926 cm⁻¹ is associated with deformation vibrations of the sample doped with Gd.

Results of the Raman analysis.

<table>
<thead>
<tr>
<th>Sample</th>
<th>D-peak (cm⁻¹)</th>
<th>Intensity</th>
<th>G-peak (cm⁻¹)</th>
<th>Intensity</th>
<th>2D-peak (cm⁻¹)</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Carbon nanotube</td>
<td>1338</td>
<td>1075</td>
<td>1595</td>
<td>827</td>
<td>2676</td>
<td>565</td>
</tr>
<tr>
<td>2 Functionalized carbon nanotube</td>
<td>1338</td>
<td>817</td>
<td>1595</td>
<td>703</td>
<td>2676</td>
<td>421</td>
</tr>
<tr>
<td>3 Gadolinium-doped carbon nanotube</td>
<td>1361</td>
<td>739</td>
<td>1614</td>
<td>610</td>
<td>2704</td>
<td>346</td>
</tr>
</tbody>
</table>

Gadolinium Doping Influence on the Properties of Carbon Nanotubes

Table 2

Abaszade R.G. – Ph.D, senior researcher, head of Innovation Research department;
Kapush O.A. - PhD degree in solid-state chemistry, Senior Researcher at of the Department of Surface Physics and semiconductor nanophotonics;
Mamedova S.A. – Ph.D;
Nabiyev A.M. – PhD student, researcher at the BSU and Innovation Research Department;
Melikova S.Z. – Ph.D, senior researcher;
Budzulyak S.I. – Ph.D, senior researcher.

Влияние легирования гадолинием на властивости углеродных нанотрубок

Статья посвящена изучению властивостей углеродных нанотрубок, углеродных нанотрубок, функционализованных b-карбоксильной группой и углеродных нанотрубок, легированых гадолинием. Внутренние структура, чистота, качество и морфология поверхности, а также однородность (гетерогенность) нанотрубок.

Властивости углеродных нанотрубок изучали с помощью сканирующей электронной микроскопии (SEM), энергодисперсионного рентгеновского анализа (EDX), рентгеновской дифракции, комбинационного рассеяния света (КРС) и ИЧ-люминесценции. Было установлено, что 10% легирования гадолинием сильно влияет на физические властивости углеродных нанотрубок, функционализованных карбоксильной группой.

Ключевые слова: углеродные нанотрубки, функционализованные углеродные нанотрубки, гадолиний, КРС, рентгеновский анализ, ИЧ-люминесцентный анализ.