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The article is devoted to modelling the growth of thin films on the surfaces of crystals having a similar
crystal structure with a small parameter of mismatch of the lattice of substances from which the film and the
crystal substrate are formed. A review of modelling methods based on both analytical expressions and
computational methods is made. A number of methods for modelling the most typical processes: surface
formation in the form of pyramidal formations (so-called needle crystals), two-dimensional with initial islands of
growth and three-dimensional uneven growth processes. To model the process of growth of needle crystals, it is
proposed to use a method based on Gaussian statistics of surface height increments. The model of three-
dimensional growth of the crystal surface, which uses the iterative algorithm of Foss, and which makes it possible
to investigate the processes of stepped, uneven growth of crystals, is also considered. In contrast to stepwise
growth, a model of submonolayer growth of a film based on the Monte Carlo method is considered. For
submonolayer growth of the film, pseudo-random sequences are used, which simulate the initial arrangement of
the nuclei of the nucleus of the next layer on the crystal surface. The computational characteristics of this method
are determined, namely the dependence of the number of iterations on the initial surface filling coefficient
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Introduction methods of their solution, which are the subject of
modern statistical mechanics, is shown in Fig.1.

The most common algorithms that have become the
basis of computational methods are the Monte Carlo
method and molecular dynamics [5, 6].

One of the most common divisions of methods for
modelling film growth processes is the division into
discrete and continuous methods. The method of
molecular dynamics is a continuous method. This means
that the substances involved in the growth of the film are
considered as some mass distributed in volume. This
method is convenient when one of the substances is in a
liquid (solution or melt) state [7].

In addition to the well-known Monte Carlo method,
discrete methods for modelling surface growth include
methods for constructing fractal surfaces, one of which is
the Foss method [8], which we use.

The development of mathematical models describing
the growth of thin films and needle-like crystals on
smooth, pre-treated surfaces began in the middle of the
last century. The efforts of many researchers have
focused both on finding analytical solutions and on
improving the efficiency of complex computational
methods. The basis of analytical methods are such
sections of mathematics as the theory of deterministic
point processes and the theory of stochastic matrices [1].
The combination of all the above methods forms the
lattice theory, which is one of the modern scientific areas
of mathematical and statistical physics [2]. A number of
problems for which precise analytical solutions have
been found can confirm the performance of this
approach: the six-vertex model [3] and deterministic
point processes [4]. Classification of problems and

387


mailto:r.politansky@chnu.edu.ua

R.L. Politanskyi, V.1. Gorbulik, I.T. Kogut, M.V. Vistak

GROWTH MODELS
OF THIN FILMS

SIMULATION RESEARCH GROWTH MANUFACTURING
METHODS OBJECTS MODES TECHNOLOGIES
R y_. & 8 ¥

- |
' [FSmny] | ([ 1 | tAveRsy- | ! [FNOUECULAR-T] |
ETHOD | ' LAYER || BEAMEPITAXY | |
MOLECULAR | | I
: })mm) I " I i
e 1 : PYRAMIDAL |11 1 1
el | mree- || crysTALLIZATION )
rFr=========1] crystar [1:| DDMENSIONAL | ' FROMSOLUTION |,
| [ | s ) ! :
r
! i WITH THE METHOD OF
1 BULK " i THER 1
| m ! CRYSTALS 1" FORMATION I: MAL 1
! METHOD ! " AND MERGER | TRANSFER OF .
' I 0! 11| OFGROWTH |'!| ATOMSTOTHE | |
' 1 [DREDER] | CENIERS Y, | | CROWIE |
: STATSTICAL | | 1 | cpystars | 11| GStANDS) | SURFACE .
1 ! " T 1
! 1
FRACTAL 1 1 ) .. 1
' | sumraces | ' ' | POLYAZRS |ni I
. 1 ! B o |
|

Fig.1. Problems of modelling the growth of thin films and methods of their solution.

Theoretical and experimental studies of surface
growth patterns show that the growth process is self-
similar in both temporal and spatial scales. That is, the
increase in surface area and its height are coordinated by
a certain scale ratio. It turns out that there are several
numerical relationships between the growth rates of the
surface along and in the perpendicular directions, they
characterize some specific growth regimes, they are
called universal classes.

The most well-known statistical models of growth
include such as deterministic point process and six-vertex
model. Modern and most generalized theoretical ideas
about the growth of crystalline and/or polymer structures
use the concept of renormalization group [9]. The
renormalization group provides the most common means
of studying a significant group of phenomena in physics
and chemistry, such as crystal growth processes, and in

particular the growth of thin films on the crystal surface.

I. Main part

One-dimensional models based on the analytical
expression of the dependence of the height of the
"needle" on time can be used to model the growth of
needle-like crystals. These models can continue and
complement the known models of growth of needle-like
crystals. One of them is a model based on the Gibbs-
Thomson effect, which allows to correctly determine the
growth rate of the crystal and its critical diameter [10].

Modelling of submonolayer growth, which can be
considered two-dimensional, was carried out based on
the Monte Carlo method. The initial condition of the
method is a given distribution of growth centres on the

b)

Fig.2. One-dimensional growth modes for different values of model parameters: (a) ¢c; = 0.1, ¢, = 8, m§ = 0.1,
or = 0.01; (b) ¢; = 0.1, ¢c; = 16, m¢ = 0.1, oz = 0.08.
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surface of the crystal, followed by determining the
number of occupied nodes of the lattice, closest to the
given. We have constructed the growth surfaces of the
submonolayer for different degrees of filling the growth
surface with the initial growth islands. The main result of
the research is the dependence of the surface filling rate
on the number of initial growth islands.

Modelling of the three-dimensional surface growth
process is performed by the Foss method, which is based
on the iterative addition of statistically independent
increments for each point of the two-dimensional surface
that simulates the initial surface of the crystal.

Il. One-dimensional growth model based
on deterministic point process (needle
surface growth modelling)

The least complex model of three-dimensional
growth of the film surface is a model in which the atoms
that reach the crystal surface "stick™ to it and do not
move further. Statistical features of the growth process
depend on the technological parameters of the process:
the rate of atoms and the distribution of this characteristic
depending on the coordinates of the crystal surface, but
the general dependence of film height on time [11] is
determined by expression (1)

3 1
h(t) =cit t+&cyc 2tz )
where ¢; and ¢, are numeric constants, ¢ is a random
variable with a Gaussian distribution.

Therefore, the growth process described by
expression (1) has 4 parameters: coefficients ¢; and c,
and the mathematical expectation m, and the variance o
of the random variable &.

The three-dimensional surface modelled by relation
(1) is shown in Fig.2. As can be seen from the shape of
the formed surface, this model makes it possible to
describe the growth of needle-like crystals or other
formations on the surface, the cross section of which is
negligibly small compared to the height. This regime
occurs when the energies of the atoms trapped by the
upper layers are insufficient to transition to adjacent
layers of the crystal structure, and therefore the filling of
the lower atomic layers (i.e., the transition to two-
dimensional mode of crystal film growth) does not occur.
Comparing the images in Fig. 2, we see that by
appropriate selection of the values of the model
parameters it is possible to model both the growth of the
surface with pyramid-like formations with a small almost
identical height (Fig. 2a) and the growth of more
complex formations (Fig. 2b).

The formation of structures with needle-like crystals
having a characteristic cross-sectional size of the order of
nm2 are widely used in modern science-intensive
technologies. Crystals with needle-shaped or pyramidal
formations on the surface of the same material as the
substrate material have a low reflection coefficient in a
wide range of solar radiation, which makes them
attractive in terms of use in the production of solar cells
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[12], photonic crystals [13] and biosensors [14, 15]. Such
films can be used in a wide range of temperatures for the
production of sensor elements based on nanosized poly-
silicon films [16], local 3-dimensional integrated silicon-
insulator structures [17], as such films can be resistant to
destruction if applied protective coating.

I11. Modelling of the mechanism of three-
dimensional (non-uniform) surface
growth

The most complex and least studied growth process
is stepwise, uneven crystal growth, as only three-
dimensional growth models can be applied to it. The
three-dimensional mechanism is becoming increasingly
important in the development of nanotechnology, as it is
possible to control the position of each individual atom
with an accuracy of several nanometers.

Consider the method of fractal surface formation
based on the iterative Foss algorithm [8]. Foss's
algorithm forms a fractal relief gradually, shredding the
elementary cells of the grid at each step of the algorithm.
As is known from theory, fractals are divided into levels.
In the Foss algorithm, the surface of each subsequent
level contains all points on the surface of the previous
level and some new set of points. In this case, every four
points on the surface of the previous level form an
additional five points of the next level: four points in the
middle of the sides that form the cell of the previous
level and one point at the intersection of diagonals, as
shown in Figure 3.

Each point of the lattice on the initial plane
corresponds to one point of the fractal surface, which is
formed in the next step of the iteration. At the beginning
of the algorithm, each of the four points of the initial
lattice defines one point of the fractal surface, and the
value of the height is assigned some random number
from the sequence having a Gaussian distribution. The
height of the points of the fractal surface of the next level

n-1

Fig.3. Scheme of formation of fractal points (one cell), n
means the fractal level number to which the formed
points belong.

is defined as the average value of the heights of the
points of the previous level, which are on the same edge
with this point. For the point in the center of the cell, the
height is defined as the average height of all four points
of the previous level. Then some random number from a
series of random numbers with Gaussian distribution is
added to the found values, the variance of this series is
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related to the variance of the series used at the previous
level, relation (2):

o7 =(1/2)*"-a}_y, )
where H is the Herst index, or the self-similarity
parameter of the formed fractal series, n is the iteration
number,o;? Ta 02_; — squares of variances in successive
iteration steps.

Figure 4 shows an example of a fractal surface
constructed according to the Foss algorithm in the fourth
step of the iteration with the Herst index H = 0.1 and the
initial variancea? = 0.1.

Fig.4. The fractal surface is constructed on the fourth
step of iteration of the Foss algorithm with Herst index
H=0.1 and initial dispersion ¢_172=0.1.

The self-similarity of the Foss method makes sense
in that there is some correspondence between the
variances of random fluctuations in the height of the
nodal points at each step of the algorithm (expression 2).
This can be concluded from the graphs of growth of the
standard deviation of the height of the surface
constructed for different Herst indicators, which are
shown in Fig.5.
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Fig.5. Graphs of growth of surface height variance for
different Herst indices.

The graphs show that the surface growth process
differs significantly for two different sets of Hurst
values: H < 0.5 and H > 0.5, and for the second set of
Herst values the surface growth is less intense. Within
one group of Herst indicators, growth processes are
almost slightly different from each other, and the slight
difference in standard deviation can be explained by
different statistical samples for surface growth processes.
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IVV. Modelling of two-dimensional growth

Modelling the growth processes of submonolayer
films is an important task, and its solution can
significantly improve the technological processes of film
growth in semiconductor production. The most common
method of modelling the growth of submonolayer films
is the Monte Carlo method, which is based on the
probability of filling the atom of the sprayed substance of
the free node [18]:

E P
P;~ exp (— ﬁ(;)), 3)
where P;i is the probability of filling the free node of the
submonolayer i, E,;) is the activation energy of the
process; kg is the Boltzmann constant; T is the substrate
temperature.

We have developed and implemented an algorithm
that simulates the mechanism of two-dimensional
submonolayer growth of a crystal film of simple cubic
structure using an island mechanism, where the criterion
for filling the node is the number of nearest filled nodes.
The initial condition for the algorithm is the presence of
growth islands with filled nodes of the submonolayer of
the film. Such growth islands can be formed at the stage
of the previous cycle of surface treatment by introducing
substances that are catalysts of the growth process, or
surface treatment by ion implantation.

At the beginning of the algorithm on a matrix of size
50 x 50, which simulates the surface on which the film
grows, we randomly set the growth islands. The relative
share of islands in the total number of matrix elements is
an additional modeling parameter. In fig. Figure 6 shows
the state of the surface with relative proportions of
growth islands: 12%, 18% and 25%, which are randomly
placed on the crystal surface.

The number of filled nodes that are closest to the
specified determines the condition of filling the film
layer in some node. If the number of filled nodes exceeds
or is equal to half of all closest to this, the upper layer is
formed. For angular elements of the matrix, this means
that the top layer must be formed in more than one node,
for boundary nodes along the face of the crystal - more
than two, and in nodes that are not on the edge of the
crystal surface - more than four.

In fig. 7 shows the filling of the crystal surface at
different stages of film growth: 33%, 66% and almost
100% of the filling of the surface for the initial value of
the filling factor of the surface which is 12%.

For a surface with an initial filling of 12%, these
phases correspond to the 18th, 41st and 77th iterations of
the algorithm.

In our model, the rate of film formation obviously
depends on the initial coefficient of filling the surface
with growth islands. The graph of this dependence is
shown in Fig.8.

Analysis of the developed algorithm shows that
reducing the proportion of initial filling leads to the fact
that the surface no longer has nodes that meet the
conditions for the formation of a new layer, although
much of the surface remains uncovered by the new layer.
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Fig.6. Initial film formation of growth islands on the crystal surface (11%, 18% 25% in fig. a, b and c,
respectively).
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Fig.7. Initial formation of growth islands on the crystal surface (12%, 18% 25% in Fig. A, b and c,
respectively).
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required to build a single layer from the initial filling
factor of the growth surface.
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In fact, the growth of the next layer will begin, i.e.
there may be a transition to a three-dimensional process
of film growth, which may be an undesirable effect. That
is, at low fill coefficients of the initial growth surface,
there are configurations of the initial islands, at which
high-quality two-dimensional film growth is observed.
Identifying all possible initial configurations conducive
to two-dimensional growth is a task that requires
significant computing power. We present estimates of
complexity for the parameters of the problem we used to
model two-dimensional growth. The matrix defining the
initial surface has a dimension of 50 x 50. The formation
of a new layer does not occur if the fill factor is less than
10%, ie it is 250 knots of the initial surface. Thus, the
number of different ways to place the islands of growth
N is determined by formula (4):

25002500

2500 ™ 501-2250!

or

=~ = 4
250250.22502250\/500-tv/4500-r  250250.22502250.\/450-7 ( )

In(N) = 2500 - (n(2500) — 250 - [n(250) — 2250 - In(2250) — In(V450 - ) ~ 130, so, N = e*3°.

To initially fill the crystal surface with islands at the
level of 11%, among 40 variants of random initial
placement of islands, 36 island locations were identified,

leading to complete filling of the surface with the second
layer for 69, 77, 83, 88, 93, 98, 105, 110, 120, 130 and
145 iterations.
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Obviously, the choice of the initial location of the
islands is of scientific and practical importance. By
conducting a numerical experiment, we determined
several initial configurations for low coefficients of
filling the crystal area with the growth centres of the
second layer of the film.

Discussion of results and conclusions

We have considered the main mechanisms of
formation of crystalline films on a flat surface: two-
dimensional, three-dimensional and growth of needle
crystals. The Foss algorithm is considered for the three-
dimensional growth regime. One-dimensional statistics
of crystal height increments, which obviously depends on
two factors - the rate of adsorbed atoms and the rate of
evaporation, can be used to model the growth of needle
crystals, which is important for use in modern materials
for nanoelectronics.

We have also proposed an algorithm for constructing
a crystal surface that simulates the process of two-
dimensional growth or film growth in the form of a
submonolayer. For the algorithm to work, you need to
specify the initial foci of new surface formation, which
may be related to the technological features of the
application of films in the form of catalysts for the

crystallization process, such as local introduction of
impurities or surface treatment. The most important
characteristic of the algorithm is analysed - the initial
coefficient of surface filling with growth islands, and the
quantitative influence of this coefficient on the surface
growth rate is determined, which is determined by the
number of iterations required for transition from initial to
fully formed submonolayer film. The number of nearby
nodes in which the adsorbed atoms are deposited
determined growth statistics during each iteration. The
algorithm developed by us can potentially be used to
model the processes of transition from two-dimensional
to three-dimensional mechanisms of film growth on the
crystal surface.
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P.JI. Homnitarcekuit!, B.I. Fop6ymuk?, I.T. Koryr?, M.B.Bicrak®

Moae/iioBaHHSI IPOLECiB POCTY HA MOBEPXHI KPUCTAJIIB

Yepniseywbkuil HayionansHuil yHisepcumem imeni FOpis @edvkosuua, m. Yepnisyi r.politansky@chnu.edu.ua,
Ipuxapnamcokuii nayionaneHuil ynieepcumem imeni Bacuns Cmeganuxa, m. Isano-Dpankiscok,
Jlvsigcokutl HayionanbHull MeouuHuil yHigepcumem imeni Januna I aruyvkozo, m. JIvgie

VY crarTi po3rIIAgar0TECS MOJIENI MPOIECiB POCTY IUIIBOK Ta 1HIINX CTPYKTYpP Ha MOBEPXHSAX KPHCTAJIB, SKi
MAaroTh MOJIOHY KPHCTAIIYHY CTPYKTYPY i3 HE3HAYHUM IapaMETPOM HEBiIIOBIIHOCTI TPaTOK PEUOBHUH, i3 SKUX
YTBOpPECHI IUTIBKA Ta KpUCTaliyHA MiAkinanka. [IpoBeieHuid OINIAJ METOIIB MOJECNIOBAHHSI, IO OCHOBaHI Ha
AQHANITHYHUX CIIIBBITHOIICHHS Ta OOYMCIIOBAIBHHUX alrOPHTMax. PO3MISHYTO psii METOIIB MOJETIOBAaHHS
HaWOIIBII THITOBUX MPOIECiB: (OpMyBaHHS MOBEPXHI y BHIILIII MipaMilaJbHUX yTBOPEHb (TaK 3BaHi roOYacTi
KpHUCTaIIN), IBOBIUMIPHUH 13 MMOYATKOBUMH OCTPIBILSIMH POCTY Ta TPHBUMIPHHUI HEPIBHOMIPHHUI MPOIECH POCTY.
JI1s MOZeNIOBaHHS IPOLECY POCTY TONYACTHX KPHUCTAIB 3alpPOIOHOBAHO BHKOPHCTOBYBAaTH METO[, LIO
OCHOBAaHHUI Ha TayCOBIM CTaTHCTHLI MPUPOCTIB BUCOTH MOBEpPXHi. PO3MISHYTO Takok MOIENIs TPUBHUMIPHOTO
POCTY KpHUCTaNiyHOI IOBEpXHiI, sSKa BHKOPUCTOBYE iTepamiiHuii amroputM Pocca, i sfka Ja€ MOXKIHBICTH
JOCIIJIUTH TIPOLIECH CTYMiHYaTOro, HEpiBHOMIPHOTO pOCTy KpHcramiB. Ha mpoTuBary crymiHYaToMy poCTy
PO3IISIHYTO MOJeNb CyOMOHOAQTOMHOTO pOCTY IUIBKHM, OO OCHOBaHa Ha Metoxi MonTte-Kapmo. [lns
CcyOMOHOATOMHOTO POCTY ILUTIBKM 3aCTOCOBAHO TCEBIOBHUITAJIKOBI MOCIIJIOBHOCTI, SIKi MOJCIIOIOTh MOYaTKOBE
PO3MIILICHHS OCTPIBIIB 3apOUKEHHS] HACTYITHOTO HIapy Ha KPHCTATIYHIN MOBepXHi. BU3HaueHi 00UYMCIIOBANIBHI
XapaKTePUCTHKH LHOTO METOAY, a caMe 3aJIeXKHICTh YWCla iTepauiil, HeoOOXiTHUX Ui 3allOBHEHHS IMOBEPXHI
LTKOM, BiJ KOe(illi€eHTY MOYaTKOBOTO 3aIIOBHEHHS MTOBEPXHI.

Kiouosi cioBa: meroq MonTe-Kapio, pict KpucTamiB, aHaTiTHIHI METOIH.
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