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With the application of a linear theory of elasticity of anisotropic crystals and the use of experimental values 

of elastic moduli Сij and compliances Sij given in the Landolt-Börstein tables, characteristic surfaces of Young's 

moduli, angular distributions of Poisson's ratios μ(φ, Θ, ψ) and indicating auxeticity surfaces of single crystals of 

intermetallic compounds Ag-Au, Cu-Ni, Cu-Au, and Cu-Zn were for the first time constructed. 
The extremely high sensitivity of the component of the extreme values of Young's moduli E<110> to anomalous 

deformations during phase transformations of the order-disorder type was established. Anomalies of the 

concentration dependences of the auxetic parameters μmin(X), μmax(X) and the auxeticity degree Sa(X) near the points 

of phase transformation of the second order type were revealed. 
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Introduction 

Intermediate phases in state diagrams that have a 

predominantly metallic type of chemical bond are called 

intermetallic compounds. The variety of properties of 

intermetallic compounds ensures their wide practical 

application. The crystal structure of these phases, as a rule, 

differs from the structure of the components that form it. 

Solubility limits of components in the solid state and the 

conditions for the formation of stable intermediate phases 

are determined by the semi-empirical Hume-Rothery 

rules. If the crystal lattices of components A and B are 

isomorphic, and the difference in atomic radii Δr=(rA-rB) 

does not exceed 8-15%, then substitutional solid solutions 

with unlimited solubility of the components are formed 

[1]. During heat treatment of solid solutions, processes of 

redistribution of atoms can occur, as a result of which the 

atoms of the components will occupy certain defined 

positions in the nodes of the crystal lattice, forming 

superstructures. Such processes are called ordering and 

are accompanied by a change in physical and mechanical 

properties [2].  Ordered solid solutions can be considered 

as intermediate phases between solid solutions and 

chemical compounds. 

Of all the intermediate phases with a wide range of 

component solubility, the metallic nature of the chemical 

bond is most pronounced in electronic compounds (Hume-

Rothery phases) [3]. The crystal lattices of these 

compounds also differ from the lattices of the components 

that make them up, and their stability is determined by the 

electronic configuration, that is, the ratio of the number of 

valence electrons to the number of atoms in the compound 

n=c/a. Electronic compounds are homogeneous in a wide 

range of concentrations. 

The physico-chemical and mechanical properties of 

the above-mentioned intermetallic compounds, as a result 

of their wide application, have been thoroughly studied [1-

3]. At the same time, the auxetic properties of these 

compounds are not well known. We are aware of only a 

few scientific works [4-7] in which Young's moduli E, 

shear moduli Gs and Poisson's ratios μ are determined for 

some single crystals of cubic system in certain 

crystallographic directions. However, to analyze the 

anisotropy of elastic properties of single crystals, it is 

necessary to construct the characteristic surface of 

Young's moduli. The angular distribution of Poisson's 

ratios μ(φ, Θ, ψ) can be constructed only with fixed values 

of one of the Euler angles φ, Θ, ψ, that is, it is impossible 

to construct a four-dimensional surface in a three-

dimensional coordinate system. Therefore, identifying the 

mechanisms and regularities of the formation of auxetic 

surfaces in crystals is a rather difficult task. 
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In this work, using the theory of elasticity of 

anisotropic solids, modern methods of physical acoustics 

and computer technology for processing experimental 

results, programs were created that allow one to construct 

the characteristic surfaces of Young's moduli Ei, angular 

distributions of Poisson's ratios μ(φ, Θ, ψ) and indicating 

auxetic surfaces for single crystals of arbitrary systems.  

The analysis of the auxetic properties of Ag-Au, Cu-

Ni, Cu-Au, Cu-Zn, Cu-Al intermetallic alloys was carried 

out using the experimental values of the elastic moduli Cij 

and compliances Sij given in [8]. The characteristic 

surfaces of Young's moduli were constructed and the 

extreme values Emin and Emax of the studied single crystals 

were determined. It was established that the negative 

values of Poisson's ratios μmin<0 are concentrated around 

some crystallographic directions and form indicating 

auxetic surfaces in space. The basic conditions and 

regularities of the formation of axial and non-axial 

auxeticity of cubic system single crystals have been 

revealed.  The transformations of auxeticity indicating 

surfaces that occur during phase transitions in the 

processes of ordering in solid solutions and the appearance 

of superstructures and the formation of complex electronic 

compounds (Hume-Rothery phases) in intermetallic 

compounds were studied. 

This study is a continuation of the cycle of works on 

the study of the anisotropy of elastic properties, the 

formation of auxetic properties and the dynamics of 

crystal lattices of single crystals of various systems. 

I. Theoretical foundations 

The vast majority of the intermetallic compounds 

studied by us have a cubic lattice. The presence of axes of 

the 3d and 4th orders in the cubic system causes the 

appearance of the following relationships between the 

components of the elastic moduli (in the Voigt notation) 

[9] 

 

 𝐶11 = 𝐶22 = 𝐶33;  𝐶44 = 𝐶55 = 𝐶66;   

 

  𝐶12 = 𝐶13 = 𝐶23;  𝐶45 = 𝐶46 = 𝐶56 = 0  (1) 

 

and the matrix of elastic moduli will be written in the 

form: 

 

 𝐶𝑖𝑗 =
|

|

𝐶11 𝐶12 𝐶12

𝐶12 𝐶11 𝐶12

𝐶12 𝐶12 𝐶11

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝐶44 0 0
0 𝐶44 0
0 0 𝐶44

|

|
  (2) 

 

As follows from (2), there are only three independent 

components of the elastic modulus C11, C12, C44 for cubic 

system crystals. Note that the matrix Cij, as well as Sij are 

not second-rank tensors and their components are not 

transformed as tensor components. The relationship 

between the elastic moduli Cij and compliances Sij, for a 

given system, is as follows 

 

𝐶11 =
𝑆11+𝑆12

(𝑆11−𝑆12)(𝑆11+2𝑆12)
;   𝑆11 =

𝐶11+𝐶12

(𝐶11−𝐶12)(𝐶11+2𝐶12)
;   

 

𝐶12 =
−𝑆12

(𝑆11−𝑆12)(𝑆11+2𝑆12)
 ;   𝑆12 =

−𝐶12

(𝐶11+𝐶12)(𝐶11+2𝐶12)
;  (3) 

 

 𝐶44 =
1

𝑆44
;   𝑆44 =

1

𝐶44
  

 
For isotropic crystals, the components Cij and Sij at 

certain ratios acquire a certain physical meaning, which 

can be compared with known technical characteristics of 

materials, such as Young's modulus E, shear modulus Gs, 

and Poisson's ratio μ: 

 

 𝐸 =
1

𝑆11
;   𝐺𝑆 =

1

2
(𝐶11 − 𝐶12);    

 

 𝐺𝑆 =
1

2
(𝐶11 − 𝐶12); 𝜇 =

𝑆12

𝑆11
   (4) 

 

For anisotropic solids of cubic symmetry, Young's 

modulus is equal to [9]: 

 

 (𝐸𝑛)−1 = 𝑆11 − (2𝑆11 − 2𝑆12 − 𝑆44)(𝑛1
2𝑛2

2 + 𝑛1
2𝑛3

2 + 𝑛2
2𝑛3

2)  (5)

 

where n1, n2, n3 are direction cosines. 

From the relation (5) it follows that when one of the 

factors is equal to zero, (𝐸𝑛)−1 = 𝑆11, like for the 

isotropic crystals. The second factor  (𝑛1
2𝑛2

2 + 𝑛1
2𝑛3

2 +
+𝑛2

2𝑛3
2) = 0 only in crystallographic directions <100>. If 

the second factor (2𝑆11 − 2𝑆12 − 𝑆44) = 0, then En=1/S11 

in all directions, that is, the crystal will be elastically 

isotropic. From the condition of isotropicity of cubic 

system crystals (2𝑆11 − 2𝑆12 − 𝑆44) = 0 it follows [10]: 

 

 𝐴 =
2(𝑆11−𝑆12)

𝑆44
=

2𝐶44

𝐶11−𝐶12
=1  or  𝐴 =

2𝐶44

𝐺𝑆
= 1   (6) 

 

where Gs is shear modulus which for Cu, Ag, Au, CuAu, 

CuAl, CuZn crystals is equal to [9]: 

 

 𝐺𝑆
−1 =

4

3
(𝑆11 − 𝑆12) +

1

3
𝑆44  (7) 

 

From the relations (5) – (7) it is easy to obtain the 

expression for the extreme values of Young’s modulus  

 

 𝐸(100) =
1

𝑆11
;   𝐸(110) =

1

𝑆11−
1

4
𝑆44(𝐴−1)

;    

 

 𝐸(111) =
1

𝑆11−
1

3
𝑆44(𝐴−1)

   ( 8 ) 

 

For single crystals of cubic system the Poisson’s ratio 

is given by [10]: 
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 𝜇𝑖𝑗
′ = −

[
(𝛼11

2 𝛼21
2 +𝛼12

2 𝛼22
2 +𝛼13

2 𝛼23
2 )𝑆11+(𝛼11

2 𝛼22
2 +𝛼12

2 𝛼21
2 +𝛼11

2 𝛼23
2 +𝛼13

2 𝛼21
2 +𝛼12

2 𝛼23
2 +𝛼22

2 𝛼13
2 )𝑆12+

+(𝛼12𝛼13𝛼22𝛼23+𝛼11𝛼13𝛼21𝛼23+𝛼11𝛼12𝛼21𝛼22)𝑆44
]

[(𝛼21
4 +𝛼22

4 +𝛼23
4 )𝑆11+(2𝛼21

2 𝛼22
2 +2𝛼21

2 𝛼23
2 +2𝛼22

2 𝛼23
2 )𝑆12+(𝛼22

2 𝛼23
2 +𝛼21

2 𝛼23
2 +𝛼21

2 𝛼22
2 )𝑆44]

  (9)

 

where 𝛼𝑓(𝑖𝑗𝑘𝑙)𝑔(𝑚𝑛𝑜𝑝)  are direction cosines, and  

𝑓, g = 1, 2,3. 
The relations (5), (7), (9) were used to construct the 

characteristic surfaces of Young’s moduli and the 

indicating auxeticity surfaces of single crystals under 

study. 

II. Discussion of results 

а) Unlimited solid solutions. 

The study of the mechanisms and regularities of the 

formation of indicating auxeticity surfaces should be 

started with the alloys, the components of which have full 

continuous mutual solubility in both the liquid and solid 

states. These requirements are met by Ag-Au alloy. The 

difference in atomic radii is 0 (rAg=rAu=0.144 nm). The 

crystal lattice constant of the alloy continuously increases 

from aAu=0.4078 nm to aAg=0.408624 nm. The absence of 

superstructural lines on X-wave diffractograms, that is, the 

absence of ordering processes in Ag-Au alloys, was proven 

by specially conducted studies. [1]. 

Fig.1 shows the characteristic surfaces of Young’s 

moduli, angular distributions of Poisson’s ratios μ(φ, Θ, ψ) 

at φ=0, and indicating auxeticity surfaces of Ag-Au alloys. 

The characteristic surfaces of Young's moduli have a 

similar shape, just as for pure metals Cu, Ag, Au [10]. The 

anisotropy of the crystals, calculated from relation (6), 

increase from AAu=2.88 to AAg=9.01, as does the length of 

the chemical bond (aAu=0.4078 nm to aAg=0.408624 nm). 

The experimental values of Young's moduli, calculated 

according to relation (8), reach maximum values at 50% 

Au and, accordingly, are equal to [5]: E[100]=50.8GPa; 

E[110]= 95.1 GPa;  

E[111]= 134.0 GPa. The maximum hardness value is 

achieved by Ag-Au alloys containing 50% Ag:  

HB = 28 кg/mm2 [1]. 

The regularities of formation of the characteristic 

surfaces of Young’s moduli of cubic system single 

crystals are described in [10]. 

Due to the presence of 2nd, 3rd, and 4th order axes in 

cubic system crystals, the function μ(φ, Θ, ψ) is periodic 

with period π, and the surface of the angular distribution 

μ(φ, Θ, ψ) is formed both by positive μ >0, as well as 

negative μ<0 values. Recall that μ(φ, Θ, ψ) can be 

constructed only at fixed values of one of the Euler angles 

φ, Θ or ψ (in Fig. 1, b φ =0). 

An insignificant part of the negative values of μmin<0 

is concentrated in symmetrically equivalent 

crystallographic directions <110>, forming indicating 

auxeticity surfaces of single crystals of the Ag-Au alloy 

(Fig. 1, c). As Au % increases, the negative values of 

Poisson's ratio μmin grow, gradually approaching zero (Fig. 

2) 

Note that for Ag-Au alloys, as well as for the vast 

majority of cubic system crystals, negative μij values are 

observed in crystallographic directions <110> - non-axial 

auxeticity. A necessary and sufficient condition for the 

occurrence of non-axial auxeticity for cubic system 

crystals is [10]: 

 

 𝑆11 + 𝑆12 −
1

2
𝑆44 > 0   (10) 

 

The area of indicating surfaces Sa (or the auxeticity 

degree) gradually decreases in proportion to the decrease 

in the elastic anisotropy factor A and concentration X (Fig. 

3). Therefore, for continuous Ag-Au substitutional solid 

solutions, with increasing X concentration, all auxetic 

properties (μmin, μmax Sa) change linearly, as expected. 

In the Cu-Ni alloy, both components have a fcc lattice, 

the periods of which are aCu=0.361479 nm; 

aNi = 0.352430 nm (Δa= 0,009043 nm). The fcc lattice is 

preserved in the entire range of temperatures and 

concentrations. The atomic radii are equal:  rCu=0.128 nm, 

rNi= 0.124 nm [1].  The average deviation of the values of 

the atomic radii is not exceed 3%, which fully meets the 

requirements of the Hume-Rothery rule, necessary for the 

formation of a continuous series of substitutional solid 

solutions. Therefore, the Cu-Ni alloy can serve as an ideal 

example of unlimited solubility of components in the solid 

state. 

For single-crystal Cu-Ni samples, when Cu atoms are 

completely replaced by Ni, a change in the main values of 

mechanical parameters should be expected within the 

limits of: 

 

E<111>(Cu)= 190,0 GPa → E<111>(Ni)=300 GPa 
 

Gs(Cu)=23.4 GPa  → Gs(Ni)=45.4 GPa 
 

μmin(Cu)= - 0.13  → μmin(Ni)= - 0.01 
 

μmax(Cu)= + 0.8  → μmax(Ni)= + 0.65 

 

In [5], for Cu and Ni single crystals the following 

values of Poisson’s ratios were obtained: μmin(Cu)=-0.13; 

μmax(Cu)=+0.8; μmin(Ni)=-0,07; and the average values for 

polycrystals are known to be equal to  

<μ>(Cu)= + (0.31 – 0.34); <μ>(Ni)=+ (0.27 – 0.31). Thus, 

during the formation of a substitutional solid solution the 

replacement of atoms of solvent (Cu) by the atoms of 

dissolving element (Ni), which are distinguished by 

somewhat smaller size of atoms (2.75%), should lead to a 

gradual linear compression of the alloy crystal lattice. In 

conformity with Vegard’s law, in this case, a linear 

dependence of crystal lattice periods on the concentration 

a(X) should be observed.  Similar concentration 

dependence can be found for other physical and 

mechanical parameters of solid solutions (see Fig. 2, 

Fig. 3 for Ag-Au alloys). 

Fig. 5 shows the concentration dependences of 

Poisson's ratios μmin and μmax and Fig.6 – the concentration 

dependences of the auxeticity degree Sa for Cu-Ni alloys. 

Despite the smooth change in concentration at X= 70%, 

there is a sharply expressed anomaly of the μmin(X), μmax(X) 

та Sa(X) dependences, which is not typical for continuous 

substitutional solid solutions.  
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Au 4%   μmax=0.82 μmin= -0.11 Sa=0.1 

     
Au 6%  μmax=0.8 μmin= -0.1 Sa=0.1 

     
Au 25% μmax=0.8 μmin= -0.09 Sa=0.07 

      
Au 50% μmax=0.81 μmin= -0.1 Sa=0.07 

      
Au 75% μmax=0.84 μmin= -0.07 Sa=0.05 

      
а)    b)    c)   

Fig.1. Characteristic surfaces of Young’s modulus (а), angular distributions of Poisson’s ratios μ(φ, Θ, ψ) at φ=0 (b) 

and indicating auxeticity surfaces of single crystals (c) of Ag-Au alloys. 
 

 
 

Fig.2. Dependence of Poisson’s ratio μmin for Ag-Au 

alloy on the concentration X of Au. 

Fig.3. Dependence of auxeticity degree Sa on the 

concentration Х for Ag-Au alloy. 
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This anomaly can be explained by the presence of a 

second-order phase transition in the pure Ni component 

(ferromagnet → paramagnet, Curie temperature 

TC = 641 K) [11]. When cooling below TC, ordering 

occurs in the arrangement of spins (magnetic phase 

transition of the order-disorder type or ordering type). 

Such phase transformations are accompanied by a 

slight change in the slope of the curves of the temperature 

dependence of the crystal lattice periods a(T). For alloys 

with a concentration X = 43% Ni, the Curie temperature 

decreases to 0 K (see the state diagram of Cu-Ni. Fig. 1, c, 

page 148c [11]). 

The anomalous changes in the auxetic parameters 

μmin(X), μmax(X), Sa(X) that we discovered occur at a 

Ni 2.34% μmax=0.8 μmin= -0.17 Sa=0.15 

     
Ni 31.1% μmax=0.77 μmin= -0.18 Sa=0.15 

     
Ni 53.8% μmax=0.75 μmin= -0.18 Sa=0.15 

     
Ni 65.5% μmax=0.75 μmin= -0.18 Sa=0.15 

     
Ni 77.2% μmax=0.75 μmin= -0.15 Sa=0.15 

     
Ni 92.7% μmax=0.65 μmin= -0.1 Sa=0.11 

     
а)    b)    c)   

Fig.4. Characteristic surfaces of Young’s moduli (а), angular distributions of Poisson’s ratios μ(φ, Θ, ψ) at φ=0 (b) 

and indicating auxeticity surfaces of single crystals (c) of Cu-Ni alloy. 
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concentration of X≈70% Ni (Fig. 5, Fig. 6). It follows from 

the state diagram of Cu-Ni that for this alloy the Curie 

temperature is equal to room temperature, that is, the 

ferromagnet → paramagnet magnetic transformation 

occurs at ТC=273K. Note that the technique proposed by 

us makes it possible not only to reveal anomalous 

deformation in crystals, but also to obtain a quantitative 

characteristic of the auxetic properties: extreme values of 

Young's moduli Emax, Emin, Poisson's ratios μmin, μmax, and 

auxeticity degrees Sa of crystals under study. 

 

 
Fig.5. Dependence of Poisson’s ratios μmax, μmin  on the 

concentration Х for Cu-Ni. 

 

 
Fig.6. Dependence of auxeticity degree Sa on the 

concentration Х for Cu-Ni. 

 

In Cu-Au alloys, the components have identical fcc 

lattices. This condition is necessary but not sufficient for 

the formation of unlimited substitutional solid solutions. 

The state diagram of Cu-Au has a point of intersection of 

the liquidus and solidus curves at a temperature of 1183 K 

and a concentration of X=50% Au [1], which indicates the 

presence of solid state transformations in the Cu-Au 

system. Crystal lattice periods aCu=0.361479 nm; 

aAu=0.046351 nm; atomic radii rAu=0.144 nm; 

rCu=0.128 nm. The average deviation of the atomic radii 

11 %, which in general also satisfies the Hume-Rothery 

rules necessary for the formation of a continuous series of 

substitutional solid solutions.  

Anisotropy of Young's moduli of Cu-Au alloys can be 

determined by relation (8). Thus, for instance, for an alloy 

with concentration Х=10 % the experimental values of 

Young’s moduli are equal to: Е<100>=62.0 GPa; 

Е<110>=124.0 GPa; Е<111>=187 GPa; (Fig.7), and  

Е<100> < Е<110> < Е<111>. The minimum values Е<100>(X) 

change linearly with increasing concentration of Au. At 

the same time, anomalies are observed on the dependence 

curves Е<110>(X) and Е<111>(X) at X1=25% and X2=50%, 

which are associated with ordering processes in Cu-Au 

solid solutions, see Table 1). 

Table 1  

Anisotropy of Young’s moduli. 

% 

content 

of Au 

Young’s moduli Е, GPa Shear 

modulus G, 

GPa 
Е<100> Е<110> Е<111>. 

0.23 66.4 129 189 23.4 

10 62.2 125 188 21.85 

25 61.5 118 171 21.5 

50 54.9 90.2 114.8 19.0 

80 50.8 93.6 130 17.0 

 

Ordering phenomena in double alloys with fcc lattice 

are studied in detail in [1, 2, 12]. 

When the concentration of one of the components 

increases, for example, in the interval X=(0÷20) % Au, the 

Cu-Au alloy is a disordered solid solution with an fcc 

lattice (see the state diagram of Cu-Au, Fig. 1d, p. 149, 

[11] ). The Cu and Au atoms are randomly located in the 

nodes of the fcc crystal lattice (Fig. 8). For an alloy of 

concentration X = 25%, upon slow cooling from the 

solidus line, it is energetically favorable for Cu atoms to 

be located at the centers of 6 faces of the unit cell of the 

fcc lattice and the ratio between Cu and Au atoms becomes 

3/1, and the formula of the chemical compound can be 

written as Cu3Au. At a concentration of X=50%, two more 

opposite faces of the fcc unit cell are occupied by Au 

atoms (see Fig. 8). Then there is one Cu atom per Au atom, 

and the ratio between the atoms can be written as CuAu. 

With a further increase in the Au concentration, the degree 

of ordering of the solid solutions gradually decreases until 

the fcc lattice of Au is formed. The crystal structure of 

ordered Cu3Au andа CuAu superstructures has been 

repeatedly studied by X-wave and neutron diffraction 

methods [1, 12]. 

Additional information can be obtained by 

considering the concentration dependence of Poisson's 

ratio μmin(X) (see Fig. 9) and the auxeticity degree Sa(X) 

(see Fig. 10). 

A slight increase in the concentration of Au (in the 

range of 0.23-10%) leads to the formation of disordered 

substitutional solid solutions and equalization of stresses 

in the crystal due to the chaotic arrangement of atoms. The  

crystal lattice period at X=10% reaches 

a=0.36717 nm [1].  Poisson’s ratio increases from  

μmin= - 0.11 to μmin= - 0.07. Young’s modulus decreases to 

E<110>=125 GPa (see Table 1). With a further increase in 

the concentration of Au (from 10% to 25%), the ordering 

process begins, which is accompanied by a decrease in the 

roughness of the crystals (Young's modulus decreases 

from 125 GPa to 118 GPa, and Poisson's ratio μmin drops 

from μmin =-0.07 to μmin =-0.11). The period of the crystal 

lattice increases in proportion to the increase in the 

concentration of Au and the degree of ordering, and at 

X=25% Au aCu3Au=0.38199 nm nm [1]. For this alloy, the 
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ordering temperature Тord=669 K, and the auxeticity 

degree Sa decreases by more than an order of magnitude 

(from Sa =0.15 to Sa =0.09) (see Fig. 10). 

An increase in the concentration of Au from X=25% 

to X=50% leads to a change in the ratio between atoms 

and the order of their arrangement in the fcc crystal lattice. 

Therefore, some of the atoms occupy well-defined places, 

forming superstructures, and the other part is located 

randomly. For a disordered alloy, the fcc lattice is 

preserved, and at X=50%, the period of the crystal lattice 

increases in proportion to the increase in the Au 

concentration to a=0,39596 nm [1], and the Young's 

modulus sharply decreases and reaches extremely low 

values Е<110>=90 GPa (Table 1). 
 

Au 0% μmax=0.85 μmin= -0.15   Sa=0.15 

     
Au 0.23%  μmax=0.81 μmin= -0.14 Sa=0.14 

     
Au 10% μmax=0.84 μmin= -0.07 Sa=0.1 

     
Au 25% μmax=0.8 μmin= -0.11 Sa=0.09 

     
Au 50% μmax=0.5 μmin= 0.05 Sa – is not auxetic 

   
Au 80% μmax=0.85 μmin= -0.02 Sa=0.05 

     
а)    b)    c) 

Fig.7. Characteristic surfaces of Young’s moduli (а), angular distributions of Poisson’s ratios μ(φ, Θ, ψ) at φ=0 (b) 

and indicating auxeticity surfaces of single crystals (c) of Cu-Au alloys. 



Auxetic properties of some intermetallic compounds 

 771 

 
Fig.8. Concentration dependence of Young’s modulus 

Е<110> for Cu-Au alloy. 

 

 
Fig.9. Concentration dependence of Poisson’s ratio 

μmin(X) for Cu-Au alloy. 

 

With a slow decrease in temperature to Тord = 683 K, 

ordering and formation of CuAu superstructure occur for 

this alloy. In the [001] direction, the crystal structure of 

CuAu is formed layer by layer or consists only of a layer 

of Cu atoms or layers of Au atoms. As a result of the 

interaction between the Cu and Au layers, compression 

occurs and the fcc lattice turns into a tetragonal face-

centered lattice with a period of c/a =0.935.  Poisson's 

ratio μmin increases rapidly from μmin =-0.11 to μmin =+0.05 

and the alloy loses its auxetic properties, and the auxeticity 

degree Sa=0.22 (see Fig. 9, 10). Note that the redistribution 

of atoms in the crystal lattice and the formation of long-

range order, i.e., the formation of Cu3Au and CuAu 

superstructures, is essentially a structural phase transition 

of the order-disorder type, or of the ordering type. The 

appearance of superstructures is an additional order in the 

arrangement of atoms above the fcc lattice structure 

already existing in the alloy. Therefore, the structural 

phase transformation of the order–disorder type is a first-

order phase transition [13]. 

Electronic compounds (Hume-Rothery phases) 

І. Consider one of the most famous alloys Cu-Zn - 

brass. Atomic radii rCu=0.139 nm, rZn=0.128 nm, and their 

difference (8–9)%. The atoms of Cu crystallize with 

formation of a fcc lattice, the period of which a=0.361479 

nm, and Zn atoms form a hexagonal close-packed (hcp) 

lattice with the periods a=0.26649 nm and c=0.49469 nm, 

c/a=1.8563. The state diagram of Cu-Zn is given in [2, 12, 

14]. 

 

 
Fig.10. Dependence of auxeticity degree Sa on X. 

 

In Cu-Zn alloys, 6 phases are formed in the solid state. 

In a limited α-solid solution of Zn in a crystalline fcc 

lattice of copper at room temperature, 39% dissolves. The 

stability of the fcc crystal lattice is preserved within the 

electron concentration n=1.98 - 1.4 (see Table 2). 

 

Table 2 

Electron concentration of some electronic compounds 

Cu-Zn. 

Phase 
Concentration 

n=e/a 

Chemical 

formula 
Lattice 

Α 1.98 – 1.4 
Solid solution 

Cu(Zn) 
fcc 

Β 1.48 – 1.5 CuZn bcc 

Γ 1.58 – 1.66 Cu5Zn8 
complex 

cubic 

Ε 1.78 – 1.87 CuZn3 hcp 

 

With a further increase in the electron concentration 

to n=1.48–1.5, the β-phase, which is formed on the basis 

of the electronic compound CuZn with a crystal bcc lattice, 

becomes stable. At high temperatures, the β-phase is a 

disordered solid solution. That is, the Cu and Zn atoms 

occupy arbitrary positions in the bcc crystal lattice. The 

process of ordering of atoms occurs at Tord = (727–741) K. 

The electronic compound Cu5Zn8 is formed at an 

electron concentration of n=1.58–1.66 and has a complex 

cubic lattice with 52 atoms in the unit cell. The ordering 

temperature of the γ-phase is Тord=543 K. 

In the range of electron concentration values 

n = 1.78–1.87, the ε-phase is stable, i.e. the electronic 

compound CuZn3, which has a hexagonal close-packed 

crystal lattice. The δ and η - phases are not electronic 

compounds and therefore in Table III they are not given. 

The main auxetic properties of Cu-Zn alloys, 

calculated according to relations (4) – (9), are shown in 

Fig. 11. Most electronic compounds crystallize with the 

formation of cubic lattices, with the exception of ε-phases 

(see Table III). The regularities of the formation of the 

characteristic surfaces of the Young's moduli of cubic 

system single crystals and hcp are described in [10]. 

Numerical extreme values for brass E<100>, E<110> and 

E<111>, in a wide range of concentrations (0÷50 %) are 

given in [5]. Note the strong anisotropy of the extreme  
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  Zn 0% α-brass  μmax=0.85 μmin= -0.11 Sa=0.15 

     
Zn 4.1%  α-brass  μmax=0.8 μmin= -0.12 Sa=0.15 

     
Zn 9.1%  α- brass  μmax=0.8 μmin= -0.12 Sa=0.15 

     
Zn 17.4 %  α- brass  μmax=0.8 μmin= -0.12 Sa=0.18 

      
Zn 22%  α- brass μmax=0.85 μmin= -0.11 Sa=0.2 

     
Zn 45%  β- brass μmax=1.3 μmin= -0.6 Sa=0.4 

     
Zn 47.8%  β- brass μmax=1.3 μmin= -0.6 Sa=0.4 

     
а)    b)    c) 

Fig. 11. Characteristic surfaces of Young’s moduli (а), μ(φ, Θ, ψ) at φ=0 (b) and indicating auxeticity 

surfaces of single crystals (c) of Cu-Zn alloy. 
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values E<100> < E<110> < E<111>, which can change almost 7-

8 times (thus, at X=45 % E<111>/E<100>=8). 

Our calculations revealed anomalies in the 

dependence of the anisotropy of single crystals 

A(X)=2C44/(C11-C12) and Young's moduli E<hkl>(X) 

(see relations (5) and (6). The first anomaly is observed in 

the concentration interval X1= (39.0÷43.0) %. Here, the 

anisotropy of the crystals increases abruptly from 3.76 to 

10.4, and the Young’s modulus drops sharply from 

E<110>=115 GPa to E<110>=64 GPa. This is due to the 

phase transformation α(fcc)→←α(fcc)+β'(bcc), where β' 

is the ordered electronic compound CuZn (bcc) (see the 

state diagram [2, 12, 14] and Table III). Note that α(fcc)-

brass has maximum ductility at X = (35.0–39.0) % [2]. 

The second anomaly occurs in the concentration 

interval X2=(46.0÷47.0) %, where the phase 

transformation α(fcc)+β'(bcc)→←β'(bcc) occurs and the 

anisotropy A(X) decreases from 10. 08 to 6.7, and Young's 

modulus increases from E<110>= 68.0 GPa to E<110>=84 

GPa. The ordered β'(bcc) – phase has a maximum strength 

of σB = 400 MPa [2]. 

The third anomaly is revealed during the phase 

transformation β'(bcc)→←β'(bcc)+γ(complex cubic 

lattice), which occurs in the concentration range 

X3=(48.8÷50.0) %. In this case, the anisotropy of brass 

single crystals decreases from A(X)=8.34 to A(X)=5.03 

and Young's modulus increases abruptly from 

E<110>=80 GPa to E<110>=96 GPa. The growth of Young's 

modulus is caused by the appearance of a very fragile 

electronic compound Cu5Zn8 (γ-phase, see Table III). It 

should be noted that no anomalous dependence of Young's 

moduli on concentration was found for crystallographic 

directions E<100> and E<111>. 

The physical nature of the appearance of abnormal 

deformations can be revealed in more detail by 

considering the main mechanisms and regularities of 

formation of auxetic properties of crystals. Fig. 12 shows 

the concentration dependence of the negative values of 

Poisson's ratio μmin(X) for brass in the interval 

X=(0÷50) %. 

 

 
Fig.12. Dependence of Poisson’s ratio μmin(X) on 

concentration of Zn in brass. 

 

In the interval X=(0–25) % Zn, there is a solid solution 

of Zn in the crystal lattice of Cu(fcc) and Poisson's ratio 

changes smoothly within μmin=(-0.10)–(-0.12) (Fig.12). 

As the concentration of zinc increases from X=25% Zn to 

39% Zn (within the existence of substitutional solid 

solutions), a sharp deformation of the copper crystal lattice 

occurs (the difference in atomic radii 7.6 %). The 

anisotropy of single crystals of α-brass increases rapidly 

(from A=3.21 for pure copper to A(X)=10.0 for a brass 

alloy with a concentration of X=39%). As shown in [14], 

for cubic single crystals, with an increase in the elastic 

anisotropy factor A, the negative values of Poisson's ratio 

μmin decrease. 

In this case (Fig. 12), μmin decreases from  

μmin =-(0.1–0.2) to μmin =-0.6. The majority of cubic system 

crystals are non-axial auxetics [10], i.e. the negative 

values of Poisson's ratios μmin are concentrated in 

crystallographic directions of the <110> type. Therefore, 

the anomalous dependence of Young's moduli should be 

Fig. 11 (continuation) 

 

Zn 48.8%  β- brass μmax=1.31 μmin= -0.55 Sa=0.39 

     
Zn 50%  β- brass μmax=1.1 μmin= -0.4 Sa=0.29 

     
а)    b)    c) 

Fig. 11. Characteristic surfaces of Young’s moduli (а), μ(φ, Θ, ψ) at φ=0 (b) and indicating auxeticity 

surfaces of single crystals (c) of Cu-Zn alloy. 



M. Raransky, A. Oliinych-Lysiuk., R. Tashchuk, A. Tashchuk. A. Struk, M. Unguryan 

 774 

clearly manifested only in crystallographic directions 

<110>. 

 

 
Fig.13. Auxeticity degree Sa versus concentration X of Zn 

(α- + β- phase). 

 

The gradual phase transition α→
←α(fcc)+β’(bcc) and 

α(fcc)+β’(bcc) →
←β’ at X=(46.0–47.0) % is accompanied 

by a sharp increase in μmin from μmin=-0,4 to μmin=-0,6. The 

area of indicating auxeticity surfaces Sa, increases in 

proportion to the increase in the elastic anisotropy factor 

of crystals A and to the decrease in the negative values of 

Poisson’s ratios μmin (Fig. 13). 

Conclusions 

1. For the first time, characteristic surfaces of Young’s 

moduli, angular distributions of Poisson’s ratios μmin and 

indicating auxeticity surfaces of Ag-Au, Cu-Ni, Cu-Au and 

Cu-Zn alloys were built.  

2. The anisotropy of the extreme values of Young's 

moduli of the studied single crystals was revealed:  

E<100> < E<110> < E<111>. An extremely high sensitivity of 

the E<110> component to auxetic phase transformations of 

the order-disorder type (ordering type) has been 

established. 

3. It is shown that only a small part of the negative 

values of Poisson's ratios μmin of these compounds is 

concentrated in the <110> crystallographic directions, 

forming auxetic properties. Therefore, the alloys under 

study are non-axial auxetics. 

4. For Cu-Ni alloys, an anomaly in the concentration 

dependences of the auxetic parameters μmin(X), μmax(X) and 

Sa(X) near the points of the second-order phase transition 

(ferromagnet-paramagnet) was discovered for the first 

time. 

5. It is shown that for Ag-Au, Cu-Ni, Cu-Au and Cu-

Zn alloys an increase in the auxeticity degree Sa is 

accompanied by a simultaneous decrease in the minimum 

values of the μmin ratios. 
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М.Д. Раранський, А.В. Олійнич-Лисюк, Р.Ю. Тащук, О.Ю. Тащук,  

А.Я. Струк, М.А Унгурян 

 Ауксетичні властивості деяких інтерметалічних сполук 

Чернівецький національний університет імені Юрія Федьковича, м Чернівці, Україна, 

 m.raransky@chnu.edu.ua 

Із застосуванням лінійної теорії пружності анізотропних кристалів та використанням 

експериментальних значень модулів пружності Сij і податливостей Sij наведених в таблицях Ландольт-

Берштейна, вперше побудовані характерестичні поверхні модулів Юнга, кутові розподіли коефіцієнтів 

Пуассона μ(φ, Θ, ψ) та вказівні поверхні ауксетичності монокристалів інтерметалічних сполук Ag-Au, Cu-
Ni, Cu-Au, i Cu-Zn. 

Встановлено надзвичайно високу чутливість складової екстремальних значень модулів Юнга E<110> до 

аномальних деформацій при фазових перетвореннях типу порядок-безпорядок. Виявлено аномалії 

концентраційних залежностей ауксетичних параметрів μmin(X), μmax(X) та ступеня ауксетичності Sa(X) 
поблизу точок фазового перетворення другого роду типу впорядкування.  

Ключові слова: Ауксетизм, модулі Юнга, коефіцієнти Пуассона, аномальні деформації, анізотропія, 

пружні властивості. 
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