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In the model of effective masses and rectangular potentials for an electron and a hole, the influence of a uniform 

electric field on the energy spectrum and wave functions of the exciton and the oscillator strengths of interband 

quantum transitions in the semiconductor (GaAs/AlxGa1-xAs) quantum dot-quantum ring nanostructure is 

theoretically investigated. The stationary Schrödinger equations for noninteracting quasiparticles in the presence 
of an electric field cannot be solved analytically. For their approximate solution, the unknown wave functions are 

sought in the form of an expansion over the complete set of cylindrically symmetric wave functions, and the electron 
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of interband optical quantum transitions on the magnitude of the electric field strength are analyzed. 
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Introduction 

Currently, the experimental possibilities of creating 

various semiconductor nanostructures allow scientists to 

grow entire ordered arrays of concentric simple and 

double quantum rings with axial symmetry and to study 

the luminescence spectra in them [1-3]. 

The unique properties of quasiparticles (electrons, 

holes, excitons, ...) in such nanostructures, which are 

manifested during their interaction with each other and 

external electric and magnetic fields, make it possible to 

use them in modern nanoelectronics devices: 

semiconductor lasers [4], photodetectors [5], elementary 

qubits quantum computers [6]. 

Theoretical models for calculating spectra, wave 

functions of basic quasiparticles and intensities of 

intraband and interband optical quantum transitions in 

such structures are also intensively developed and 

improved. 

In papers [7, 8], the authors investigated the 

dependence of the energy spectrum of an electron in a 

simple cylindrical semiconductor quantum ring on the 

intensity of a uniform electric field directed perpendicular 

to the axial axis of the ring. They showed that these 

dependencies are different for a certain range of changes 

in the electric field strength and are determined by the ratio 

between the inner and outer radii of the rings. In particular, 

anticrossing of energy levels can be observed in the 

corresponding dependencies. 

In papers [9-12], the authors theoretically investigated 

the influence of electric and magnetic fields on the energy 

spectrum, wave functions and intensities of intraband 

quantum electron transitions in double quantum nanorings 

based on GaAs/AlxGa1-xAs semiconductors. The 

stationary Schrödinger equation for a quasiparticle in the 

presence of a magnetic field is solved analytically exactly, 

and the wave function is obtained as a superposition of 

confluent hypergeometric functions and generalized 

Laguerre polynomials. In the case of an electric field, this 

equation cannot be solved exactly. Therefore, the 

spectrum of an electron interacting with an electric field 

was found by the method of expanding the unknown wave 

function of the electron by the complete orthonormal set 

of wave functions of a quasiparticle in a nanosystem 

without a field and solving the resulting secular equation. 
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The authors showed that the electron in all states can be 

localized either in the inner or outer ring depending on the 

value of the magnetic induction (B), the strength of the 

electric (F) fields, and the ratio between the thicknesses of 

the nanorings. In this case, energy level anticrossings are 

observed in the corresponding dependences of the energy 

levels on F or B, and the maxima and minima of the 

intensities of the corresponding transitions are clearly 

pronounced in the dependence of the oscillator strengths. 

The authors found that the reason for this behavior is a 

change in the localization of an electron in the space of 

two nanorings in different quantum states with a change in 

the electric field strength or magnetic field induction. 

Exciton and polaron effects in nanorings were studied 

in papers [13, 14]. The calculations performed by the 

authors showed that it is possible to purposefully control 

the location of an electron in a system of double nanorings 

using electric and magnetic fields. The energy of the 

ground state of the polaron decreases nonlinearly with 

increasing electric field strength, and, in general, the 

application of electric and magnetic fields leads to 

strengthening of the electron-phonon interaction. 

In this work, we will theoretically investigate the 

influence of a uniform electric field on the energy 

spectrum and wave functions of the exciton (taking into 

account the energy of the electron-hole interaction), as 

well as on the intensity of interband quantum transitions 

in the quantum dot-quantum ring semiconductor 

nanostructure. 

I. Theory of the energy spectrum and 

wave functions of an exciton in a 

quantum dot - quantum ring 

semiconductor nanostructure. 

The paper presents studies of a nanostructure 

consisting of a cylindrical semiconductor quantum dot 

(quantum well, GaAs medium), which is tunnel-connected 

to a coaxial cylindrical nanoring (quantum well, GaAs 

medium) through a finite potential barrier (AlxGa1-xAs 

medium). The height of the nanostructure is L. The cross 

section by the plane z = 0 and the scheme of the potential 

energies of an electron and a hole of such a nanostructure 

in the absence of an electric field are shown in Fig. 1. The 

electric field intensity vector F is directed along the Ox 

axis. 

For reasons of symmetry, all further calculations will 

be performed in a cylindrical coordinate system with the 

Oz axis along the axial axis of the nanostructure. 

Since the lattice constants and the permittivities of the 

semiconductor elements of the nanostructure differ little 

from each other, we will use the model of effective masses 

and rectangular potentials to calculate the spectra and wave 

functions of an electron and a hole. We will consider them 

to be known in all areas of the investigated nanostructure:

 

Fig. 1. Geometric and energy schemes of the nanostructure. 
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 𝜇(𝑒,ℎ)(𝑟⃗) = {
𝜇0

(𝑒,ℎ)
 , |𝑧| ≤ 𝐿/2   𝑎𝑛𝑑  0 ≤ 𝜌 ≤ 𝜌0, 𝜌1 ≤ 𝜌 ≤ 𝜌2                       

𝜇1
(𝑒,ℎ)

 , |𝑧| > 𝐿/2  𝑜𝑟  |𝑧| ≤ 𝐿/2     𝑎𝑛𝑑  𝜌0 < 𝜌 ≤ 𝜌1, 𝜌 > 𝜌2   
,  (1) 

 

 𝑈(𝑒,ℎ)(𝜌) = {
𝑈0

(𝑒,ℎ)
 ,    𝜌0 ≤ 𝜌 ≤ 𝜌1,   𝜌 > 𝜌2,       

0 ,   0 < 𝜌 < 𝜌0,    𝜌1 < 𝜌 ≤ 𝜌2 .       
 (2)

 

We will also assume that the exit of quasiparticles into 

the |𝑧| ≤ 𝐿/2    region is impossible, since the electric field 

does not affect the energy spectrum of the electron and hole 

(and therefore the exciton) when both quasiparticles move 

along the Oz axis. 

 

 𝑈(𝑒,ℎ)(𝑧) = {
∞ ,     |𝑧| > 𝐿/2,        

0 ,      |𝑧| ≤ 𝐿/2.    
 (3) 

 

In order to find the energy spectrum and wave functions 

of the exciton in such a nanostructure, it is necessary to solve 

the stationary Schrödinger equation 

 

 𝐻̂𝑒𝑥(𝑟𝑒, 𝑟ℎ)𝛹𝑒𝑥(𝑟⃗𝑒, 𝑟ℎ) = 𝐸𝑒𝑥𝛹𝑒𝑥(𝑟𝑒, 𝑟ℎ)  (4) 

 

with the Hamiltonian 

 

𝐻̂𝑒𝑥(𝑟𝑒, 𝑟ℎ) = 𝐸𝑔 + 𝐻̂𝑒(𝑟𝑒) + 𝐻̂ℎ(𝑟ℎ) + 𝑈(|𝑟𝑒 − 𝑟ℎ|).  (5) 
 

Here, Eg is the band gap width of the nanosystem 

quantum well material; 

 

 𝐻̂𝑖(𝑟𝑖) =
1

2𝜇(𝑖)(𝜌𝑖)
[−ħ2 (

𝜕2

𝜕𝜌𝑖
2 +

1

𝜌𝑖

𝜕

𝜕𝜌𝑖
+

1

𝜌𝑖
2

𝜕2

𝜕𝜑𝑖
2)] −

ħ2

2𝜇(𝑖)(𝜌𝑖)

𝜕2

𝜕𝑧𝑖
2 + 𝑈(𝑖)(𝑟𝑖) ∓ |𝑒|𝐹𝜌𝑖 cos 𝜑𝑖 ,    (𝑖 = 𝑒, ℎ)  (6)

 

- the Hamiltonians of an electron and a hole in an electric 

field that do not interact with each other; 

 

 𝑈(|𝑟𝑒 − 𝑟ℎ|) = −
𝑒2

𝜀(𝑟𝑒,𝑟ℎ)|𝑟𝑒−𝑟ℎ|
   (7) 

 

- the potential energy of the interaction between an 

electron and a hole in a medium with permittivity 𝜀(𝑟𝑒, 𝑟ℎ). 

The Schrödinger equation (4) with the Hamiltonian 

(5) cannot be solved exactly. We will seek its approximate 

solution in the following way. Considering that the energy 

of interaction between an electron and a hole is two orders 

of magnitude less than the energy of their size quantization, 

we first find the last ones. At the same time, we will take into 

account the effect of the electric field, and then we will find 

the binding energy of both quasiparticles using the 

perturbation theory. 

So, further we will solve the stationary Schrödinger 

equations for an electron and a hole that do not interact with 

each other 

 

 𝐻̂𝑖𝛹𝑖(𝜌𝑖 , 𝜑𝑖 , 𝑧𝑖) = 𝐸𝑖𝛹𝑖(𝜌𝑖 , 𝜑𝑖 , 𝑧𝑖),   (𝑖 = 𝑒, ℎ)  (8) 

 

The method of solving equations (8) will be given on 

the example of an electron, omitting the index i. 

It can be seen from the form of the Hamiltonian (6) that 

the variable z in the corresponding Schrödinger equations (8) 

is separated, and it is advisable to look for the electron wave 

function in the form [13] 

 

 𝛹(𝑟) = 𝐹(𝜌, 𝜑)𝑓𝑛𝑧
(𝑧)  (9) 

Here 

 𝑓
𝑛𝑧

(𝑧) = {
cos (

𝜋𝑛𝑧

𝐿
𝑧) ,   𝑛𝑧 = 1, 3, 5, …

sin (
𝜋𝑛𝑧

𝐿
𝑧) ,   𝑛𝑧 = 2, 4, 6, …

 (10) 

 

In the absence of an electric field, equation (8) also has 

exact solutions 

 

 𝐹𝑛𝜌𝑚
0 (𝜌, 𝜑) =

1

√2𝜋
𝑅𝑛𝜌𝑚(𝜌)𝑒𝑖𝑚𝜑   (11) 

 

with radial functions

 

 𝑅𝑛𝜌𝑚
𝑖 (𝜌) = 𝐴𝑛𝜌𝑚

(𝑖)
 𝑗𝑚

(𝑖)(𝜒𝜌) + 𝐵𝑛𝜌𝑚
(𝑖)

 𝑛𝑚
(𝑖)(𝜒𝜌),      (𝑖 = 0,1,2,3)  (12) 

 

  𝑗𝑚
(𝑖)

(𝜒𝜌) = {
𝐼𝑚(𝜒

0
𝜌), 𝑖 = 1, 3

𝐽𝑚(𝜒
1
𝜌), 𝑖 = 0, 2 

  (13) 

 

  𝑛𝑚
(𝑖)(𝜒𝜌) = {

𝐾𝑚(𝜒
0
𝜌), 𝑖 = 1, 3

𝑁𝑚(𝜒
1
𝜌), 𝑖 = 0, 2 

 (14) 

 

Here nρ and m are radial and magnetic quantum 

numbers; Jm, Nm are cylindrical Bessel functions of the 

first and second kind; Im, Km are cylindrical modified 

Bessel functions of the first and second kind;  
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 𝜒
0

= √2𝜇0 (𝑈0 − 𝐸𝑛𝜌𝑚
0 ) /ħ2 + 𝜋2𝑛𝑧

2/𝐿;  

 

 𝜒1 = √2𝜇1𝐸𝑛𝜌𝑚
0 /ħ2 − 𝜋2𝑛𝑧

2/𝐿;  

 

 𝐵𝑛𝜌𝑚
(0)

= 0,  𝐴𝑛𝜌𝑚
(3)

= 0  

 

All the unknown coefficients 𝐴𝑛𝜌𝑚
(𝑖)

,  𝐵𝑛𝜌𝑚
(𝑖)

 in the wave 

functions and electron energies 𝐸𝑛𝜌𝑚
0  are found from the 

conditions of continuity of the radial functions (12)–(14) and 

the probability density fluxes at the heteroboundaries of the 

nanostructure and the normalization condition. 

Note that the wave functions (11) together with (10) 

form a complete orthonormal set. 

Then, in order to find the energy spectrum and wave 

functions of an electron in a nanostructure at 𝐹 ≠ 0, we will 

represent these functions in the form of an expansion of the 

complete set of wave functions (11) 

 

 𝐹𝑛(𝜌, 𝜑) =
1

√2𝜋
∑ ∑ 𝑐𝑛𝜌𝑚

𝑛
𝑚𝑛𝜌

𝑅𝑛𝜌𝑚(𝜌)𝑒𝑖𝑚𝜑. (15) 

 

Substituting the expansion (15) into the Schrödinger 

equation with Hamiltonian (6), it is easy to obtain the secular 

equation 

 

 |𝐻𝑛𝜌𝑚,𝑛𝜌
′ 𝑚′ − 𝐸𝑛𝑛𝑧

𝛿𝑛𝜌,𝑛𝜌
′ 𝛿𝑚,𝑚′| = 0  (16) 

with matrix elements 

 

 𝐻𝑛𝜌𝑚,𝑛𝜌
′ 𝑚′ = 𝐸𝑛𝜌𝑚𝛿𝑛𝜌,𝑛𝜌

′ 𝛿𝑚,𝑚′ + (𝛿𝑚′,𝑚+1 + 𝛿𝑚′,𝑚−1)
𝑒𝐹

2
∫ 𝑅𝑛𝜌𝑚(𝜌)

∞

0
𝑅𝑛𝜌

′ 𝑚′(𝜌)𝜌2𝑑𝜌 .  (17)

 

Now, in order to find the energy spectrum of a 

quasiparticle and its wave functions, it is necessary to find 

the eigenvalues and eigenvectors of the obtained matrix. 

Since the summation is based on the indices nρ and m 

in (15), the new quantum states of the electron (hole) 

interacting with the electric field are now characterized by 

only one quantum number n. 

So now we know both the complete wave functions of the 

electron 𝛹𝑛𝑒𝑛𝑧
𝑒

𝑒 (𝑟)  (9) and its energy 𝐸𝑛𝑒𝑛𝑧
𝑒

𝑒
. The wave 

functions ( 𝛹
𝑛ℎ𝑛𝑧

ℎ
ℎ (𝑟) ) and the hole energy (𝐸

𝑛ℎ𝑛𝑧
ℎ

ℎ
) are 

obtained in exactly the same way. 
Then the exciton energy in the studied nanostructure is 

obtained in the form 

 

 𝐸
𝑛ℎ𝑛𝑧

ℎ
𝑛𝑒𝑛𝑧

𝑒

= 𝐸𝑔 + 𝐸𝑛𝑒𝑛𝑧
𝑒

𝑒 + 𝐸
𝑛ℎ𝑛𝑧

ℎ
ℎ + ∆𝐸

𝑛ℎ𝑛𝑧
ℎ

𝑛𝑒𝑛𝑧
𝑒

  (18) 

 

Here, ∆𝐸
𝑛ℎ𝑛𝑧

ℎ
𝑛𝑒𝑛𝑧

𝑒

 is the exciton binding energy, which, 

due to its smallness, can be found according to the 

perturbation theory 

 

∆𝐸
𝑛ℎ𝑛𝑧

ℎ
𝑛𝑒𝑛𝑧

𝑒

= −
𝑒2

𝜀̅
∫ 𝑑3𝑟𝑒 ∫ 𝑑3𝑟ℎ

|𝛹
𝑛𝑒𝑛𝑧

𝑒
𝑒 (𝑟)𝛹

𝑛ℎ𝑛𝑧
ℎ

ℎ (𝑟⃗)|
2

𝜀(𝑟𝑒,𝑟ℎ)|𝑟𝑒−𝑟ℎ|
 (19)

  

The obtained energies and wave functions of the 

electron and hole also make it possible to detect the intensity 

of interband optical quantum transitions using the well-

known formula [15] 

 

𝐼
𝑛ℎ𝑛𝑧

ℎ
𝑛𝑒𝑛𝑧

𝑒

≅ |∫ 𝛹𝑛𝑒𝑛𝑧
𝑒

𝑒 (𝜌, 𝜑, 𝑧)𝛹
𝑛ℎ𝑛𝑧

ℎ
ℎ (𝜌, 𝜑, 𝑧)𝜌 𝑑𝜌𝑑𝜑𝑑𝑧|

2

(20) 

 

The calculation and analysis of the exciton spectrum and 

the intensities of interband quantum transitions was 

performed by numerical methods for a nanostructure based 

on 𝐺𝑎𝐴𝑠/𝐴𝑙0.4𝐺𝑎0.6𝐴𝑠 semiconductors. 

II. Analysis and discussion of results. 

The dependence of the electron, hole and exciton 

spectrum and the intensities of interband optical quantum 

transitions on the electric field strength (F) was studied 

using the example of a 𝐺𝑎𝐴𝑠/𝐴𝑙0.4𝐺𝑎0.6𝐴𝑠 nanostructure 

with the following physical parameters: Eg = 1424 meV,  

ε0 ≈ ε1 = 13, 𝜇
0
𝑒=0.096 𝑚0, 𝜇

1
𝑒=0.063 𝑚0, 𝑈0

𝑒=297 meV, 

𝜇
0
ℎ=0.61 𝑚0, 𝜇

1
ℎ=0.51 𝑚0 𝑈0

ℎ=224 meV  (m0 is the electron 

mass in vacuum); lattice constant of the medium 

𝐺𝑎𝐴𝑠 ∙ 𝛼𝐺𝑎𝐴𝑠 =5.65 𝐴0. 

Figures 2a, b, c, d shows the dependences of the 

energies of the electron (Fig. 2a, b) and hole (Fig. 2c, d) on 

the magnitude of the electric field strength (F) at L = 5 nm,  

ℎ = 17𝛼𝐺𝑎𝐴𝑠,  𝜌0 = 0, ∆= 21𝛼𝐺𝑎𝑆 (Fig. 2a, c) and  

𝜌0 = 18𝛼𝐺𝑎𝐴𝑠, ∆= 3𝛼𝐺𝑎𝑆 
 (Fig. 2b, d). 

That is, Figures 2a,c correspond to a simpler 

nanostructure that contains only one nanoring (no quantum 

dot) with thickness ℎ = 17𝛼𝐺𝑎𝑆 
 and inner radius  

𝜌1 = 21𝛼𝐺𝑎𝑆, and Figures 2b,d correspond to a 

nanostructure with a quantum dot and a nanoring of the 

same geometric dimensions. On the left of all the figures, 

the quantum numbers nρ, m are given, which characterize 

the corresponding energy levels in the absence of a field.  

Figures 2a, c show that for both quasiparticles, in the 

absence of a quantum dot in the nanostructure, levels 

generated by the quantum number nρ = 1 and different 

values of the magnetic quantum number m are formed on 

the quantum well energy scale. In the presence of a 

quantum dot, "new" levels with different values of 

quantum numbers nρ appear in the energy spectra of both 

quasiparticles at F = 0 (Fig. 2b, d). The energy of the 

ground state of both the electron and the hole only 

decreases with increasing electric field strength F. 

However, the energy of excited states can increase with 

increasing F and only then decrease. In the general case, 

the increase or decrease of electron or hole energies with 
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increasing F is due to the region of the nanostructure in 

which the quasiparticle is localized in the corresponding 

states and the nature of the angular distribution of the 

probability density with respect to the direction of the 

electric field strength. 

As can be seen from Figures 2a, b, the electron energy 

weakly depends on the magnitude of the electric field 

strength. Since the effective mass of the hole is almost an 

order of magnitude greater than the mass of the electron, the 

density of its energy levels in the quantum well energy scale 

is significant, their dependence on F is sharply 

nonmonotonic with pronounced level anticrossings (Fig. 

2d). The cause of anticrossings is the change in the 

localization of the quasiparticle between the quantum dot 

and the outer ring in the corresponding quantum states with 

an increase in the electric field strength [12]. Anticrossings 

occur where levels of different symmetry at F = 0 should 

have crossed. At this value of the strength at the anticrossing 

point, the probabilities of both quasiparticles being in the 

region of the quantum dot and the nanoring are the same 

and equal to 0.5. 

Figures 3a, b shows the dependences of several lowest 

exciton levels (Fig. 3a) and the corresponding intensities of 

interband optical quantum transitions (Fig. 3b) on the 

magnitude of the electric field strength (F) at L = 5 nm,  

ℎ = 17𝛼𝐺𝑎𝑆, 𝜌0 = 18𝛼𝐺𝑎𝐴𝑠, ∆= 3𝛼𝐺𝑎𝑆. 

Figure 3a shows that the dependence of the exciton 

levels on F nonmonotonically decreases with the 

manifestations of exciton anticrossing. The exciton binding 

energy calculated by formula (19) turns out to be two orders 

of magnitude smaller than the sum of the size-quantized 

energies of an electron and a hole. Therefore, the behavior 

of exciton levels with a change in strength F is completely 

determined by the peculiarities of the behavior of the 

electron and hole energies and their common contribution 

to (18). 

                 

                   
Рис.2. Dependences of the energies of the electron (Fig. 2a, b) and hole (Fig. 2c, d) on the magnitude of the electric 

field strength (F) at L=5 nm, ℎ = 17𝛼𝐺𝑎𝐴𝑠, 𝜌0 = 0, ∆= 21𝛼𝐺𝑎𝑆 ((Fig. 2a, c) and 𝜌0 = 18𝛼𝐺𝑎𝐴𝑠, ∆= 3𝛼𝐺𝑎𝑆  (Fig. 

2 b, d). 



I.S. Hnidko, V.I. Gutsul, I.P. Koziarskyi, O.M. Makhanets 

 798 

It can be seen from Figure 3b that in the range of 

electric field strength change from 0 to 1 MV/m, only two 

transitions have significant intensity: 𝐼1
1 from F = 0 to 

F ≈ 0.4 MV/m and 𝐼2
1 from F ≈ 0.2 to F ≈ 0.7 MV/m. The 

intensity of other transitions is low. The transition intensity 

𝐼1
1 is maximum at F = 0, and with increasing F it only 

decreases and is practically equal to zero at F ≈ 0.4 MV/m. 

This behavior of the intensity can be explained by the 

following considerations. 

Consider the evolution of the density of the 

      
Fig. 3. Dependences of the exciton energies (Fig. 3a) and the intensities of interband optical quantum transitions 

(Fig. 3b) on the magnitude of the electric field strength (F) at L = 5 nm, ℎ = 17𝛼𝐺𝑎𝑆, 𝜌0 = 18𝛼𝐺𝑎𝐴𝑠, ∆= 3𝛼𝐺𝑎𝑆. 
 

electron 

         
hole 

        
Fig. 4. The evolution of the probability density of finding an electron and a hole in the ground states in a nanostructure 

with a change in the electric field strength at L = 5 nm, ℎ = 17𝛼𝐺𝑎𝑆, 𝜌0 = 18𝛼𝐺𝑎𝐴𝑠, ∆= 3𝛼𝐺𝑎𝑆. 
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probability of finding an electron and a hole in the ground 

states in a nanostructure with an increase in the electric 

field strength (Fig. 4). As can be seen from Figure 4, at F 

= 0, the electron and hole in the ground state are localized 

in the quantum dot. In this case, the overlaps of the 

corresponding wave functions in (20), and hence the 

intensity of the transition, are significant. As the electric 

field strength increases, the hole begins to tunnel into the 

outer nanoring. At the same time, the overlap of the wave 

functions of both quasiparticles and, consequently, the 

intensity of the corresponding transition decreases. At  

F ≈ 0.4 MV/m, the hole is completely localized in the outer 

ring, and the electron is in the quantum dot. The wave 

functions in the corresponding states overlap weakly and 

the intensity of such a transition turns out to be small. 

The evolution of intensities with a change in electric 

field strength for other quantum states of an electron and a 

hole can be explained quite similarly. 

Main results and conclusions 

In the approximation of effective masses and 

rectangular potentials, the dependence of the energy 

spectrum of an electron, a hole, an exciton, and the 

intensities of interband quantum transitions on the 

magnitude of the electric field strength (F) in the quantum 

dot-quantum ring nanostructure was investigated. The basis 

of the nanostructure are 𝐺𝑎𝐴𝑠  and 𝐴𝑙0.4𝐺𝑎0.6𝐴𝑠  

semiconductors. 

It has been established that the location of 

quasiparticles in the nanostructure can be purposefully 

controlled by changing the magnitude of the electric field 

strength F. It is shown that when F changes in the range 

from 0 to 0.4 MV/m, the electron still does not change its 

localization, but the hole already tunnels through the finite 

potential barrier into the outer nanoring. 

The hole and exciton energies and the intensity of 

interband quantum transitions as F varies from 0 to 1 MV/m 

depend nonmonotonically on the electric field strength. In 

particular, energy level anticrossings are observed in the 

dependences of the hole and exciton energies on F, and 

maxima are clearly pronounced in the dependences of the 

intensities of interband quantum transitions. The reason for 

this behavior is a change in the localization of the hole in 

the space of the nanostructure in different quantum states 

with a change in the electric field strength. 
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І.С. Гнідко, В.І. Гуцул, І.П. Козярський, О.М. Маханець  

Спектр екситона в циліндричній напівпровідниковій наноструктурі 

квантова точка – квантове кільце в електричному полі 

Чернівецький національний університет імені Юрія Федьковича, Чернівці, Україна, hnidko.ihor@chnu.edu.ua 

У моделі ефективних мас та прямокутних потенціалів для електрона і дірки теоретично досліджено 

вплив однорідного електричного поля на енергетичний спектр та хвильові функції екситона та сили 

осциляторів міжзонних квантових переходів у напівпровідниковій (GaAs/AlxGa1-xAs) наноструктурі 

квантова точка – квантове кільце. Стаціонарні рівняння Шредінгера для невзаємодіючих квазічастинок за 
наявності електричного поля аналітично не розв’язуються. Для їх наближеного розв’язку невідомі хвильові 

функції шукаються у вигляді розкладу за повним набором циліндрично - симетричних хвильових функцій, а 

енергія електрона знаходиться із розв’язування відповідного секулярного рівняння. Енергія зв’язку 

екситона знаходиться з використанням теорії збурень. 
Проаналізовано залежності енергетичних спектрів, хвильових функцій електрона, дірки й екситона та 

інтенсивностей міжзонних оптичних квантових переходів від величини напруженості електричного поля 

Ключові слова: квантова точка, нанокільце, екситон, енергетичний спектр, інтенсивність, електричне 

поле. 
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