PHYSICS AND CHEMISTRY OF SOLID STATE

V. 22, No. 2 (2021) pp. 248-254

Section: Physics

DOI: 10.15330/pcss.22.2.248-254

Vasyl Stefanyk Precarpathian National University

ФІЗИКА І ХІМІЯ ТВЕРДОГО ТІЛА Т. 22, № 2 (2021) С. 248-254

Фізико-математичні науки

UDK 546.882

ISSN 1729-4428

M. Konyk¹, L. Romaka¹, Yu. Stadnyk¹, V.V. Romaka², V. Pashkevych³ **Phase Equilibria in The Gd–Cr–Ge System at 1070 K**

¹Ivan Franko L'viv National University, L'viv, Ukraine, <u>mariya.konyk@lnu.edu.ua</u> ²Institute for Solid State Research, Dresden, Germany, <u>vromaka@gmail.com</u> ³Lviv Polytechnic National University, Lviv, Ukraine, volodymyr.z.pashkevych@lpnu.ua

The isothermal section of the phase diagram of the Gd–Cr–Ge ternary system was constructed at 1070 K over the whole concentration range using X-ray diffractometry, metallography and electron microprobe (EPM) analysis. Three ternary compounds are realized in the Gd–Cr–Ge system at the temperature of annealing: Gd₁₁₇Cr₅₂Ge₁₁₂ (Tb₁₁₇Fe₅₂Ge₁₁₂ structure type, space group *Fm*-3*m*, Pearson symbol *cF*1124, *a* = 2.8971(6) nm), GdCr₆Ge₆ (SmMn₆Sn₆ structure type, space group *P6/mmm*, Pearson symbol *hP*16, *a* = 0.51797(2), *c* = 0.82901(4) nm) and GdCr_{1-x}Ge₂ (CeNiSi₂ structure type, space group *Cmcm*, Pearson symbol *oS*16, *a* = 0.41569(1)-0.41593(8), *b* = 1.60895(6)-1.60738(3), *c* = 0.40318(1)-0.40305(8) nm). For the GdCr_{1-x}Ge₂ compound the homogeneity range was determined (*x* = 0.73 - 0.69).

Keywords: intermetallics; ternary system; phase equilibria; crystal structure.

Received 16 February 2021; Accepted 26 April 2021.

Introduction

Experimental data of the study of the components interaction in the metallic systems provide important information on the formation, temperature and concentration stability and crystal structure of intermediate phases to search for new materials with valuable properties.

Among the ternary systems R-M-Ge (R - rare earth metal, M - *d*-element) phase equilibrium diagrams of the systems involving rare earth metals, chromium and germanium are constructed for R = Nd, Y and Er [1-3], for other elements the structural and physical characteristics of individual ternary compounds were investigated. According to the literature data for rare earth metals of the yttrium subgroup, the existence of the ternary compounds RCr₆Ge₆ (R = Y, Tb – Er) [4, 5] has been established, which belong to the HfFe₆Ge₆ (or MgFe₆Ge₆) structure type. Information cornerning the GdCr₆Ge₆ compound is reported in Ref. [6], the authors of which studied the GdMn_{6-x}Cr_xGe₆ solid solution with HfFe₆Ge₆ compound showed that the structure of the

germanide is a partially disordered derivative of the HfFe₆Ge₆ structure type [7]. Analysis of the literature data shows that RCr_xGe₂ germanides with a structure of the CeNiSi₂ type are formed with rare-earth metals as Sm, Y, Gd – Er [8, 9] and are characterized by defects in the crystallographic position of the transition metal. Samples of the corresponding compositions for both series of the compounds (RCr₆Ge₆, RCr_xGe₂) were obtained at an annealing temperature of 1070 K. No ternary compounds were observed during the study of the Y-Cr-Ge system at 870 K [10], and the results of further studies of the system at 1070 K established the existence of two ternary compounds YCr₆Ge₆ (HfFe₆Ge₆ structure type) and YCr_{0.23}Ge₂ (CeNiSi₂ structure type) [1]. According to the results of differential thermal analysis, the YCr₆Ge₆ and ErCr₆Ge₆ germanides exist in a sufficiently wide temperature range up to ~1120 K [1, 3]. For rare earth metals, where R = La, Ce, Pr, Nd, Sm, compounds of stoichiometric composition RCrGe3 with the structure of perovskite BaNiO₃ are realized [11], the existence of the compounds Nd₁₁₇Cr₅₂Ge₁₁₂ and Sm₁₁₇Cr₅₂Ge₁₁₂ with a cubic structure of the Tb₁₁₇Cr₅₂Ge₁₁₂ type is reported in Refs. [2, 12].

In this paper, we present the experimental results of the study of the components interaction in the Gd–Cr–Ge system at a temperature of 1070 K and the structural characteristics of the ternary compounds.

I. Methods and materials

To construct a phase equilibrium diagram of the Gd-Cr-Ge system, the samples were synthesized by the arc-melting method of the initial components (the content of the main component is not less than 99.9 wt.%). The losses of the charge during melting were controlled by re-weighing and, if the mass of the sample did not deviate from the mass of the charge by more than 1 -2%, the composition of the alloy was considered to be the same for the charge. To bring the alloys to equilibrium state, homogenizing annealing was performed at 1070 K for 700 h, followed by quenching in cold water without first breaking the ampoules. X-ray phase analysis was performed on the diffraction patterns of the samples obtained on the diffractometer DRON-4.0 (Fe K_{α} -radiation). The elemental composition of the synthesized samples was controlled by X-ray fluorescence spectroscopy (analyzer ElvaX Pro). The microstructure of individual alloys was examined using an electron microscope TESKAN VEGA 3 LMU, equipped by an X-ray analyzer with energy dispersive spectroscopy (EDS). Calculations and indexing of powder diffraction patterns were performed using the WinCSD software package [13] (determination of the lattice parameters). The diffraction data for the crystal structure refinements were collected at room temperature using STOE STADI P diffractometer (graphite monochromator, Cu $K\alpha_1$ radiation). The coordinates of atoms, occupancy of the crystallographic sites, and isotropic displacement parameters were refined and theoretical intensities were calculated with the FullProf Suite software package [14], using the Rietveld calculation algorithm [15].

II. Results and discussion

To construct a phase equilibrium diagram of the Gd– Cr–Ge ternary system, 33 ternary and 12 binary alloys were synthesized and homogenized at 1070 K for 700 hours. Annealed samples were examined by X-ray phase, X-ray spectral (EDXS) and X-ray fluorescence (XRFA) analyzes. As example, in Table 1 the results of the elemental composition for individual samples according to EDXS and XRFA data are given which agree satisfactorily with the initial compositions of alloys.

Phase equilibrium diagram of the Gd–Cr–Ge system was constructed at 1070 K based on the results of X-ray phase and electron probe microanalyses (Fig. 1). The

Table1

EDXS and XRFA	data for	individual	alloys of the	Gd–Cr–Ge system

Naminal annualities at 0/	Experimantal composition, at. %			
Nominal composition, at. %	EDXS	XRFA		
$Gd_9Cr_{43.5}Ge_{47.5}$	$Gd_{10.26}Cr_{43.15}Ge_{46.59}$	$Gd_{10.7}Cr_{42.9}Ge_{46.4}$		
$Gd_{33}Cr_7Ge_{60}$	$Gd_{34.87}Cr_{8.58}Ge_{56.55}$	$Gd_{32.6}Cr_{7.4}Ge_{60}$		
Gd _{62.5} Cr ₁₀ Ge _{27.5}	Gd _{63.58} Cr _{9.3} Ge _{27.12}	$Gd_{60.5}Cr_{11.8}Ge_{27.7}$		
$Gd_{25}Cr_{32}Ge_{43}$	$Gd_{25,21}Cr_{33,47}Ge_{41,32}$	$Gd_{26.3}Cr_{32.0}Ge_{41.7}$		
$Gd_{45}Cr_{10}Ge_{45}$	$Gd_{43.89}Cr_{11.23}Ge_{44.88}$	$Gd_{44.6}Cr_{10.3}Ge_{45.1}$		
$Gd_{45}Cr_{20}Ge_{35}$	$Gd_{43.98}Cr_{21.05}Ge_{34.97}$	$Gd_{44.4}Cr_{20.7}Ge_{34.9}$		

Fig. 1. Isothermal section of the Gd–Cr–Ge system at 1070 K.

Table 2

Nominal composition	on, Phase Structure type		Lattice parameters, nm			EPMA data, at. %		
at. %			а	b	С	Gd	Cr	Ge
Gd ₂₀ Cr ₆₀ Ge ₂₀	Cr	Cr	0.4581(3)					
	Gd ₁₁₇ Cr ₅₂ Ge ₁₁₂	Tb ₁₁₇ Cr ₅₂ Ge ₁₁₂	2.8980(5)					
Gd ₆₃ Cr ₁₀ Ge ₂₇	Gd ₅ Ge ₃	Mn ₅ Si ₃	0.8594(3)		0.6428(5)	66.73		33.27
	Cr	Cr	0.4580(4)				100.0	
	Gd	Mg	0.3678(4)		0.5858(5)	100.0		
Gd ₂₅ Cr ₃₂ Ge ₄₃	Cr ₃ Ge	Cr ₃ Si	0.4626(3)				74.18	25.82
	Gd ₃ Ge ₄	Er ₃ Ge ₄	0.4100(3)	1.0751(5)	1.4310(6)	56.64		43.36
Gd ₃₀ Cr ₃₅ Ge ₃₅	Cr ₃ Ge	Cr ₃ Si	0.4628(3)					
	Gd ₁₁₇ Cr ₅₂ Ge ₁₁₂	Tb ₁₁₇ Cr ₅₂ Ge ₁₁₂	2.898(5)					
Gd ₅₀ Cr ₁₅ Ge ₃₅	Gd ₅ Ge ₃	Mn ₅ Si ₃	0.8594(3)		0.6429(4)	65.18	0.95	33.87
	Gd ₅ Ge ₄	Sm ₅ Ge ₄	0.7696(3)	1.4830(6)	0.7785(5)	55.32		44.68
	Cr	Cr	0.4581(4)				100.0	
Gd40Cr25Ge35	Gd ₁₁₇ Cr ₅₂ Ge ₁₁₂	Tb117Cr52Ge112	2.899(4)			43.47	17.33	39.20
	Gd ₅ Ge ₄	Sm ₅ Ge ₄	0.7695(5)	1.4828(6)	0.7784(5)	54.49		45.51
	Cr	Cr	0.4582(5)				100.0	
$Gd_{20}Cr_{40}Ge_{40}$	Cr ₃ Ge	Cr ₃ Si	0.4629(5)					
	GdGe _{1.5}	AlB ₂	0.3976(3)		0.4202(5)			
Gd ₁₀ Cr ₄₅ Ge ₄₅	GdCr ₆ Ge ₆	SmMn ₆ Sn ₆	0.5177(3)		0.8288(5)	8.07	47.21	44.72
	Cr ₃ Ge	Cr ₃ Si	0.4631(4)				74.92	25.08
	GdCr _{1-x} Ge ₂	CeNiSi ₂	0.4157(4)	1.6088(6)	0.4030(5)	30.75	10.34	58.91
Gd ₄₅ Cr ₁₀ Ge ₄₅	GdGe	TlI	0.4320(3)	1.080(5)	0.3974(5)	49.78		50.22
	Gd ₁₁₇ Cr ₅₂ Ge ₁₁₂	Tb ₁₁₇ Cr ₅₂ Ge ₁₁₂	2.8991(5)			41.62	17.44	40.94
	Gd ₃ Ge ₄	Er ₃ Ge ₄	0.4101(4)	1.0749(6)	1.4311(6)	41.96		58.04
Gd ₅ Cr ₅₀ Ge ₄₅	CrGe	FeSi	0.4780(3)					
	GdCr ₆ Ge ₆	SmMn ₆ Sn ₆	0.5176(3)		0.8289(6)			
	Gd ₁₁ Ge ₈	Gd ₁₁ Ge ₈	(traces)					
Gd ₂₅ Cr ₂₅ Ge ₅₀	GdCr _{1-x} Ge ₂	CeNiSi ₂	0.4156(3)	1.6089(6)	0.4028(4)			
	Cr ₃ Ge	Cr ₃ Si	0.4630(5)					
	GdGe _{1,5}	AlB ₂	0.3976(3)		0.4202(5)			
Gd ₂₀ Cr ₂₅ Ge ₅₅	GdCr ₆ Ge ₆	SmMn ₆ Sn ₆	0.5177(4)		0.8290(6)	8.20	46.25	45.55
	GdCr _{1-x} Ge ₂	CeNiSi ₂	0.4160(4)	1.6088(6)	0.4031(4)	30.86	9.51	59.63
	Ge	С	0.5650(3)					100.0
Gd ₅ Cr ₃₅ Ge ₆₀	GdCr ₆ Ge ₆	SmMn ₆ Sn ₆	0.5178(4)		0.8290(5)			
	Ge	С	0.5649(4)					
	$Cr_{11}Ge_{19}$	$Mn_{11}Si_{19}$	(traces)					
Gd ₃₃ Cr ₇ Ge ₆₀	GdCr _{1-x} Ge ₂	CeNiSi ₂	0.4159(3)	1.6073(6)	0.4029(4)	30.65	8.07	61.28
	GdGe _{1,5}	AlB ₂	0.3977(3)		0.4200(5)	40.26		59.74
Gd ₃₀ Cr ₅ Ge ₆₅	GdCr _{1-x} Ge ₂	CeNiSi ₂	0.4159(3)	1.6074(5)	0.4030(4)			
	Ge	С	0.5650(3)					
	GdGe _{1.63}	ThSi ₂	(traces)					

EPMA data and crystallographic characteristics of the selected alloys of the Gd-Cr-Ge system annealed at 1070 K

phase composition and EPMA data for selected alloys are summarized in Table 2, microphotographs of some alloys are shown in Fig. 2.

In our study of the Gd–Cr–Ge system, information on the phase diagrams of the Gd–Ge, Gd–Cr, and Cr–Ge binary systems, which limit the studied ternary system, and the structural data of the corresponding binary compounds were used from handbooks [16, 17]. According to the literature [17], intermediate binary phases were not detected in the Gd–Cr system, which was confirmed during the study of the Gd–Cr–Ge system. According to the results of X-ray phase and electron microprobe analyzes, the samples in the ternary region Gd₅Ge₃–Gd–Cr of the Gd–Cr–Ge system contain three phases in equilibrium - the binary compound Gd₃Ge₃, Gd and Cr (Fig. 2, b). At the used annealing temperature in the Cr–Ge binary system the existence of the binary compounds Cr₃Ge (Cr₃Si-type), Cr₁₁Ge₈ (Cr₁₁Ge₈-type), CrGe (FeSi-type) and Cr₁₁Ge₁₉ (Mn₁₁Si₁₉-type) was confirmed. The Cr₅Ge₃compound with the W₅Si₃ structure type at the temperature of the study was not identified. According to X-ray phase analysis, the sample of the corresponding composition contained in equilibrium two binary compounds: Cr₃Ge and Cr₁₁Ge₈. The obtained result is consistent with the literature data [18], according to which the Cr₅Ge₃ compound exists in the high temperatures range 1269 - 1535 K.

Fig. 2. Electron microphotographs of the Gd–Cr–Ge alloys: a) Gd₁₀Cr₄₅Ge₄₅ – GdCr₆Ge₆ (dark phase); GdCr_{1-x}Ge₂ (light phase); Cr₃Ge (black phase); b) Gd₆₃Cr₁₀Ge₂₇ – Gd₅Ge₃ (grey phase); Cr (black phase); Gd (light phase);
c) Gd₅₀Cr₁₅Ge₃₅ – Gd₅Ge₃ (grey phase); Gd₅Ge₄ (dark grey phase); Cr (black phase); d) Gd₄₅Cr₁₀Ge₄₅ – GdGe (light phase); Gd₁₁₇Cr₅₂Ge₁₁₂ (dark grey phase); Gd₃Ge₄ (dark phase); e) Gd₄₀Cr₂₅Ge₃₅ – Gd₅Ge₄ (light phase); Gd₁₁₇Cr₅₂Ge₁₁₂ (dark grey phase); Cr₃Ge (dark phase); f) Gd₂₀Cr₂₅Ge₅₅ – GdCr_{1-x}Ge₂ (light phase); GdCr₆Ge₆ (dark grey phase); Cr₃Ge (dark phase).

In the Gd–Ge binary system according to the reported state diagram [16] the existence of binary compounds at the used annealing temperature was confirmed: Gd_5Ge_3 (Mn₅Si₃-type), Gd_5Ge_4 (Sm₅Ge₄-type), GdGe (TII-type), GdGe_{1.5} (AlB₂-type), GdGe_{1.63} (ThSi₂-type) (Fig. 1). Since the information of the Gd₃Ge₄ and Gd₁₁Ge₁₀ compounds which are absent in the phase diagram of the Gd–Ge system are reported in the literature [19, 20], we additionally synthesized the

samples of the corresponding stoichiometric compositions. X-ray phase analysis of the prepared and annealed at 1070 K alloys showed the formation of the Gd_3Ge_4 (Er_3Ge_4 -type) and $Gd_{11}Ge_{10}$ ($Ho_{11}Ge_{10}$ -type) compounds at the studied annealing temperature.

According to EPMA data the solubility of the third component in the binary compounds of the Cr–Ge and Gd–Ge systems does not exceed 1 - 2 at. % under the conditions of our study.

According to the performed analysis of experimental data three ternary compounds are formed in the Gd-Cr-Ge system at 1070 K, the crystallographic characteristics of which are given in Table 3. During the study the existence of the $GdCr_6Ge_6$ and $GdCr_{1-x}Ge_2$ compounds was confirmed at 1070 K, and the formation of a new compound in the Gd₄₀Cr₂₀Ge₄₀ sample was established. Analysis of the X-ray diffraction pattern of the Gd₄₀Cr₂₀Ge₄₀ sample and the calculated lattice parameter indicated that the new compound belongs to the Tb₁₁₇Fe₅₂Ge₁₁₂ structure type. The formation and composition of the Gd₁₁₇Cr₅₂Ge₁₁₂ compound was confirmed by EDXS analysis (Fig. 2 d, e, Table 2). According to the performed structural studies, the GdCr₆Ge₆ compound belongs to the SmMn₆Sn₆ structure type, which is a partially disordered variant of the HfFe₆Ge₆ structure type. As reported in the literature [7] similar results based on neutronographic studies were obtained for the isostructural TbCr₆Ge₆ compound which belongs to the SmMn₆Sn₆ structure type with a partial distribution of Tb and Ge1 atoms in two crystallographic positions.

The crystal structure refinements was performed for the GdCr_{1-x}Ge₂ compound, using the powder diffraction data of the Gd₃₀Cr₁₀Ge₆₀ sample (Fig. 3). Experimental details of the structure refinements, atomic coordinates, isotropic displacement parameters are gathered in Tables 4, 5.

According to the results of X-ray phase and EPM analyses the existence of a small homogeneity range within the content of Cr 0.27-0.31 was established for the $GdCr_{1-x}Ge_2$ germanide. The values of the lattice parameters are given in Table. 3.

A comparison of the investigated Gd-Cr-Ge system with the previously studied {Nd, Y, Er}-Cr-Ge shows that the Gd-Cr-Ge system concerning the character of the phase equilibria and crystal structure of the ternary compounds is similar to the Y-Cr-Ge (1070 K) and Er-Cr-Ge (1070 K) systems [1, 3]. These systems are characterized by the formation of the RCr₆Ge₆ compounds (HfFe₆Ge₆ and SmMn₆Ge₆ structure types) and RCr_{1-x}Ge₂ with structure of CeNiSi₂ type, for which, as well as for isostructural compounds RM1-xGe2 with other *d*-elements (M = Mn, Fe, Co, Ni, Cu), the defect in crystallographic position of the transition metal was observed [21]. In contrast to RCr₆Ge₆ germanides, which are formed with rare-earth elements of the yttrium subgroup, R₁₁₇Cr₅₂Ge₁₁₂ compounds with a cubic structure of the Tb₁₁₇Fe₅₂Ge₁₁₂ type are realized for the elements of cerium subgroup such as Nd and Sm [2, 12]. According to performed in our work studies, a similar compound is formed in the Gd-Cr-Ge system. Taking into account the small number of the ternary compounds formed in the studied systems {Y, Gd, Er}-Cr-Ge, it is

Table 3

Crystallographic characteristics of the compounds in the Gd–Cr–Ge system								
Compound	Space group	Structure type	Lattice parameters, nm					
Compound	Space group	Sudetuie type	а	b	С			
GdCr ₆ Ge ₆	P6/mmm	$SmMn_6Sn_6$	0.51797(2)	_	0.82901(4)			
GdCr _{1-x} Ge ₂	Стст	CeNiSi ₂	0.41569(1)- 0.41593(8)	1.60895(6)- 1.60738(3)	0.40318(1)- 0.40305(8)			
$Gd_{117}Cr_{52}Ge_{112}$	Fm-3m	$Tb_{117}Fe_{52}Ge_{112}$	2.8971(6)	_	_			

Fig. 3. The experimental (circles), calculated (line) and difference (bottom) X-ray diffraction patterns for $Gd_{30}Cr_{10}Ge_{60}$ sample.

possible to predict the interaction of the components in the related systems with other rare earth metals, $Tb_{117}Fe_{52}Ge_{112}\mbox{-type}$ was determined. Structural studies of the $GdCr_6Ge_6$ compound have shown that it belongs to

Table 4

(CeNiSi ₂ -type; space group	Cmcm; Z = 4)
Alloy composition	$Gd_{30}Cr_{10}Ge_{60}$
Refined composition	$GdCr_{0.31(5)}Ge_2$
Pearson symbol	<i>oS</i> 16
Lattice parameters: <i>a</i> , nm	0.415699(1)
<i>b</i> , nm	1.60895(6)
<i>c</i> , nm	0.40318(1)
Volume cell V , nm ³	0.2696(6)
Number of atoms	12.92
Calculated density D_x , g/cm ³	7.847
Diffractometer	STOE STADI P
Radiation, wavelength λ ,	Cu <i>K</i> _α , 1.54056
Scanning method	$\theta/2\theta$
Interval 2θ ,°	6–120
Scanning step, scan time at the point, s	0.015/220
Refinement mode	Fullprof
Mixing parameter η	0.349(9)
Half width parameters : U	0.142(4)
V	0.006(20)
W	0.015(4)
Asymmetry parameter: A_1	0.081(7)
A2	0.038(2)
Reliability factors: R_{Bragg}	0.0413
$R_{\rm f}$	0.0510
$1 \cdots \chi^2$	1.16

Experimental details and cry	stallographic data for	$GdCr_{0.31}Ge_2$	compound
(CeNiSia-tyr	e' snace group Cmcm	$\cdot 7 - 4$	

Table 5

Fractional atomic coordinates, site occupations (G) and isotropic displacement parameters B_{iso} for GdCr_{0.31}Ge₂ compound

Atom	Wyckoff position	x	у	Z.	G	B_{iso} , Å ²
Gd	4c	0	0.3969(4)	1/4	1	0.29(1)
Cr	4c	0	0.1984(9)	1/4	0.31(5)	1.52(1)
Ge1	4c	0	0.0506(7)	1/4	1	1.19(3)
Ge2	4 <i>c</i>	0	0.7514(6)	1/4	1	1.79(3)

particularly, Tb, Dy, and Ho, for which the RCr_6Ge_6 and $RCr_{1-x}Ge_2$ compounds were studied. It is possible to predict the formation of isostructural RCr_6Ge_6 and $RCr_{1-x}Ge_2$ compounds also with R = Tm, Yb and Lu, for which currently information on ternary compounds in the literature is absent or limited.

Conclusions

According to the results of an experimental study of the components interaction in the ternary Gd–Cr–Ge system over the whole concentration range at 1070 K, the formation of the ternary germanides GdCr₆Ge₆ and GdCr_{1-x}Ge₂ was confirmed and the formation of a new ternary compound Gd₁₁₇Cr₅₂Ge₁₁₂ with cubic structure of the SmMn₆Sn₆ structure type, which is a partially disordered variant of the HfFe₆Ge₆ structure type. It was found that the GdCr₆Ge₆ compound is characterized by a point composition, and for the GdCr_{1-x}Ge₂ compound with a structure of the CeNiSi₂ type a small homogeneity range was established, which is limited by the GdCr_{0.27}Ge₂ and GdCr_{0.31}Ge₂ compositions.

Konyk M. - Ph.D., Senior Research;
Romaka L. - Ph.D., Senior Scientist;
StadnykYu. - Ph.D., Senior Scientist;
Romaka V. - D.Sc., doctor of material science;
Pashkevych V. - docent.

- M. Konyk, L. Romaka, L. Orovčik, V.V. Romaka, Yu. Stadnyk, Visnyk Lviv. Univ. Ser. Chem. 60(1), 38 (2019) (<u>https://doi.org/10.30970/vch.6001.038</u>).
- [2] P.S. Salamakha, Y.M. Prots, J. Alloys Compd. 215, 51 (1994) (<u>https://doi.org/10.1016/0925-8388(94)90817-6</u>).
- [3] M. Konyk, L. Romaka, Yu. Stadnyk, V.V. Romaka, R Serkiz, A. Horyn, Phys. Chem. Solid State 20(4), 376 (2019) (<u>https://doi.org/10.15330/pcss.20.4.376-383</u>).
- [4] J.H.V.J. Brabers, K.H.J. Buschow, F.R. de Boer, J. Alloys Compd. 77, 205 (1994) (<u>https://doi.org/10.1016/0925-8388(94)90769-2</u>).
- [5] P. Schobinger-Papamantelljsa, J. Rodriguez-Carvajalb, K.H.J. Buschow, J. Alloys Compd. 92, 256 (1997) (<u>https://doi.org/S0925-8388(96)03109-X</u>).
- [6] F.M. Mulder, R.C. Thiel, J.H.V.J. Brabers, R.F. de Boer, K.H.J. Buschow, J. Alloys Compd. 198, L1 (1993) (https://doi.org/10.1016/0925-8388(93)90130-F).
- [7] P. Schobinger-Papamantellos, J. Rodríguez-Carvajal, K.H.J. Buschow, J. Alloys Compd. 255, 67 (1997) (<u>https://doi.org/10.1016/S0925-8388(96)02872-1</u>).
- [8] H. Bie, A. Tkachuk, A. Mar, J. Solid State Chemistry 182(1), 122 (2009) (<u>https://doi.org/10.1016/j.jssc.2008.10.013</u>).
- [9] A. Gil, D. Kaczorowski, B. Penc, A. Hoser, A. Szytula, J. Solid State Chem. 184(2), 227 (2011) (<u>https://doi.org/10.1016/j.jssc.2010.10.026/</u>).
- [10] O.I. Bodak, E.I. Gladyshevsky, Ternary systems containing rare earth metals (Vyshcha shkola, Lvov, 1985) (in Russian).
- [11] H. Bie, O.Ya. Zelinska, A.V. Tkachuk, A. Mar, J. Mater. Chem. 19(18), 4613 (2007) (<u>https://doi.org/10.1021/cm0727</u>+).
- [12] A.V. Morozkin, Y.D. Seropegin, V.K. Portnov, I.A. Sviridov, A.V. Leonov, Mater. Res. Bull. 33, 903 (1998) (<u>https://doi.org/10.1016/S0025-5408(98)00051-8</u>).
- [13] L. Akselrud, Yu. Grin, WinCSD: software package for crystallographic calculations (Version 4), J. Appl. Cryst. 47, 803 (2014) (<u>https://doi.org/10.1107/S1600576714001058</u>).
- [14] J. Rodriguez-Carvajal, Recent developments of the program FullProf. Commission on Powder Diffraction, IUCr Newsletter. 26, 12 (2001).
- [15] H.M. Rietveld, A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr. 2, 65 (1969) (<u>https://doi.org/10.1107/S002188986900656X</u>).
- [16] T.B. Massalski, in: Binary Alloy Phase Diagrams (ASM, Metals Park, Ohio (1990).
- [17] H. Okamoto, Desk Handbook: Phase Diagrams for Binary Alloys, (Materials Park (OH): American Society for Metals, 2000).
- [18] I. Jandl, K.W. Richter, J. Alloys Compd. L6, 500 (2010) (<u>https://doi.org/10.1016/j.jallcom.2010.03.200</u>).
- [19] Y.S. Pukas, R.E. Gladyshevskii, Phys. Chem. Solid State 8, 347 (2007).
- [20] A.G. Tharp, G.S. Smith, Q.C. Johnson, Acta Crystallogr. 20, 583 (1966) (<u>https://doi.org/10.1107/S0365110X6600129</u>4).
- [21] V.K. Pecharsky, O.Ya. Mruz, M.B. Konyk, P.S. Salamakha, P.K. Starodub, M.F. Fedyna, O.I. Bodak, J. Struct. Chem. 30(5), 96 (1989) (in Russian).

М. Коник¹, Л. Ромака¹, Ю. Стадник¹, В.В. Ромака², В. Пашкевич³

Фазові рівноваги в системі Gd–Cr–Ge при 1070 К

¹Львівський національний університет ім. І.Франка, Львів, Україна, <u>mariya.konyk@lnu.edu.ua</u> ²Інститут досліджень твердого тіла, Дрезден, Німеччина, <u>vromaka@gmail.com</u> ³Національний університет "Львівська політехніка", Львів, Україна, <u>volodymyr.z.pashkevych@lpnu.ua</u>

Методами рентгенофазового, рентгеноструктурного і рентгеноспектрального аналізів досліджено взаємодію компонентів та побудовано ізотермічний переріз діаграми стану потрійної системи Gd–Cr–Ge при 1070 К у повному концентраційному інтервалі. У системі Gd–Cr–Ge за температури відпалювання утворюються три тернарні сполуки: Gd₁₁₇Crs₂Ge₁₁₂ (структурний тип Tb₁₁₇Fe₅₂Ge₁₁₂, просторова група *Fm-3m*, символ Пірсона *cF*1124, *a* = 2,8971(6) нм), GdCr₆Ge₆ (структурний тип SmMn₆Sn₆, просторова група *P6/mmm*, символ Пірсона *hP*16, *a* = 0,51797(2), *c* = 0,82901(4) нм) та GdCr_{1-x}Ge₂, для якої рентгенівським дифракційним методом порошку проведено уточнення кристалічної структури (структурний тип CeNiSi₂, просторова група *Cmcm*, символ Пірсона *oS*16, *a* = 0,41569(1), *b* = 1,60895(6), *c* = 0,40318(1) нм, *R*_{Bragg} = 0,0413, *R*_p = 0,0510). Для сполуки GdCr_{1-x}Ge₂ визначено область гомогенності (*x* = 0.73 – 0,69).

Ключові слова: інтерметаліди, потрійна система, фазові рівноваги, кристалічна структура.