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In the present paper the way to describe the energy spectrum, the wave function and self- consistent potential 

in a semiconductor with a sphalerite structure at a predetermined temperature is proposed. Using this approach 

within the framework of the supercell method the temperature dependences of the ionization energy of intrinsic 

acceptor defects in cadmium telluride are calculated. In addition, on the basis of this method, the temperature 

dependences of the heavy holes effective mass, optical and acoustic deformation potentials, as well as of the heavy 

holes scattering parameters on ionized impurities, polar optical, piezooptic and piezoacoustic phonons were 

established. Within the framework of short-range scattering models the temperature dependences of the heavy hole 

mobility and Hall factor in CdTe crystals with defects concentrations 5  1022  5  1024 cm-3 are considered. 
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Introduction 

The physical properties of cadmium telluride, namely 

the required band gap and the required value of the 

absorption coefficient, provide ample opportunities for its 

use as a photovoltaic converter of solar energy. On the 

other hand, the electrical and optical properties of CdTe 

are largely determined by the structure of the crystal lattice 

defects, in particular, the intrinsic point defects. That is 

why the study of the defects structure of cadmium telluride 

is an important applied task. In the literature, a large 

number of works have been devoted to the problem of 

studying the defects structure in cadmium telluride on the 

basis of the ab initio approach [1-7]. However, the main 

disadvantage of these works is the lack of a direct 

relationship between the structure of point defects and the 

kinetic properties of CdTe, which directly determine the 

electrical properties of the material. In the current work, 

this problem will be solved in two stages. 

At the first stage, using the density functional theory, 

the calculation from the first principles of the energy 

characteristics of the crystal is performed: the energy 

spectrum, the electron wave function and the self-

consistent potential of the crystal lattice. Usually, it is 

assumed that the abovementioned characteristics relate to 

the ground state of the crystal (T = 0 K). In the presented 

article a new method of calculation of the abovementioned 

parameters of a sphalerite semiconductor at a given 

temperature is developed. With the help of this method for 

a predetermined temperature, the heavy holes scattering 

parameters on the intrinsic acceptor defects of cadmium 

telluride are calculated. At the second stage, the 

temperature dependences of the ionization energies of 

intrinsic acceptor defects in CdTe are calculated using the 

supercell method. On the basis of ionization energies of 

intrinsic acceptor defects and charge carriers scattering 

parameters it is possible to determine the Fermi level and, 

in turn, the kinetic coefficients of cadmium telluride. At 

present time, in the literature presents a number of 

publications devoted to the description of transport 

phenomena in semiconductors, in particular in CdTe [8], 

where the ab initio approach is used [9-13]. However, in 

these publications the connection between defect structure 

and kinetic properties is not specified. 
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I. Calculation of temperature 

dependences of wave function, crystal 

potential and heavy hole effective 

mass 

To describe the transport phenomena in p-type 

cadmium telluride the heavy hole short-range scattering 

models were used [8, 14, 15, 16]. These short-range heavy 

holes scattering models include several scattering constants 

as parameters, which, in turn, require the calculation of the 

valence band wave function and the self-consistent crystal 

potential. Using the pre-selected exchange-correlation GGA 

potentials of Cd and Te (pseudopotentials) and choosing a 

certain mixture of these usual exchange-correlation GGA 

potentials and the Hartree-Fock exchange potential (this 

mixture is determined by the "exchmix" parameter of the 

ABINIT code) one can obtained the totality of mathematical 

solutions of the Schrödinger equation corresponding to the 

value of the parameter "exchmix" in the limits from 0 to1. It 

is known that the accuracy and convergence of calculations 

are largely determined by certain values of the parameters 

"ecut" and "pawecutdg" of the ABINIT code. The influence 

of the "ecut" parameter on the quality of calculations is very 

strong: the greater "ecut", the better convergence of 

calculations. The parameter "pawecutdg" define the energy 

cut-off for the fine FFT grid, as a rule "pawecutdg" must be 

larger or equal to "ecut". For calculations the next values of 

these parameters were chosen: "ecut" = 48 Ha, 

"pawecutdg" = 64 Ha. An additional study found that 

increasing the value of these parameters leads to a change in 

the position of the energy levels of the electronic spectrum 

by 1210-5 eV, which is much less than the accuracy of the 

experiment. 

Using the proposed calculation method, the separation 

of the physical solutions of the Schrödinger equation from 

the set of mathematical solutions of the Schrödinger 

equation was performed. The following criterion for 

selecting physical solutions of the Schrödinger equation was 

proposed: at a given temperature, the theoretical width of the 

band gap must coincide with its experimental value, which 

was determined from the experimental expression for solid 

solution Hg1-xCdxTe [17]: 

 

 𝐸𝑔(𝑥, 𝑇) = −0.302 + 1.93𝑥 − 0.81𝑥2 + 0.832𝑥3 + 5.35 × 10−4𝑇(1 − 2𝑥).  (1)

 

Based on this approach, the following values of the 

parameter "exchmix" were obtained for the ideal unit cell 

of cadmium telluride: exchmix = 0.397 for T = 0 K, 

exchmix = 0.288 for T = 300 K. These values of the 

parameter "exchmix" correspond to certain wave 

functions of the valence band and the self-consistent 

potential at 0 K and 300 K. Using the short-range 

scattering models [8, 14, 15, 16] , as well as based on the 

obtained wave functions and crystal potentials, the 

following scattering constants can be calculated at 0 K and 

300 K, namely: 

1) Scattering constants for heavy hole-polar optical 

(PO) phonon interaction, heavy hole-piezoacoustic (PAC) 

phonon and heavy hole-piezooptic (POP) phonon 

interaction 

 

𝐴𝑃𝑂 = 𝐴𝑃𝐴𝐶 = 𝐴𝑃𝑂𝑃 = ∫ 𝜓*(𝑅2 − 𝑟2/3)𝜓 𝑑𝐫. (2) 

 

The integration is carried out in a volume which 

contains two atoms of different sort and which is equal to 

1/8 of the unit cell volume. 

2) d0 is the optical deformation potential constant 

which choose equal to the maximum value among three 

optical deformation potential constants corresponding to 

one longitudinal and two transverse branches of the lattice 

optical vibrations: 

 

 𝑑0 𝜈 = 𝑎0 ∫ 𝜓∗𝜀𝜈 ⋅ 𝑽 𝜓 d𝐫,  𝜈 = 1,2,3, (3) 

 

where the region of integration is the same as in the case 

of PO scattering;  – unitary contravariant polarization 

vector of the optical oscillations; vector V is expressed in 

terms of the derivatives of the self-consistent electron 

potential energy over the coordinates of the atoms of the 

unit cell [15]. 

3) EAC is the acoustic deformation potential constant 

which was choose equal to the maximum value among 

three acoustic deformation potential constants 

corresponding to one longitudinal and two transverse 

branches of the lattice acoustic vibrations [8]: 
 

 𝐸AC|| = −(− 𝐼1 4⁄ + 𝐼2 2⁄ + 𝐼3 2⁄ ); 𝐸AC1⊥ = −(𝐼1 4⁄ − 𝐼2 4⁄ + 𝐼3 2⁄ ); 𝐸AC2⊥ = −(𝐼1 2⁄ + 𝐼2 2⁄ − 𝐼3 4⁄ );  (4)

 

where: 

 

𝐼1 = ∫ 𝜓∗𝑉1
′ 𝜓 d𝐫′; 𝐼2 = ∫ 𝜓∗𝑉2

′ 𝜓 d𝐫′; 𝐼3 =

= ∫ 𝜓∗𝑉3
′ 𝜓 d𝐫′;  

 

321 V;V;V   are the projections of the vector V in an oblique 

coordinate system created by the primitive vectors of the 

zinc blende structure and the region of integration is the 

same as in the case of PO scattering. 

4) The ionized impurity scattering constant: 

 𝐴𝐼𝐼 = ∫ 𝛹∗
𝛺

1

𝑟
𝛹 𝑑𝒓, (5) 

where integration is carried out throughout the sphalerite 

elementary cell. 

As it seen from (2)-(5) these scattering constants are 

expressed in terms of the integrals over the wave function  

and crystal potential U. Using the three-dimensional  

B-spline interpolation and finite displacement method [8] 

one can obtain the values of these integrals. Since the values 

 and U depend on the temperature, then, accordingly, the 

scattering parameters will also depend on the temperatures. 
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Assuming the simplest, linear, temperature dependence, one 

can calculate the temperature dependences of the scattering 

constants: 

 

 𝐴𝑃𝑂 = (12.2 + 1.84 × 10−3𝑇) × 10−20𝑚2, (6 a) 

 

 𝑑0 = −43. 1 − 0.018 𝑇 eV, (6 b) 

 

 𝐸𝐴𝐶 = −3.07 − 2.28 × 10−3𝑇  eV, (6 c) 

 

  𝐴𝐼𝐼 = (0.442 − 8.90 × 10−6𝑇) × 1010𝑚−1. (6 d) 

 

On the base of equations (6a)-(6d) one can define the 

temperature dependences of the heavy hole transition 

probabilities and, in turn, the kinetic coefficients of p-type 

cadmium telluride. 

The determination of the effective heavy holes mass 

was performed on the basis of the dispersion law E (k) in 

the vicinity of the  point, which was established on the 

basis of ab initio calculations. The vicinity of the  point 

was chosen in the form of a cube, the ribs of which were 

parallel to the Cartesian coordinate axes and for which the 

magnitude of the wave vector varied from -0.02 to 0.02 

(reduced coordinates in /a0 units, a0–lattice constant). 

Each rib of the cube was divided into eight intervals. 

Using the obtained dependence E (k) and three-

dimensional B-spline interpolation one can obtain the 

tensor of the inverse effective mass. This tensor was 

reduced to the principal axes (for cadmium telluride, one 

of these axes coincides with the [100] direction). As a 

result, we obtain the diagonal components of the inverse 

effective mass tensor and, accordingly, the components of 

the heavy holes effective mass (at T = 0 K):  

𝑚1 = 𝑚2 = 0.516 m0 ;  𝑚3 = 0.037 m0 . Note that in 

the literature there are various numerical values of this 

parameter: 𝑚ℎℎ = 0.4 𝑚0 [18]; 𝑚ℎℎ = 0.41 𝑚0 [19]; 

𝑚ℎℎ = 0.63 𝑚0 [20]; 𝑚ℎℎ = 0.72 𝑚0 [21]. It should be 

noted the work [21], where measurements were performed 

for the [100] direction. A comparison of these data shows 

that the calculated values of the components of the 

effective mass are close enough to the experimental 

values. The above method of calculation was performed 

for 0 K and 300 K. Assuming a linear dependence, we 

obtain the temperature dependence of the heavy holes 

effective mass: 

 

 𝑚ℎℎ = (0.214 + 9.902 × 10−5𝑇) 𝑚0. (7) 

 

It is possible to note the qualitative similarity of 

expression (7) to analogous expression for CdxHg1-xTe 

(x0.2), obtained by fitting to experimental data [22]. 

II. Determination of temperature 

dependences of ionization energy of 

different types of intrinsic acceptor 

defects 

In the proposed study the intrinsic acceptor defects are 

considered, namely: VCd – TeCd, VCd. The study of the 

energy spectrum of the defects structure of cadmium 

telluride was carried out within the framework the 

supercell method on the basis of the ABINIT code: for  

VCd – TeCd – supercell Cd14Te17 (212 sphalerite cubic 

structure); VCd – supercell Cd7Te8 (112 sphalerite cubic 

structure). The same calculations were carried out for the 

ideal supercell Cd8Te8 (112 sphalerite cubic structure) 

and Cd16Te16 (212 sphalerite cubic structure). The 

result of calculations of energy spectrums of these 

supercells are presented in Table 1.  

Table 1 

Energy spectrum of ideal and defect supercell 

112 sphalerite cubic structure 

T = 0, Eg = 1.65 eV, exchmix = 0.09 T = 300 K, Eg = 1.48 eV, exchmix = 0.0182 

Energy levels of 

ideal Cd8Te8, eV 

Energy levels of 

defect, eV 

Acceptor 

ionization 

energy, eV 

Energy levels of 

ideal Cd8Te8, eV 

Energy 

levels of defect, 

eV 

Acceptor 

ionization 

energy, eV 

Ec– 1(4.194) (0) 

Ev– 2(2.541) (2)* 

VCd 

1(3.733) (0) 

1(2.003) (0) 

1(2.003) (2) 

At T = 0 

p- type. 

At T  0 

EA =1.192 

Ec – 1(4.108) (0) 

Ev – 2(2.620) (2) 

VCd 

1(3.660) (0) 

1(2.065) (0) 

1( 2.065) (2) 

EA = 1.040 

212 sphalerite cubic structure 

T = 0, Eg = 1.65 eV, exchmix = 0.076 T = 300 K, Eg = 1.48 eV, exchmix = 0.00571 

Energy levels of 

ideal Cd16Te16, eV 

Energy levels 

of  defect, eV 

Acceptor 

ionization 

energy, eV 

Energy levels of 

ideal Cd16Te16, eV 

Energy levels of  

defect, eV 

Acceptor 

ionization 

energy, eV 

Ec–1(4.130) (0) 

Ev–2(2.478) (2) 

VCd – TeCd 

1(2.899) (0) 

1(2.823) (0) 

1(2.421) (2) 

EA =0.345 
Ec–1(4.046) (0) 

Ev–2(2.558) (2) 

VCd – TeCd 

1(2.923) (0) 

1(2.848) (0) 

1(2.454) (2) 

EA = 0.290 

* Recording 2(2.541) (2) means that there is exist 2-fold degenerate energy level with an occupation 

number equal 2. 
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First let’s consider the calculation of the ionization 

energy of the VCd defect. It is seen that at T = 0 K, the 

electrons of the valence band from the level 2(2.541) (2) 

will pass to an unoccupied lower level 1 (2.003) (0) of 

defect (thus forming a hole in the valence band), i.e. there 

is a complete ionization of the acceptor impurity. 

Therefore, at T = 0, cadmium telluride will have a p-type 

conductivity. At T = 0 and with a slight increase in 

temperature the transition of the electron from the valence 

band to the unfilled level 1(3.733) (0) of the defect occur, 

thus forming a hole in the valence band. The ionization 

energy of this process is equal  

EA =1.192 eV. Other electron transitions (for example 

transition from defect level 1(2.003) (2) to conduction 

band level 1(4.194) (0) are improbable due to high 

ionization energy. An analogical situation is observed at 

T = 300 K. The valence band electron (2(2.620) (2) 

energy level) will pass to the defect level 1(3.660) (0), 

forming a hole in the valence band. The ionization energy 

of this process is equal EA =1.040 eV. After that, 

assuming a linear relationship, we obtain the temperature 

dependence of the defect ionization energy: 

 

 𝛥𝐸𝐴 = 1.192-5.067 × 10-4𝑇. (8 a) 

 

A slightly different situation takes place for VCd – TeCd 

defect. At T = 0 K only the electron transitions from the 

valence band to the defect level 1(2.823) (0) occurs, 

which corresponds to an ionization energy of 0.345 eV. 

Analogously at T = 300 K, the defect ionization energy 

will be 0.290 eV. In a result one can obtained: 

 

 𝛥𝐸𝐴 = 0.345-1.833 × 10-4𝑇. (8 b) 

 
a 

 
b 

 
c 

 
d 

 
e 

Fig. 1. Heavy hole mobility versus temperature in cadmium telluride crystals with different intrinsic defects 

concentration. a – NA = 5  1016 cm-3; b – NA = 1  1017cm-3; c – NA = 5  1017cm-3;  

d – NA = 1  1018cm-3;  e – NA = 5  1018cm-3. 
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III. Discussion 

During the calculation only defects with the lowest 

ionization energy were taken into account, as they make 

the dominant contribution to the transport phenomena. 

Accordingly, it follows from equations (8a) - (8b) that the 

defect that gives the largest contribution is VCd – TeCd. The 

Fermi level is determined by the electroneutrality 

equation, which has the form: 

 

 𝑝 − 𝑛 = 𝑁𝐴 {1 + 2 𝑒𝑥𝑝[(𝐸𝐴 − 𝐹) (𝑘𝐵𝑇)⁄ ]}⁄ , (9) 

 

where NA–intrinsic defects concentration and  the defect 

level EA at a given temperature is choose according to (8b). 

The calculation of the temperature dependences of the 

carrier mobility was performed on the basis of short-range 

scattering models [8, 14, 15] within the framework of the 

exact solution of the Boltzmann’s kinetic equation [23]. 

Cadmium telluride parameters used for calculation are 

presented elsewhere [8]. The calculation of the 

temperature dependence of the heavy holes mobility in 

cadmium telluride crystals was performed for the defect 

concentration of 5  1016  5  1018 cm-3. The results of 

the calculation are presented on Fig.1. In order to cover all 

possible values of the heavy holes mobility at low 

temperature for each concentration of acceptor defects the 

corresponding values of concentration of the static strain 

centers (Nss) was selected. Unfortunately, in the literature 

the experimental data for the abovementioned interval of 

the intrinsic acceptor concentrations are absent.  

Figure 2 presents a comparison of two competing 

approaches: short-range scattering models and long-range 

scat-tering models (relaxation time approximation). The 

dashed lines 1 and 2 represent the results of calculation of 

the dependence (T) obtained in the relaxation time  

 
a 

 
b 

 
c 

 
d 

 
e 

Fig. 2. Comparing of theoretical curves obtained in framework of long-range (curves 1 and 2) and  

short-range (curve 3) scattering models. 
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Fig. 3. The temperature dependence of heavy hole’s Hall 

factor. 1 – NA = 5  1016 cm-3; 2 – NA = 5  1017 cm-3;  

3 – NA = 5  1018 cm-3. 

 

approximation: curve 2 describes the high-temperature 

region (   << kBT), curve 1 describes the low-

temperature region (   >> kBT). For cadmium telluride 

the Debye temperature is D = 239 K. It means that the 

low-temperature region will be determined by the 

condition T <24 K, and the high-temperature region will 

be determined by the condition T > 2400 K. From this 

point of view, the application of the relaxation time 

approximation (elastic scattering) in the range of  

24 K < T < 2400 K is incorrect. At the same time, short-

range scattering models allow to describe inelastic 

scattering. Thus, it can be argued that short-range models 

give a more adequate description of physical reality than 

long-range models. 

Calculated on the basis of the proposed method the 

dependences of Hall factor on temperature are presented 

in Fig. 3. It is seen that these dependencies have 

minimums, which are situated as follows - the higher the 

concentration of acceptor defects, the higher the 

temperature of minimum. 

Conclusion 

The authors propose a new scheme for calculating the 

energy spectrum, wave function and potential energy of an 

electron in a crystal at a given temperature. Based on this, 

the temperature dependences of the ionization energies of 

intrinsic acceptor defects of different types, as well as the 

temperature dependences of the kinetic coefficients are 

determined. It should be noted that the proposed 

calculation method can be applied to all semiconductors 

with a sphalerite structure. 
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О.П. Малик, С.В. Сиротюк 

Розсіювання важких дірок на власних акцепторних дефектах в телуриді 

кадмію: розрахунок з перших принципів 

Національний університет "Львівська політехніка", Львів, Україна, omalyk@ukr.net, svsnpe@gmail.com  

У цій роботі запропоновано спосіб опису енергетичного спектру, хвильової функції та 

самоузгодженого потенціалу в напівпровіднику зі структурою сфалериту при заданій температурі. З 

використанням цього підходу в рамках методу суперкомірки розраховано температурні залежності енергії 

іонізації власних акцепторних дефектів у телуриді кадмію. Крім того, на основі цього методу встановлені 

температурні залежності ефективної маси важких дірок, оптичних і акустичних потенціалів деформації, а 

також параметрів розсіювання важких дірок на іонізованих домішках, полярних оптичних, п'єзооптичних і 

п'єзоакустичних фононах. У рамках близькодіючих моделей розсіяння розглянуто температурні залежності 

рухливості важких дірок і фактора Холла в кристалах CdTe з концентрацією дефектів  

5  1022  5  1024 см-3. 
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