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The hole energy spectrum has been studied for the spherical semiconductor nanoheterosystem with the cubic
symmetry. The exact solutions of the Schrodinger equation for the ground and excited hole states are presented
within the framework of the 6-band Luttinger Hamiltonian and the finite gap of bands with the corresponding
boundary conditions. Dependence of the holes energies from the radius of the quantum dot has been calculated
for the GaAg/AlAs heterostructure. Obtained results where compared with data obtained using the infinite
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I ntr oduction

Significant success has been achieved in the
theoretical and experimental studies of
nanoheterostructures over the past two decades. They are
the most interesting and promising for practica
application. Heterostructures with quantum dots (QDs)
are considered to be very perspective optical (laser
environments, converters of radiation) and dectric (field
transigors, solar cells) materials. Optical and electrical
properties of the QD (InAs, GaAs, CdS, CdTe, etc.) are
widely used in photodectric [2], photodynamic therapy
[3, 4] and biology [5, 6]. For example, a change in the
effective band gap of the CdS QD due to the size
quantization effect covers the wavelength range from 300
to 520 nm in optical absorption and from 400 to 700 nm
in luminescence [7].

In addition to the composition and size of a serious
influence on the properties of QD provides their form.
The spherical QD is the most simple to manufacture and
currently have the greatest practica application. In
addition, such structures are aso of interest in terms of
their physical properties, since current carriers (electrons,
holes) are characterized by confinement of their motion
in al three dimensons. Therefore, there are many
theoretical publications concerning the investigation of
the spectra of eectrons, holes and excitons in
guantum dots of different configurations [8-10].

The discrete structure of the QDs energy spectrum is
manifested primarily in the absorption spectra [2]. Peaks
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are clearly visible in these spectrain the case of a small
change in the QD size. These peaks correspond to
interband optical trangtions that are related with different
electron and hole quantum states. These features can be
described within the framework of the effective mass
model.

In the study of eectronic states often the complex
structure of the valence band in semiconductors, that
forming the heterosystem [9, 11-12, 15, 16], don't take
into account. In these cases, the effective mass
approximation were used. The inhomogeneous change in
the effective mass of quasiparticles near heterojunctions
is also taken into account, the so-called single-band
approximation. These approximations are suitable for
eectronic states of wide-band crystals forming a
heterosystem.

For hole states, this approximation gives inaccurate
results in energy and it is unable to describe a series of
optical characterigtics. As shown in [13], the first two
peaks in absorption spectra are related to trandtions
between the lower electron (1S) and two different hole
levels (1S3, and 2S;5,). In the QDs spectra with a radius
of 4.1 nm, the bands corresponding to the transition
between the 1S electronic state and the hole level are dso
observed, resulting from the spin-orbit splitting (3Sy.).
That is why multiband approximations should be used
for the correct description. In the series of theoretical
works [14-16] for single-layer QD heterosystems
Ga/AlSh and for double-layer CdSe/ZnSe/vacuum
where calculated the eectron and hole energy states and
the absorption coefficient at different QD radius. In this
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case, the parameters of these systems for hole states
allow the use of a 4x4 band model, since for a massive
GaSh crystal the value of the spin-orbital hole band is
large (A=0.77€V) and for CdTe A=0.91¢€V, <0 its
influence can be neglected. However, for the
heterosystems GaAs(A = 0.34)/AIAS(A = 0.28),
INAS(A = 0.38)/GaAs(A = 0.34), it is necessary to
consider the light and heavy holes bands, as well as the
spin-split band, that is, the so-called six-band Luttinger
model. The complex structure of the valence band leads
to the mixing of heavy and light hole states on the
interfaces, which is caused in a quditative change in
their energy spectrum and wave functions.

The study of spin-splitting of the valence band
allows us to determine the microscopic parameters that
describe the hole energy spectrum, the geometric shape
and size of the nanostructure, the value of the spin-orbital
interaction, and also provides a new tool for studying the
symmetry of nanobjects.

That iswhy the aim of thiswork are:

* the study of the influence of the complex structure
of the valence band (bands of light and heavy holes and
spin-split hole band) on the energy spectrum of
nanoheterosytems;

» the study of the dependence of different hole states
on the QD radius,

* the qualitative and quantitative compare obtained

results for different models of hole states.

. Problem statement. basic for mulas

The spherical semiconductor nanocrystal with radius
R, which is placed in a semiconductor matrix, is
considered. The hole is confined in a spherically
symmetric finite rectangular potential well due to the
band offset. The potential energy is given by the
expression:

‘!O,r <R
{Vo,r >R (@)

Let's consider that the QD material and the matrix
are semiconductors with cubic symmetry. The value of
the spin-orbital splitting in the valence band, and the
Luttinger parameters y; and y, are approximately the
same[18, 19].

The analysisis carried out using the kp-method [20],
in the framework of the six-band Hamiltonian, which
describes the energy spectrum of the valence band,
neglecting the corrugation of isoenergy surfaces.

The atomic system of unitsisused in calculations for
convenience. The Hamiltonian of the system in the
matrix formiswritten in this way:

U=

P+Q L M 0 iyy2L -ivam
L P-Q 0 M -iv2Q  i3/2L
. M’ 0 P-Q -L -i32L -iv2Q U o
0 M’ L P+Q  -iWaMT -ijy2r
qJy2r iv2Q 32l ivam o P-D 0
ivVaMm® -iJ32L iV2Q iyy2L o P-D

where following notations are introduced

P:%pZ,ng(pf— pr), L='i\/73g3' p,, M =\]3/2q)§’

pr=pt

9:9: - ae the Luttinger parameters which set the
effective  masses of heavy and light holes:

m= }@+w)

10,1 £R, | g,r£ER,
operator, {
19, r>R, , g, r> R,
Particles moving in a spherically symmetric field. Its
states are described by the dstationary Schrodinger
equation:

(91 29) pi is momentum

m,pi=miua,m=-iﬂ

| |
_ =-]— = | — 3
ﬂX,py Iﬂy,pz 'ﬂz’ ©)
Hy =By . (4)

After substituting in (4) the spherically symmetric

solutions obtained in [21] for even (Y i) and odd (Y 1)
hole states with afull momentum j
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& Re Fo, Ru @ O
—"sz(zj-l)(zj-z) T Riei+2ei+e M
g RF 5
%® Re Fe Ru o O
=&J2(i+0)@j+3@i+a 7 J2K2y1x21+2) e
g RF P E, ©

where FE(A'),F(kZ) are four-dimensiona and two-dimensional vectors-columns [20] based on spherical harmonics

Yim (q,j ) ~We obtain two systems of equations for the radial components of the holes eigenfunctions, Ry Rno-Rsare
135

located in the QD and outside QD ( j _E E E o).
For even holes statesin the QD system of differential equationswill look like:
2j . 2j
(- 2‘21) DR - g\/s(zj-l)(zus( A 4R~ 2 ‘J (D;.1,2R8) - ER}, =0,
2j . . 3(2
G PO, R - BT DRIFIALRY - 5 PR AR R =0 O
2j+3 . 3(2
2P0 0R - 3 P KR - $(0,0R) - (B- DR =0
and for odd states
g 92j+5 : g — - . : 9 2j-1 N -
G 5 CreR 4 VA2 DRI TR+ 5 (D, 0aRe) - ER, =0
9 ,92j+5 J_— 93(213)+ N e o
(G 22(J+1))( aR) * %2i- DRI+ (AR 5,75 (AR )- ER, =0
2j 2
9 P20,k - S 3“ 2(A.0:R)- £0,,.R)- (E- DR =0,
J+1 J+1 (7)
where E, D are dimensionless quantities and the following notations are introduced:
2 2 2 2
° .29 10+ , T 2417 I7-1 o ¢° 2-19 1(-2
p =t EL 0D 4= e E s e 1 201 | 8
I 'nr r'nr (2 qr? rofr r? A ﬂr2 r ﬂr+ (2 (8)

Systems of differential equations will have exact solutions for even and odd states. In the inner region for a
spherical QD, the solutions of the equations system (radial functions), are written using the sum of the three spherical
Bessdl functions of the first kind:

Jl1+(r) = Cle+]J2(k|r) +C2‘Jj+112(khr) + Cz‘]jwz(ksr)’

. /32'—1 2j+3 /32'—1
J2(")='Cl (2.J+ )‘Jj-s/z(k|r)+cz ﬁ‘lj-s/z(khr)' G %Jj%‘/z(ksr),
. 2E - (g, +29)k? 2E - (g, +29)k’
R0 =6, 5L T OB gy ve, L 2RO, .

and solutions for odd states
Ry (r) =c,y2j - 13, o (Kr) + 6y 2] - 13 4o (Ker) +Coy/2] - 135 45 (Kyr),

RE() =682+ 31a (K1)~ & o3, + 2T+,

+20)k2 - 2E . +29)k? - 2E
+l(gl g)lj ‘]j-JJZ(k1 r)+C6 J+l(gl gl)<25 Jj_m(ksr).
ok gK; (10)

The squares of the wave vectors kh , kI , Kg are connected with the proper energy E of the investigated hole

R(r) =,/
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states by the following relation:

2E(g, +9)-

D(g, +25) + | €2E(0, +0) -

S i

(9.~ 20)(g, +40)

D(g. +20)g - 4E(E- D)(6.- 2)(@+49) .,

In the matrix (I = R ), the solutions of the equations can be represented using modified spherical Bessdl functions

of the second kind for even (12) and odd states (13):

Jl1+(r) = ClKj+]Jz(kIr) + C2Kj+112(khr) + C3Kj+u2(k r,

32j- 1)

ry=-¢ |22~
N T

K z2(kr)+c,

3(2
. 2e- (g, +29)K? i 2e-(g,+2g)k?
RI*(r)= cl,/21+ glklz ' sz(kr)+c«/2j+ glksz K2 (k)

13/2( K,r) - C1/3(2] 1) K a2 (K,

Rgl () =c,2] - 1K, (k) + 2] - 1K, 1, (K1) +Coo/2] - 1K, 5 (Kr),

RE() = 02T+ K a1~ Gt s

771(0t20)K’ - 2E

R () =c,

(12)
J2j-1 :
’ (KaF) + Co/32] + 3K ga (K,
(13)
2g)k? -
KJ’-JJz(k1r)+CG l(gl+ gliz j-ﬂz(ksr)-

gk?

The squares of wave vectors k; K, ks are obtained

from the  formula (1) by
E® E-V,9,® g,',g® g",D® D",

If consder multiband models for planar
heterostructure, than the boundary conditions for the
wave function are obtained by integrating the
Schrodinger equation through the heterointerfaces and
taking into account the continuity of the envelope wave
function [22]. The resulting boundary conditions are
given below:

Y il =Y Ao, 3.y, 0= 0.8 ol
where A and B are two materials separated by a
heterointerfaces z=0.

Asin the case of flat heterostructures, for a spherical
guantum dot, the Schrodinger radial equation has the
following form

substitution

j+6
ha -
8%5

(HP - EP)RP =0, RP =

( (14)

T inC
@lﬂ ng:)r+f-8 r

- pa/b’ 1

J+p/2

WD, 100 e

J 3p/2

1 3/2
D=grt f7= p(J+—-—)

c=(59- g-1/3.
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papbpgA\J 3p/2

ipC
L +cPgD, - 3f, P
glﬂr j r 4 r

where EE P) isthe eigenenergies.

The Schrodinger equation is integrated through the
points r=R to obtain the boundary conditions. Where
r=R is spherica hetercinterface that separates two
materials. Taking into account the continuity of theradia
wave function, the necessary boundary conditions have
form:

(R, ,= (R
(P) ( R(P) =
" (ij )A|r:R 0

The radial component of the matrix operatdr of the
probability density flux is obtained from a radid

HamiltonianHJ(p) We take into account that the

i)
r=a+0

Blr=r+0

Hamiltonian contains an operator AP , and for p=1the
even states and p = -1 are respectively odd states. We
will get:

p\/Eajp(g:)r + flj'pg)g
-V2aPgALP), :

il i, C
— +2f,° =
gl‘ﬂrr 2oy

(15)

The specified boundary conditions alow us to
calculate the energy spectrum of spherical heterosystems.
If in the formulas (9) - (13) the value of A is directed to
infinity, then we obtain the formulas of the 4-band model
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[23], which doesn’t take into account the spin-orbital
band.

II. The hole energy spectrum of the
GaAs/ AlAs heter ostructure

All numerica calculations have been obtained for

heterostructure where spherica GaAs nanocrystal is
placed in the AlAs semiconductor matrix. Parameters for
semiconductor nanoheterosystem are known [19]:

GaAs:g, =6.98, g,=2.06; g,=293 g :292_;393; D=0.341¢B

1l
AlAs:g, =3.76; g, =0.82 gy =142 g =2+, ;

Analyzing the crystals parameters, it can be seen that
the hole and electron states can be calculated separatedy
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Fig. 1. Dependence of the hole energy on the radius
of a quantum dot R: dashed curves are the model of
an infinite potential well for a hole; solid curves are
the model with a finite gap of bands. Solid curves:
even states 1—183/2, 2— 185/2, 4 — 187/2, 5 187/2, odd
states 3— 1S5),,6 — 1S;p,; dashed curves. even states
1 -1S;,, 2 — 1S, 4' — 1S5, 5— 1S5, odd states
3-155,6' - 1S5

asaresult of arather large difference between the energy
of the top of the valence band and the bottom of the
conduction band.

That is why, we can use a spherical four-band and
six-band Luttinger model for hole states and a one-
parabolic parabolic for eectron dates of a
nanoheterosystem.

As can be seen from (16), the values of spin-orbital

bands D, DI I are such that they require the use of a six-

band model. However, the correct use of models can only
be established as a result of numerical calculations. The
results of calculations of the energy dependence of the
lowest levels on radius R are shown in Fig 1. From the

figure it can be seen that for Sy, (L=0) (Sstate)
an increase in the radius R is accompanied by a

monotonous decrease in the holes energy for each value
of the radia quantum number (n,). If we assume that

there is an infinite bands gap (Vo® ¥ ), then the
corresponding radia functions (9)—10), (12)—(13), at the
interface (r =R) will be zero. In this case, the

dependence E(R) is represented by dashed curves
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(16)

2.; D" =0.28¢B; V,=0.562¢5B.

1¢- 6¢ From the results of the comparison of the holes
ground state energy (n, = 1) in a finite-gap Vo band

model (E) with the mode of an infinite Vo =¥
potential well for a hole (Ey), it turns out that £, < Ej,
These results are fully explained by the Heisenberg
uncertainty principle. For numerical data calculations
show that for a given heterosystem in the R > 7.5 nm
. . . & - E
region, therelativeerrorisd = £ 23.83%.

For R = 40 A, & = 39.53%, but for R = 20 A,
& = 59.79%. The energies values of excited states
(nr=2, 3, ...), caculated in these models, show even
greater discrepancy.

Despite the fact that we have obtained a finite
number of bound states for VO:O.562eB, and an

infinite number for the infinite potential well model, the
relative error for a given R increases the same way as for
n=1, thatisfor n, = 2R=40 A, n = 455 %, and for R=
20 A, n=67,3%.

Fig. 2 shows the dependence of the hole ground state
on the QD radius, caculated within the framework of
various models. The figure shows the quantitative
difference between the results of the six-band, four-band,

A\

150

100

E.meV

50

20 40 60

RA
Fig. 2. Energy dependence for the hole ground state,
caculated taking into account the four-band
approximation  (dashed curve 3), six-band

approximation (curve 2), the heavy holes band
(dashed curve 1), the light holes band (dashed curve
4), and the difference DE (insert) between the four-
band and a six-band approximation.
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and one-band model of the valence band. Consistent
consideration of all formulas will result in the
dependence of energy on the radius of QD, which is
indicated by curve 2.

If we use the 4-band approximation (neglected by the
spin-orbital band) as in [23] then the energy of the
ground state will be described by curve 3. The interface
of the heterostructure has a stronger effect on the energy
spectrum due to a decrease in the size of the QD.
Therefore, for small radius, the numerical values of
energy differ from each other under the specified
boundary conditions.

If we neglect the complex structure of the valence
band and consider it non-degenerate, and for the
calculations to teke the mass of a heavy hole, then
energy, as a function of the radius of QD, is represented
by the dashed curve 1. The graph shows that less energy
is obtained in the one-band model for heavy holes than in
the four-band and six-band models. Naturaly, the energy
of light holes is greater than that of heavy ones.
Naturally, the energy of light holes is higher that of
heavy holes. In addition, it is larger than the four-band
and six-band models.

The sequentiad account of the spin-split band
somewhat reduces the hole energy. As can be seen from

the figure (insert) curve 5 at small radius (R = 20,%\),
the four-band approximation (stroke curve 3) and six-
band approximation (solid curve 2) differ by 13.5 meV.
And this can affect the absorption spectra in such
systems. Increasing the radius of quantum dot to

R:]_OO,OD\ indicates the possibility of using a smpler
four-band approximation in this problem.

In the present work the hole states energy of
sphericdl  GaAgAlAs  nanoheterostructure in  the

approximation of the isotropic valence band for the
Luttinger Hamiltonian taking into account the final gap
of the bands have been defined. In the range of small
radius it is necessary to take into account the double
degeneration of the hole at the top of the Brillouin band
and the spin splitting in the valence band. The states and
the finiteness of the spherical quantum well significantly
affect the numerical values of the hole energy.

It is possible to calculate the probabilities of
interband trangitions in the emission and absorption
spectra of a given and similar heterostructures on the
basis of the formulas obtained for the wave functions of
hole states.

The hale states has been calculated using four-band
and six-band models for spherica QD. It is shown that,
neglecting the complex structure of the valence band,
obtained or understated (consider only to the heavy holes
band) or inflated (consider only to the light holes band)
energy compared to multi-zone models. This will allow
us to obtain the energies of the acceptor states for
arbitrary radius and to agree with the results of
experimental work in massive crystals. It is also shown
that for small radius of QDs (2 - 4 nm) in crystals with a
large bandgap and an intermediate value of the spin-
orbital band, a complete 6-band Hamiltonian should be
used for hole states. For larger radius, the 6-band model
can be approximated by 4-band model.
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Cnekrp eHeprii Aipok BUBYEHMH Ui C(EPUYHOI HAIBIIPOBIZIHUKOBOI HAHOIETEPOCHCTEMH 3 KyOiuHONO
cumerpieto. TouHi pitnenHs piBHsHHA lpeninrepa i OCHOBHOro Ta 30y/DKCHOTO CTaHIB JIPOK NPEACTaBIICHi B
pamkax 6-cmyroBoro ramiisroniana JIyrTiHrepa Ta KiHLEBOrO IPOMIXKKY CMYT 3 BiJIIOBIAHMMM I'DaHUYHUMU
ymoBamu. st rerepocrpykrypu GaAs / AlAS o0uunciieHo 3aexHICTh eHepriii AipoK BiJ pajiyca KBaHTOBOI
Toukd. OTpUMaHiI pe3ynbTaTH IOPIBHAHO 3 JaHUMH, OTPUMAHMMH 3a JIOIIOMOIOK0 MOJENi HECKiHYEHHOro
MIOTEHIIIHHOTO KOJIOJA351, @ TAKOXK OTHO/IIATIa30HHOI MOJIEN [UISl BAKKHUX 1 JIETKHX JipOK.

Kitio4oBi c;10Ba: KBaHTOBMIA IOH, CIIEKTP AIPOK, 6-Iiara3oHHa MOJEIE.
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