M.V. Yarmolenko

Intrinsic Diffusivities Ratio Analysis in the Al-Cu System

Kyiv National University of Technologies and Design, Faculty of Market, Information and Innovation Technologies, Cherkasy, Ukraine; yarmolenko.mv@knutd.edu.ua

Copper and aluminium electric corrosion rates are investigated experimentally at room temperature and at temperature 100 °C. It is found that copper corrosion is higher than aluminium corrosion, and ratio of electric corrosion rates, \(k_{Cu}/k_{Al} \), decreases with temperature increasing. It is calculated that copper corrosion rate is approximately equal to aluminium corrosion rate at temperature about 300 °C due to Cu\(^{2+}\) ions are less mobile than Cu\(^{+}\) ions. It is obvious physically: the higher temperature is, the grater atoms’ displacements in crystal lattice, Cu atoms can diffuse without two electrons, and Cu\(^{2+}\) ions more strongly interact with crystal lattice than Cu\(^{+}\) ions. Literature data analysis shows that Cu rich intermetallic compounds (IMCs) are formed faster in Cu-Al system at temperature lower than 400 °C, and the Kirkendall plane shifts toward Cu side, but Al rich IMCs are formed faster in Cu-Al system at temperature higher than 475 °C, and the Kirkendall plane shifts toward Al side. It is concluded that Cu\(^{2+}\) ions diffuse in IMCs at temperature higher than 475 °C, but Cu\(^{+}\) ions diffuse in IMCs at temperature lower than 400°C. A theoretical method to calculate intrinsic diffusivities ratio in double multiphase systems is proposed. The method involves the Kirkendall plane displacement and the general phases thickness only. Intrinsic diffusivities ratios in the Al-Cu system are calculated using literature experimental data. Diffusion activation energies and pre-exponential coefficients for the Cu-Al system are calculated combining literature experimental results. Analysis of literature data shows that the Kirkendall shift changes sign at temperature about 460°C in the Cu-Al system because of intrinsic diffusivities ratio, \(D_{Cu}/D_{Al} \), dependence from temperature. Such result agrees with copper and aluminium electric corrosion rates investigation.

Key words: diffusion, intermetallic compounds, phases formation kinetics, copper, aluminium, the Kirkendall-Frenkel porosity, the Kirkendall shift.

Received 26 November 2020; Accepted 15 December 2020.

Introduction

The Cu-clad Al (CA) wire, where the CA wire is an Al wire coated with Cu (≈ 15µm thickness), is widely used for electronic parts as a conductive material in the automobile industry. The CA wire utilized near the motor in the automobile is heated at temperatures of about 375-473 K (100 - 200°C). Intermetallics can formed at the Cu/Al interface and grow gradually during heating at such temperatures. The IMC layers are brittle and electrically resistant. As a consequence, the growths of the IMC layers deteriorate mechanical and electrical properties of the CA wire. Therefore, for assurance of the reliability of the product, information on the growth behaviour of the IMC layers during heating is essentially important [1].

Otherwise, it was proved experimentally that thin Al pad (≈ 1µm thickness) can prevent gold and copper corrosion, because intermetallics formation rate in Au-Al system is much more higher than intermetallics formation rate in Cu-Al system, so it is possible to use Cu instead of Au for wire bonding in microelectronics packaging, and Cu has higher electric conductivity, higher thermal conduction, and lower material cost than Au [2]. It was founded experimentally, that copper electric corrosion is higher than aluminium electric corrosion in approximately two times at temperatures less than 40 °C [3, 4], so thin Al layer can prevent copper electric corrosion.

Besides, one of the most common reasons for chip failure is due to the soldered copper/tin based contacts, that is, the soldered contacts are the weakest part of the chip and this is related, in particular, to intermetallics and the Kirkendall-Frenkel porosity formation in the contact
Intrinsic Diffusivities Ratio Analysis in the Al-Cu System

Fig. 1. Scheme of experimental equipment ($T = 100^\circ$C).

zone [5]. The temperature range is from room temperature up to 250°C (typical range of packaging and operation of the integrated circuits) [6, 7].

Hydrostatic pressure of Argon gas (≈ 10 MPa) can decrease Kirkendal-Frenkel porosity formation, but practically can’t decrease mutual diffusion coefficients [8]. Hot isostatic pressing ($p \approx 100$ MPa, Argon) removes porosity due to homogenisation heat treatment in alloy CMSX4 and superalloy CMSX10 [9].

Electric current can destruct wire bonding in microelectronics packaging, so we planned to investigate copper and aluminium electric corrosion at room temperature and at temperature 100°C. Direct current can dissolve metal anode into electrolyte, and we planned to do experiments under the same conditions: initial radii of Al and Cu anodes should be approximately equal, electrolyte concentration should be the same, anodes lengths immersed into electrolyte should be equal, graphite cathodes should be the same, direct electric current value should be practically the same.

I. Experimental results of copper and aluminium electric corrosion investigation at temperature 100°C

Experiments were carried at room temperature [3, 4]

$$
\frac{dm}{dt} = \frac{MI}{zF}, \quad dm = \rho \cdot L \cdot \pi \cdot d(R^2(t))
$$

where m is the anode mass dissolved into the electrolyte, t is the time of experiment, M is the molar mass, I is the direct electric current value, F is the Faraday constant ($F \approx 96500$ C mol$^{-1}$), z is the charge of ions, R is the anode radius, L is the anode length immersed into the electrolyte.

Electric current value did not change, so one can calculate:

$$
z = \frac{MIt}{F \pi \rho L(R^2(t) - R^2(t_0))},
$$

where ρ is the anode density. Charges of copper and aluminium ions were calculated:

$$
z_{Cu} = \frac{63.55 \cdot 10^{-3} \text{kg/mol} \cdot 3.05 A \cdot 1.2 \cdot 10^3 s}{F \cdot \pi \cdot 8.9 \cdot 10^3 kg/m^3 L_{Cu} \cdot (R_{Cu}^2(t_0) - R_{Cu}^2(t_4))} \approx 1.47 \approx \frac{1+2}{2},
$$

$$
z_{Al} = \frac{27 \cdot 10^{-3} \text{kg/mol} \cdot 3.15 A \cdot 1.2 \cdot 10^3 s}{F \cdot \pi \cdot 2.7 \cdot 10^3 kg/m^3 L_{Al} \cdot (R_{Al}^2(t_0) - R_{Al}^2(t_4))} \approx 2.85 \approx 3,
$$

where $L_{Cu} = L_{Al} = 4 \cdot 10^{-2}$ m, $R_{Cu} = 2.27$ mm, $R_{Al} = 2.6$ mm, $I_{Cu} = 3.15$ A, $I_{Al} = 3.05$ A, so copper dissolved into NaCl solution as Cu$^+$ ions at room temperature, and aluminium dissolved into NaCl solution as Al$^{3+}$ ions. Anodes radii decreasing kinetics is shown on Fig. 2.
Experiments were carried during \(t_1 = 5 \text{ min}, t_2 = 10 \text{ min}, t_3 = 15 \text{ min}, \) and \(t_4 = 20 \text{ min}. \) Experimental results are as follows: \(R_{1Cu} = 2.2 \text{ mm}, R_{2Cu} = 2.12 \text{ mm}, R_{3Cu} = 2.03 \text{ mm}, \) \(R_{4Cu} = 1.92 \text{ mm}; R_{1Al} = 2.56 \text{ mm}, R_{2Al} = 2.51 \text{ mm}, \) \(R_{3Al} = 2.45 \text{ mm}, R_{4Al} = 2.38 \text{ mm}. \) Measurement precision was 0.01 mm or 10 micrometer. We carried additional experiments, but result was the same.

Chemical reactions are more complicated at 100°C than at room temperature \([3, 4]\) near positive electrodes (anodes):

\[
\begin{align*}
\text{Cu}^{+} + \text{Cl}^{-} &= \text{CuCl} \downarrow & \text{Cu}^{2+} + 2\text{Cl}^{-} &= \text{CuCl}_2 \downarrow & \text{Cu}^{+} - e^{-} &= \text{Cu}^{2+} \\
\text{Cu}^{2+} + 2\text{Cl}^{-} &= \text{CuCl}_2 \downarrow & \text{Al}^{3+} + 3\text{Cl}^{-} &= \text{AlCl}_3 \downarrow & \text{Cl}^{-} - e^{-} &= \text{Cl}_2^0 & \text{Cl}_2^0 + \text{Cl}_2^0 &= \text{Cl}_2 \uparrow
\end{align*}
\]

(5)

in Fig. 2. Al and Cu anodes radii decreasing kinetics at \(T = 100 \degree C. \)

Chlorine gas and boiling water were formed near anodes.

Chemical reactions took place near negative electrodes (cathodes):

\[
\begin{align*}
\text{Na}^{+} - e^{-} &= \text{Na}^0 \\
2\text{Na} + 2\text{H}_2\text{O} &= 2\text{NaOH} + \text{H}_2 \uparrow
\end{align*}
\]

(6)

Hydrogen gas and boiling water were formed near cathodes.

Anodes radii decreasing rate constants can be calculated as average value of four experiments:

\[
k_{Cu} = \frac{4R_0^2 - \sum_i R_i^2}{\sum_i t_i} \approx 1.154 \cdot 10^{-9} \text{ m}^2/\text{s},
\]

(7)

(1.25 at room temperature), \(k_{Al} \approx 1.37k_{Cu} \), \{1.72 at room temperature \(T_i = 27 \degree C \), (8)

so copper electric corrosion is higher at room temperature \(T_i = 27 \degree C \), aluminium electric corrosion is higher at temperature \(T_2 = 100 \degree C \), and ratio of electric corrosion rates, \(k_{Cu}/k_{Al} \), decreases with temperature increasing. We can conclude that \(\text{Cu}^{2+} \) ions are less mobile than \(\text{Cu}^{+} \) ions. It is need to point out that \(k_{Cu} \) and \(k_{Al} \) have dimensionality as diffusion coefficients, \(\text{m}^2/\text{s} \), because of the anodes cylindrical shape. Such result allows us to calculate:

\[
\begin{align*}
k_{Cu}(T) &= \frac{D_{Cu}^*}{D_{Al}^*}e^{(Q_{Al} - Q_{Cu})/RT}; \ln \left(\frac{D_{Cu}^*}{D_{Al}^*} \right) = -0.6; Q_{Al} - Q_{Cu} = 2.9 \text{kJ/mol},
\end{align*}
\]

(9)

so \(Q_{Al} > Q_{Cu} \) because \(\text{Cu}^{+} \) ions have higher mobilities than \(\text{Al}^{3+} \) ions.
II. Method

The Kirkendall shift, \(x_k \), can be calculated in such a way [10]:

\[
x_k^2 = \frac{4(D_B^* \sigma^2 - D_A^* \sigma^2)^2}{\pi} \left(1 - \frac{D_A^*}{D_B^*} \right) > 1 \quad \text{(11)}
\]
or [11]:

\[
x_k^2 = \frac{2(D_i^* - D_j^*)^2}{\pi(D_i^* + D_j^*)} = \left(1 - \frac{D_i^*}{D_j^*} \right)^2 \frac{\pi}{D_j^*} > 1 \quad \text{(12)}
\]
or [12]:

\[
x_k^2 = \frac{(D_i^* - D_j^*)^2}{\pi D_B^*} = \left(1 - \frac{D_i^*}{D_B^*} \right)^2 \frac{\pi}{D_B^*} > 1 \quad \text{(13)}
\]

Eqs. 11, 12, and 13 give exactly the same result in the case \(D_B^* \approx D_A^* \) and slightly different results (on approximately 15 percents) in the case \(D_B^* \approx 2D_A^* \).

Intrinsic diffusivities ratio \(D_i^*/D_j^* \) can be calculated using Darken’s method [13]:

\[
D_i^* = C_i D_A^* + (1-C_i) D_B^* = D_i / \Delta C_i, \quad C_i = C_B, \quad \text{(14)}
\]

\[
\frac{D_i^*}{D_B^*} = \sqrt{\frac{D_i}{D_B^*} - X_k (1-C_i) \frac{\sqrt{\pi}}{C_i}}, \quad \text{(15)}
\]

where \(D_i^* \) is the mutual diffusion coefficient in phase \(i \), \(D_B^* \approx D_A^* \) is the mutual diffusion penetrability in phase \(i \), \(C_i \) is the average concentration of substance \(B \) in phase \(i \), \(\Delta C_i \) is phase \(i \)'s homogeneity range. It was experimentally obtained [8] that \(\sqrt{D_i^*/D_B^*} \) is approximately equal to general diffusion zone width, so we can get finally:

\[
\frac{D_i^*}{D_B^*} = \frac{\sum_{j=1}^{N} X_j - X_i (1-C_i) \sqrt{\pi}}{\sum_{j=1}^{N} X_j + C_i \sqrt{\pi}} < 1 \quad \text{with} \quad C_i = C_B. \quad \text{(16)}
\]

We can see that \(Q_i < Q_2, Q_1 < Q_3 \), and \(Q_2 < Q_3 \) because of \(K_i^* < K_2 \). We are interested in intermetallics disappearance rate analysis, so we can consider phases CuAl3 (phase 3b), CuAl2 (phase 3a), and CuAl to as one “phase 3” with average Al concentration \(C_j \approx 1/3 \). Authors [1] considered phases 2, 3b, 3a, and 3 as “phase 2” [1]. Three phases are formed in Al-Cu system at temperatures from 175°C to 225°C [2] and at temperatures from 300°C to 400°C [15]: CuAl3, CuAl, and CuAl. Some experimental results are listed in Table 1, so \(X_i > X_j, X_i > X_k \), but \(X_j < X_k \), because of, maybe, high ordered phase CuAl (body-centered orthorhombic crystal structure) like phase

III. Analysis for the Al-Cu System

Five phases are formed in Al-Cu system at temperatures from 400°C to 535°C [14] and at temperatures from 210°C to 270°C [1]: 0-phase (phase 1) CuAl2 (\(C_1 = 2/3 \)), \(\zeta_2 \)-phase (phase 2) CuAl (\(C_2 = 1/2 \)), \(\zeta_2 \)-phase (phase 3b) CuAl3 (\(C_{3b} = 3/7 \)), \(\delta \)-phase (phase 3a) CuAl2 (\(C_{3a} = 2/5 \)), and \(\gamma_2 \)-phase (phase 3) Cu2Al4 (\(C_3 = 4/13 = 0.31 \approx 1/3, C = C_{3a} \)). Authors obtained [14]:

\[
D_i = D_i^* \Delta C_i \quad \text{(17)}
\]

<table>
<thead>
<tr>
<th>Authors</th>
<th>(T), °C</th>
<th>(t), h</th>
<th>(K_i \cdot 10^{-18}) m²/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funamizu and</td>
<td>515</td>
<td>40</td>
<td>6990</td>
<td>630</td>
<td>760</td>
<td>6800</td>
<td>4.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Watanabe [14]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gueydan et al. [15]</td>
<td>400</td>
<td>24</td>
<td>1400</td>
<td>300</td>
<td>760</td>
<td>6800</td>
<td>4.7</td>
<td>1.8</td>
</tr>
<tr>
<td>Moisy et al. [16]</td>
<td>350</td>
<td>2</td>
<td>860</td>
<td>100</td>
<td>370</td>
<td>3400</td>
<td>8.6</td>
<td>2.3</td>
</tr>
<tr>
<td>Moisy et al. [16]</td>
<td>300</td>
<td>2</td>
<td>77</td>
<td>18</td>
<td>55</td>
<td>420</td>
<td>4.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Goh et al. [2]</td>
<td>225</td>
<td>480</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.715</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
CuZn. It was reported that diffusivity of Cu is higher than diffusivity of Al at temperatures 300°C ÷ 350°C [16].

We can use Eq. 14 to calculate mutual diffusion coefficients in each phase at temperature 100°C:

\[D_1 = C_1^o D_{Cu} + (1 - C_1) D_{Al} = \left(\frac{2}{3} \right) 1.37 + \left(\frac{1}{3} \right) D_{Al} \approx 1.25 D_{Al}, \]

\[D_2 = C_2^o D_{Cu} + (1 - C_2) D_{Al} = \left(\frac{1}{2} \right) 1.37 + \left(\frac{1}{2} \right) D_{Al} \approx 1.19 D_{Al}, \]

\[D_3 = C_3^o D_{Cu} + (1 - C_3) D_{Al} = \left(\frac{1}{3} \right) 1.37 + \left(\frac{2}{3} \right) D_{Al} \approx 1.12 D_{Al}. \]

Otherwise, it was reported that diffusivity of Al is higher than diffusivity of Cu at temperatures 475°C ÷ 535°C, and the markers moves toward Al side [14].

Authors [14] didn’t calculate ratio \(D_{Al}^*/D_{Cu}^* \). We can analyse described experimental results in Al-Cu system (\(T_3 = 515°C = 788 K, t = 40 h, x_K \approx 11 \mu m, x_1 + x_2 + x_{3b} + x_{3a} + x_i \approx 127 \mu m)\):

\[\frac{D_{Cu}^*}{D_{Al}^*} (T_2 = 515°C) \approx \frac{X_1 + X_2 + X_{3b} + X_{3a} + X_i - X_k (1 - C_1) \sqrt{\pi}}{X_1 + X_2 + X_{3b} + X_{3a} + X_i + C_1 X_k \sqrt{\pi}} \approx 0.856; y_2 = \frac{D_{Cu}^*}{D_{Al}^*} = 1.168. \]

Markers were in phase 3b (\(\gamma_2 \)-phase CuAl, monoclinc crystal structure), CuAl phase has \(\gamma \)-brass type crystal structure, \(a = 8.70 \AA \), like phase 3, CuAl phase has \(\gamma \)-brass type crystal structure, \(a = 8.69 \AA \) [14]. Phases 3, 3a and 3b are very similar, so it is difficult to identify them by SEM and EDS [1]. Ratio \(D_{Al}^*/D_{Cu}^* \) depends on temperature (\(T_4 = 475°C = 748 K, t = 90 h, x_K \approx 2 \mu m, x_1 + x_2 + x_{3b} + x_{3a} + x_i \approx 113 \mu m)\):

\[\frac{D_{Cu}^*}{D_{Al}^*} (T_4 = 475°C) \approx \frac{X_1 + X_2 + X_{3b} + X_{3a} + X_i - X_k (1 - 0.4) \sqrt{\pi}}{X_1 + X_2 + X_{3b} + X_{3a} + X_i + 0.4 C X_k \sqrt{\pi}} \approx 0.969; y_4 = \frac{D_{Cu}^*}{D_{Al}^*} = 1.032. \]

We can find additional two points (\(T_1 = 535°C = 808 K, t = 40 h, x_K \approx 20.5 \mu m, x_1 + x_2 + x_{3b} + x_{3a} + x_i \approx 180 \mu m; T_3 = 495°C = 768 K, t = 40 h, x_K \approx 5 \mu m, x_1 + x_2 + x_{3b} + x_{3a} + x_3 \approx 101 \mu m)\):

\[\frac{D_{Cu}^*}{D_{Al}^*} (T_1 = 535°C) \approx \frac{X_1 + X_2 + X_{3b} + X_{3a} + X_i - X_k 0.6 \sqrt{\pi}}{X_1 + X_2 + X_{3b} + X_{3a} + X_i + 0.4 X_k \sqrt{\pi}} \approx 0.814; y_1 = 1.228. \]

\[\frac{D_{Cu}^*}{D_{Al}^*} (T_3 = 495°C) \approx \frac{X_1 + X_2 + X_{3b} + X_{3a} + X_i - X_k 0.6 \sqrt{\pi}}{X_1 + X_2 + X_{3b} + X_{3a} + X_i + 0.4 X_k \sqrt{\pi}} \approx 0.916; y_3 = 1.092. \]

We can use these four points to calculate by the least square method:

\[\Delta Q = Q_{Al} - Q_{Cu} = \left(\frac{4 \sum_{j=1}^{4} \left(\frac{1000}{RT_j} \ln y_j \right) - \sum_{j=1}^{4} \ln y_j \sum_{j=1}^{4} \frac{1000}{RT_j} }{4 \sum_{j=1}^{4} \left(\frac{1000}{RT_j} \right)^2 - \left(\sum_{j=1}^{4} \frac{1000}{RT_j} \right)^2 } \right) \approx -13.4 kJ / mol, \]

724
Intrinsic Diffusivities Ratio Analysis in the Al-Cu System

\[
\frac{D_{\text{Al}}^0(\Delta T)}{D_{\text{Cu}}^0} = \frac{D_{\text{Al}}^0}{D_{\text{Cu}}^0} e^{-\frac{(Q_{\text{Al}} - Q_{\text{Cu}})/RT}{(Q_{\text{Al}} - Q_{\text{Cu}})/RT}} \approx 9e^{-15.4kJ/mol/RT},
\]

(25)

\[
\frac{D_{\text{Al}}^0(\Delta T)}{D_{\text{Cu}}^0} = y_S = 1 \Rightarrow T_S = \frac{13400 J/mol}{R \ln 9} \approx 733K \approx 460^\circ C.
\]

(26)

So \(Q_{\text{Al}} < Q_{\text{Cu}}\) because Cu\(^{2+}\) ions have less mobilities than Al\(^{3+}\) ions, and we can conclude that the Kirkendall shift changes sign at temperature about 460\(^\circ\)C.

IV. Diffusion activation energy calculation in the Cu-Al system

Authors [16] didn’t calculate diffusion activation energies and the pre-exponential factors, so we can do it using calculated data by k. p. gurov’s and a. m. gusak’s method or “constant flux method” [3,4,18-23] (Table 2) and eqs. 27:

\[
Q_i = \frac{RT_i T_2}{T_2 - T_1} \ln \left(\frac{D_i(T_2)}{D_i(T_1)} \right),
\]

\[
D_0 = D_i(T_1) e^{2/(RT_1)} = D_i(T_2) e^{2/(RT_2)}
\]

(27)

\[
\tilde{D}_1 = 4.3 \times 10^{-5} e^{-136.7kJ/mol-1/(RT)} m^2/s ;
\]

\[
\tilde{D}_2 = 6.6 \times 10^{-8} e^{-108.8kJ/mol-1/(RT)} m^2/s ;
\]

(28)

Equations 28 correspond to obtained results [14] (eQS.17). It should be \(Q_1 < Q_2, Q_i < Q_2,\) and \(Q_i < Q_2\) because of \(K_i > K_2, K_i > K_3,\) and \(K_j > K_2\) if \(D_01 \approx D_02 \approx D_03\) [14].

Conclusions

Copper corrosion is higher than aluminium corrosion, and ratio of electric corrosion rates, \(k_{\text{Cu}}/k_{\text{Al}}\), decreases with temperature increasing. Copper corrosion rate is approximately equal to aluminium corrosion at temperature about 300 \(^\circ\)C due to Cu\(^{2+}\) ions are less mobile than Cu\(^{+}\) ions. It is obvious physically: the higher temperature is, the grater atoms’ displacements in crystal lattice, Cu atoms can diffuse without two electrons, and Cu\(^{2+}\) ions more strongly interact with crystal lattice than Cu\(^{+}\) ions.

For rich intermetallic compounds (IMCs) at temperature lower than 400 \(^\circ\)C, and the Kirkendall plane shifts toward Cu side, but Al rich IMCs are formed faster in Cu-Al system at temperature higher than 475 \(^\circ\)C, and the Kirkendall plane shifts toward Al side. Cu\(^{2+}\) ions diffuse in IMCs at temperature higher than 475 \(^\circ\)C, but Cu\(^{+}\) ions diffuse in IMCs at temperature lower than 400 \(^\circ\)C.

Diffusion activation energy of Al is less than diffusion activation energy of Cu at temperature higher than 475\(^\circ\)C and Cu\(^{2+}\) ions have less mobilities than Al\(^{3+}\).

The Kirkendall shift changes sign at temperature about 460 \(^\circ\)C in the Cu-Al system because of intrinsic diffusivities ratio, \(D_{\text{Cu}}/D_{\text{Al}}\), dependence from temperature. Such result agrees with copper and aluminium electric corrosion rates investigation.

Table 2

<table>
<thead>
<tr>
<th>Authors</th>
<th>(T, ^\circ)C</th>
<th>(t, h)</th>
<th>(D_1 \times 10^{-15} m^2/s)</th>
<th>(D_2 \times 10^{-15} m^2/s)</th>
<th>(D_3 \times 10^{-15} m^2/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funamizu and Watanabe [14]</td>
<td>515</td>
<td>40</td>
<td>1800</td>
<td>300</td>
<td>800</td>
</tr>
<tr>
<td>This work</td>
<td>515</td>
<td>-</td>
<td>1300</td>
<td>400</td>
<td>1140</td>
</tr>
<tr>
<td>Gueydan et al. [15]</td>
<td>400</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>This work</td>
<td>400</td>
<td>-</td>
<td>270</td>
<td>130</td>
<td>180</td>
</tr>
<tr>
<td>Moisy et al. [16]</td>
<td>350</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>This work</td>
<td>350</td>
<td>-</td>
<td>150</td>
<td>50</td>
<td>90</td>
</tr>
<tr>
<td>Moisy et al. [16]</td>
<td>300</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>This work</td>
<td>300</td>
<td>-</td>
<td>15</td>
<td>8</td>
<td>12</td>
</tr>
</tbody>
</table>

This table is grounded on Heumann’s method, and we assume \(\Delta C_1 \approx \Delta C_2 \approx \Delta C_3 = 0.01\).
M.V. Yarmolenko

Yarmolenko M.V. - Ph.D., Associate Professor, Head of
the Department of Information and Computer
Technologies and Fundamental Disciplines.

M.V. Ярмоленко

Аналіз відношення внутрішніх коефіцієнтів дифузії у системі Al-Cu

Київський національний університет технологій та дизайну, факультет ринку, інформаційних та інноваційних технологій, Черкаси, Україна, yarmolenko.mv@kntu.edu.ua

Експериментально досліджено електричну корозію міді та алюмінію при кімнатній температурі та при температурі 100 °C. Отримано такий результат: електрична корозія міді значно швидша, ніж електрична корозія алюмінію, але відношення коефіцієнтів корозії, k_Cu/k_Al, зменшується зі збільшенням температури. Обчислею, що електрична корозія міді та алюмінію приблизно однакова при температурі 300 °C, тому що іони Cu²⁺ менш рухливі, ніж іони Cu⁺. Фізично це очевидно: з підвищенням температури збільшується амплітуда коливань атомів у кристалічній границі, атоми Cu можуть дифундувати без двох електронів, а взаємодія іонів Cu⁺ з кристалічною границею значно сильніша, ніж взаємодія іонів Cu⁺. Для аналізу були використані літературні експериментальні дані.

Ключові слова: мідь; алюміній; електроліз; дифузія; інтерметаліди; кінетика утворення фаз.

726