Copper and Aluminium Electrochemical Corrosion Investigation during Electrolysis and Heating from 20°C to 180°C by Mathematical Modelling

M.V. Yarmolenko¹,², S.O. Mogilei¹

1Rauf Ablyazov East European University, Cherkasy, Ukraine, yarmolenko@suem.edu.ua
2Scientific Research Institute of Armament and Military Equipment Testing and Certification, Cherkasy, Ukraine

Our investigations show that electrochemical corrosion of copper is faster than electrochemical corrosion of aluminium at temperatures below 180°C and electric current density 3,000 A/m² (or 30 A/dm²=3 mA/mm²). We have obtained that aluminium anodes (cylindrical or spherical) dissolve into concentrated NaCl solution during electrolysis more rapidly with temperature increasing while copper anodes (cylindrical or spherical) dissolve more slowly with temperature increasing from room temperature to temperature 180°C. Electric current value also increases with temperature increasing. Really, such result is unexpected. General quantity of the H⁺ and Cl⁻ ions decreases during electrolysis at all temperatures since the H₂ and Cl₂ gases are formed near electrodes. It decreases electric current value on 1.3%. General quantity of the Cu⁺ and Cu²⁺ ions decreases with temperature increasing too. We guess that one reason only should be for electric current value increasing: average charge of copper ions increases from +1 at room temperature to +1.5 at 100°C and to +2 at 180°C while charge of aluminium ions remains the same +3. Corresponding mathematical model is proposed for the analysis, and literature experimental data are used too.

Keywords: electrochemical corrosion, electrolysis, electrocoagulation, copper, aluminium, mathematical modelling, metallic coating.

Received 18 May 2023; Accepted 07 December 2023.

Introduction

Copper (Cu) coatings on an aluminium (Al) wire, that are widely used in the automobile and aerospace industries to reduce of total weight of the electric wires, can be quickly destroyed during working since they are heated up to 200°C [1]. On the other hand, thin Al pad (∼1 μm thickness) can prevent gold and copper corrosion, because intermetallics formation rate in the Au-Al system is higher than intermetallics formation rate in the Cu-Al system, so it is possible to use Cu instead of gold (Au) for wire bonding in microelectronics packaging [2]. In addition, the container, which consists of an outer copper canister and an inner carbon steel (Fe) tank, is used to dispose of spent nuclear fuel [3-6]. Otherwise, corrosion of copper (Cu) and its alloys is a problem due to their large-scale use in drinking water pipelines, leading to premature failure of pipes and fittings, increased toxicity due to Cu release and expensive costs associated with Cu removal in wastewater [7, 8]. Moreover, an excess of dissolved copper causes accelerated corrosion in iron pipelines, which are widely used in the water distribution system [9]. Therefore, it is important to compare the corrosion rates of Cu and Al at different temperatures (from 5°C to 180°C) in solutions of salts in water.

Electrochemical corrosion of Cu and Al was investigated at constant temperatures 20°C and 100°C during 5, 10, 15, and 20 min [10-14] and at temperatures T₁ = 175°C, T₂ = 200°C, and T₃ = 225°C during 120, 240, 360, and 480 h (without applied external voltage) [2].

We can find copper containing species in the copper-chlorine-water system at temperatures 5 – 100°C in Table 4 in [3, 4]: CuCl(cr), CuCl(aq), CuCl⁺, CuCl₂⁻, Cu₂Cl₆⁻.
Cu$_2$Cl$_3$ for Cu$^+$ and CuCl$^+$, CuCl$_2$(aq), CuCl$_3^-$, CuCl$^2_-$, CuCl$_3$Cu(OH)$_2$(s) for Cu$^{2+}$.

Diffusion kinetics in solid state are different in planar, cylindrical, and spherical samples [15], so we planned to analyse the electrochemical degradation of cylindrical and spherical copper (Cu) and aluminium (Al) anodes in an electrolyte (concentrated aqueous NaCl solution) under different temperature conditions.

Copper (Cu), iron (Fe), and aluminium (Al) anodes and cathodes are used also for wastewater remediating by electrocoagulation (EC) [16]. The EC process produces ions (Cu$^+$, Cu$^{2+}$, Fe$^{2+}$, Fe$^{3+}$ or Al$^{3+}$) during electrolysis that capable of producing coagulants in water solutions.

Aluminium undergoes dissolution to the Al$^{3+}$ ions in all types of electrodes at different temperatures [16]. Two aluminium electrodes were used for the removal of cadmium (Cd) from wastewater through the EC process and various EC tests were conducted for the different initial temperatures of 18, 30, 50 and 70$^\circ$C [17]. Cadmium (Cd) removal rate increased with temperature increasing [17]. It is correlated with our investigations: rate of coagulant Al(OH)$_3$ also increases with temperature increasing, and, as result, the cadmium removal rate increases with temperature increasing too.

It was investigated the effect of various parameters like much higher temperature (200–500°C), applied voltage (1.5–3.0 V), and feed gas (CO$_2$/H$_2$O) composition of 1, 9.2, and 15.6 in hydrocarbon fuel formation by electrolysis in molten carbonate (Li$_2$CO$_3$–Na$_2$CO$_3$–K$_2$CO$_3$; 43.5:31.5:25 mol%) and hydroxide (LiOH–NaOH; 27:73 and KOH–NaOH; 50:50 mol%) salts in works [17-21]. Enhancing hydrogen production from steam electrolysis in molten hydroxides via selection of non-precious metal electrodes was also described in [22 - 23].

The corrosion resistance of the coated aluminium alloy in a 3.5 wt.% NaCl solution (pH 6.5–7.5) and the influence of different surface treatment processes on the corrosion resistance of different samples were studied by scanning electron microscope (SEM) and electrochemical workstation in [24]. For this reason, we have planned to investigate copper and aluminium electrochemical corrosion rate dependence on temperature and electric current density during electrolysis in concentrated sodium chloride solution in water during heating by electric current from 20$^\circ$C to 180$^\circ$C using mathematical modelling.

I. Model

Electric current heats electrolyte during electrolysis if electrolyte volume is very small. We can calculate initial heating coefficient (b>0):

$$b = \frac{VI}{c \rho V T_0},$$

where V is the electrolyte (it is, commonly, concentrated NaCl solution in water) volume, c is the electrolyte specific heat capacity, ρ is the electrolyte density, I is the electric current value, U is applied voltage between anode and cathode. Heat transfer coefficient to environment, $\alpha>0$, is proportional to difference between the electrolyte temperature (in $^\circ$C), $T(t)$, and the environment temperature T_0. Appropriate differential equation is as follows:

$$\frac{dT(t)}{dt} = b - a \cdot (T(t) - T_0); \left\{ \frac{dT(t)}{dt} \right\}_{t=+\infty} = 0; T(t = +\infty) = T_2; T(t = t_{diss}) = T_1.$$

(2)

Integrating of equation (2) leads to:

$$T(t) = T_2 - (T_2 - T_1) \cdot \exp \left(\frac{b \cdot (T_{diss} - t)}{T_2 - T_0} \right) \cdot \frac{T_2 - T_0}{T_2 - T_1} = \frac{b \cdot t_{diss}}{T_2 - T_1} \cdot e^{\frac{bt_{diss}}{T_2 - T_0}}.$$

(4)

II. Method

The rate of cylindrical anode dissolving into electrolyte can be calculated using Faraday’s law of electrolysis [9-14]:

$$\frac{dm}{dt} = \frac{MI}{zF} \cdot e^{\frac{bt_{diss}}{T_2 - T_1}} \cdot \frac{bt_{diss}}{T_2 - T_0} = -\rho L \pi \cdot d \cdot (R^2(t)).$$

Here, m is anode mass dissolved into the electrolyte, t is a time of the experiment, M is molar mass, I is the direct electric current value, F is the Faraday constant ($F = 96,500$ C mol$^{-1}$), z is a charge of ions, R is anode radius, L is anode length immersed into the electrolyte, ρ is the anode density. Integrating of equation (5) gives at constant temperature:
Copper and Aluminium Electrochemical Corrosion Investigation during Electrolysis and Heating from 20°C to 180°C...

\[
R_{cy}(t) = \sqrt{\frac{R_0^2 - l(t)/z(t)k_{cy}t}{\frac{M}{\rho_s l}t_{diss}}} = \frac{z(T)k_{cy}t_{diss}}{l(t)k_{cy}}
\]

Charge of the Al ions is constant (\(z=+3\)) while average charge of the Cu ions increases with a complexing agent such as Cl\(^-\) [7] from \(z=+1\) at \(T=20^\circ\text{C}\) to \(z=+1.5\) at \(T=100^\circ\text{C}\) [3, 4, 10, 13], and to \(z=+2\) at \(T=180^\circ\text{C}\) [2]. The direct electric current value increased from \(I=2.8\ A\) at \(T=20^\circ\text{C}\) to \(I=3.05\ A\) at \(T=100^\circ\text{C}\) (and, theoretically, to \(I=3.3\ A\) at \(T=180^\circ\text{C}\)) for the Cu anodes while the direct electric current value increased from \(I=3.1\ A\) at \(T=20^\circ\text{C}\)

\[
R^2(t) = -\frac{k_{cy}l_{Cu}I}{z_{Cu}(t)} \int_0^t \frac{dt}{z_{Cu}(t)}; R^2(t) = -\frac{k_{cy}l_{Al}I}{z_{Al}(t)} \int_0^t \frac{dt}{z_{Al}(t)}
\]

Average charge of the Cu ions value linearly depends on temperature:

\[
z(T) = (T + 140)/160.
\]

but non-linearly depends on time \((t < t_{diss})\):

\[
z(T) = \frac{1}{160} (T_2 + 140 - (T_2 - T_1)e^{b(t_{diss}-t)})
\]

First equation (7) gives for the Cu anodes:

\[
R(t) = \sqrt{R_0^2 - \frac{160k_{cy}l_{Cu}(T_2 - T_0)}{b(140 + T_2)} (\ln(e^{\frac{bt_{diss}}{140 + T_2}} - \frac{T_2 - T_1}{140 + T_2}) - \ln(1 - \frac{T_2 - T_1}{140 + T_2} e^{\frac{bt_{diss}}{140 + T_2}}))}
\]

III. Experimental results

We have done an experiment to investigate rate of the electrolyte heating by electric current during 20 min in concentrated NaCl solution (5 mol/kg [4] or 23.1% [26]) in water (Fig. 1). Warm electrolyte layers went up from the bottom to the surface. Temperature near the bottom was about 20°C and temperature near the electrolyte surface was increasing from 20°C to 60°C during 20 min.

\[
\text{We have measured } I=5.5\ A; \ U=6\ V; \ V=2 \times 10^{-4}\ m^3, \text{ used literature data [26] } \rho=1172\ kg/m^3; \ c=3333\ J/(kg K), \text{ and calculated:}
\]

\[
b = \frac{6V \times 5.5A}{3333J/(kg K)} \times 1172\ kg/m^3 \times 2 \times 10^{-4}\ m^3 = 0.042 K/s.
\]

\[
\text{Fig. 2. Copper and aluminium anodes before and after electrolysis during 20 min in concentrated NaCl solution in water. Temperature distribution is non-uniform within the cylindrical anodes length.}
\]

\[
\text{Temperature distribution is non-uniform within the cylindrical anodes length, we can see that copper cylindrical anode dissolves and get cone shape with a top near the glass bottom where temperature is much smaller (Fig. 2). Such result shows that the rate of copper anode dissolving into the electrolyte decreases with temperature increasing as we have noted earlier [10-14]. On the other hand, we have also noted that the rate of aluminium anode dissolving into the electrolyte increases with temperature}
\]

\[
\text{Fig. 1. Scheme of experimental equipment: } D \text{ is a diode, } R_{d} \text{ is an additional resistance (kettle), } A \text{ is an ammeter, } V \text{ is a voltmeter.}
\]
increasing as we have noted earlier [10–14]. The electrolyte volume was more in 10 times earlier \(V = 2 \cdot 10^{-3} \text{ m}^3\) [10], so we have done experiments at constant temperatures.

IV. Analysis

4.1. Kinetics of the copper anode dissolving

We can analyse our published experimental results [10, 14]. We assume that temperature distribution is uniform within length of the cylindrical anode. We can find time of the copper anode dissolving at constant temperatures \(R_0 = 2.8 \text{ mm}; L = 5 \text{ cm}\):

\[
t_{\text{diss}}(T = 20^\circ C, I = 2.8 \text{ A}) = \frac{\frac{d^3}{k_{Cu}}} = \frac{2.8 \cdot 10^{-8} \text{ m}^2}{1.25 \cdot 10^{-8} \text{ m}^2 / \text{s}} = 6.272 \text{s}; \\
t_{\text{diss}}(T = 100^\circ C, I = 3.05 \text{ A}) = \frac{\frac{d^3}{k_{Cu}}} = \frac{2.8 \cdot 10^{-8} \text{ m}^2}{1.154 \cdot 10^{-8} \text{ m}^2 / \text{s}} = 6.794 \text{s}.
\]

Results (12a) and (12b) are experimental. Theoretical results are comparable (equation (6)):

\[
k_{Cu}^{cyt} = \frac{M}{\rho \cdot L} = \frac{63.55 \cdot 10^{-3} \text{kg/mol}}{96,500 \text{C/mol} \cdot 80,000 \text{g/mol}} = 4.71 \cdot 10^{-10} \text{ m}^2 / \text{s}.
\]

\[
t_{\text{diss}}^{\text{theor}}(T = 20^\circ C) = \frac{d^3 \cdot k_{Cu}^{cyt}(T = 20^\circ C)}{T} = 5.945 \text{s};
\]

\[
t_{\text{diss}}^{\text{theor}}(T = 100^\circ C) = \frac{d^3 \cdot k_{Cu}^{cyt}(T = 100^\circ C)}{T} = 8.186 \text{s}.
\]

We assume that \(T_1 = 180^\circ C\) and get (0th iteration):

\[
\ln \left(\frac{T_2 - T_0}{T_2 - T_1} \right) = b \cdot t_{\text{diss}}^{\text{theor}}(T = 20^\circ C) = 250K; \quad T_2^{(0)} = 280^\circ C.
\]

Equation (10) gives:

\[
R(t) = \sqrt{7.84 - 3.388(\ln(e^{0.042/T_0} - 0.623) + 0.975)} \text{ mm}; \quad t_{\text{diss}}^{\text{theor}}(T = 20 \rightarrow 180^\circ C) = 9.200 \text{s}.
\]

1st iteration:

\[
\ln \left(\frac{T_2 - T_0}{T_2 - T_1} \right) = b \cdot t_{\text{diss}}^{\text{theor}}(T = 20 \rightarrow 180^\circ C) = 386K; \quad T_2^{(1)} = 202^\circ C.
\]

\[
R(t) = \sqrt{7.84 - 3.04(\ln(e^{0.0002/T_0} - 0.56) + 0.83)} \text{ mm}; \quad t_{\text{diss}}^{\text{theor}}(T = 20 \rightarrow 180^\circ C) = 8.770 \text{s}.
\]

2nd iteration:

\[
\ln \left(\frac{T_2 - T_0}{T_2 - T_1} \right) = b \cdot t_{\text{diss}}^{\text{theor}}(T = 20 \rightarrow 180^\circ C) = 368K; \quad T_2^{(2)} = 205^\circ C.
\]

\[
R(t) = \sqrt{7.84 - 2.935(\ln(e^{0.00022/T_0} - 0.535) + 0.767)} \text{ mm}; \quad t_{\text{diss}}^{\text{theor}}(T = 20 \rightarrow 180^\circ C) = 8.720 \text{s}.
\]

3rd iteration:

\[
\ln \left(\frac{T_2 - T_0}{T_2 - T_1} \right) = b \cdot t_{\text{diss}}^{\text{theor}}(T = 20 \rightarrow 180^\circ C) = 366K; \quad T_2^{(3)} = 206^\circ C.
\]

\[
R(t) = \sqrt{7.84 - 2.942(\ln(e^{0.00022/T_0} - 0.538) + 0.771)} \text{ mm}; \quad t_{\text{diss}}^{\text{theor}}(T = 20 \rightarrow 180^\circ C) = 8.724 \text{s}.
\]

We have calculated: \(T_2 = 206^\circ C\) if heating coefficient is constant \(b = 0.042 \text{ K/s}\) during electrolysis and after dissolving of the copper anode (Fig. 3).

Result (16c) allows us to calculate average dissolving coefficient of the copper cylindrical anode:

\[
<k_{Cu}> = \frac{\frac{d^3}{t_{\text{diss}}^{\text{theor}}}}{8.724} \cdot 9 \cdot 10^{-10} \text{ m}^2 / \text{s}. \quad (17)
\]

Such average coefficient is less than experimental
coefficients (1.25 10^9 m2/s at 20°C and 1.154 10^9 m2/s at 100°C). Increasing temperature leads to the anode dissolution rate value decreasing while electric current value increasing since average charge of the Cu ions increasing.

We can compare function (6) $R_{\text{cyl}}(t) = \sqrt{R_0^2 - k_{\text{Cu}} t}$ and function (16c) (Fig. 4).

The dissolving rate value, $\frac{d[R(t)]}{dt}$, decreases approximately in 4 times until $t = 6,700$ s ($T = 160°C$) due to the temperature-increasing-effect in case a) while the dissolving rate value increases all the time ($\frac{d[R(t)]}{dt} = -\infty$) due to the cylindrical-shape-effect in case b). Other mathematical methods without iterations were used for copper cylindrical anode degradation describing in [27, 30]. The methods give the same result, so we can conclude that they are correct. Similar methods were used for degradation rates calculations of Fe and Al anodes in [31].

4.2. Kinetics of the aluminium anode dissolving

We can analyze our published experimental results [10, 13]. We assume that temperature distribution is uniform within length of the cylindrical anode. We can find time of the aluminium anode dissolving at constant temperatures ($R_0 = 2.8$ mm; $L = 4.5$ cm):

$$t_{\text{diss}}(T = 20°C, I = 3.1A) = \frac{R_0^2}{k_{\text{Al}}} = \frac{2.8^2 \times 10^{-6} m^2}{7.29 \times 10^{-10} m^2/s} = 10,754 s;$$

$$t_{\text{diss}}(T = 100°C, I = 3.15A) = \frac{R_0^2}{k_{\text{Al}}} = \frac{2.8^2 \times 10^{-6} m^2}{8.42 \times 10^{-10} m^2/s} = 9,311 s.$$

Results (18a) and (18b) are experimental. Theoretical results are comparable (equation (6)):

$$k_{\text{Al}}^{\text{cyl}} = \frac{M}{F_{\text{pln}}} = \frac{27 \times 10^{-3} \text{kg/mol}}{96,500 \text{C/mol-2700kg/m}^3 \cdot \pi \cdot 0.0435 \text{m}^3} = 7.32 \cdot 10^{-10} \text{m}^2/\text{A.s};$$

$$t_{\text{diss}}^{\text{theor}}(T = 20°C) = \frac{2}{l(T) k_{\text{cyl}}^{\text{Al}}(T=20°C)} = 10,365 s;$$

$$t_{\text{diss}}^{\text{theor}}(T = 100°C) = \frac{3}{3.15A k_{\text{cyl}}^{\text{Al}}(T=100°C)} = 10,200 s.$$

We assume that the electric current value linearly depends on temperature:

$$I_{\text{Al}}(T) = \frac{(T + 4940)}{1600}. $$

but non-linearly depends on time (t_{diss}; T_2=206°C; T_0=20°C):

$$T(t) = 206 - 26e^{-\frac{b(t_{\text{diss}}-t)}{188}}; \quad I_{\text{Al}}(t) = \frac{1}{1600} \left(5146 - 26e^{-\frac{b(t_{\text{diss}}-t)}{726}}\right).$$

Second equation (7) gives for the Al anodes (0th iteration):
\[
R(t) = \sqrt{\frac{8.04 - 0.000785t - 0.2e^{-0.000226t}}{0.00012867}} \text{ mm; } t_{\text{diss}(0)} = 10.217s.
\]

1st iteration:

\[
R(t) = \sqrt{8.017 - 0.000785t - 0.1776e^{-0.000226t}} \text{ mm; } t_{\text{diss}(1)} = 10.189s.
\]

2nd iteration gives the same result. Result (23a) allows us to calculate average dissolving coefficient of the aluminium cylindrical anode:

\[
<k_{Al}> = \frac{\frac{R_0^3}{t_{\text{diss}(1)}}}{10.189s} = 7.7 \cdot 10^{-10} m^2/s.
\]

Such average coefficient is greater than initial coefficient (7.29 \(10^{-10}\) m²/s). Increasing temperature leads to the anode dissolution rate value increasing and electric current value increasing as we expected.

Treatment of landfill leachate wastewater by electrocoagulation process using an aluminium electrode was investigated in [28]. It was obtained that the optimum conditions of current density (X1) of 5.25 A/dm² = 525 A/m², inter-electrode distance (X2) of 1 cm and initial effluent pH of 7.83 lead to the maximum % colour removal, % total organic carbon (TOC) removal and minimum of power consumption. Such conditions should lead to enormous heating of the wastewater between the anode and cathode. Average temperature of the wastewater increased from 20 to 33°C. The authors did not measure temperature of the wastewater between the electrodes.

4.3. Kinetics of spherical anode dissolving

Let us assume that the anodes have a spherical shape (Fig. 5).

![Fig. 5. Schemes of experiments. Cylindrical anode degrades to thin rod and spherical anode degrades to small ball.](image)

We obtained in this case:

\[
\frac{dm}{dt} = \frac{M(T)}{z(T)\rho} = -\frac{4}{3} \rho \pi \frac{d(R^3(t))}{dt}; R(0) = R_0;
\]

Dissolving time, \(t_{sp}\), is calculated:

\[
t_{sp} = \frac{\frac{R_0^3}{k_{sp}}}{3 \cdot \frac{M(T)}{4 \pi R^2(T) \rho \pi}} = \frac{L}{4} = \frac{100}{3} R_0.
\]

We can compare (the spherical shape must be equal in volume to the rod shape):

\[
\frac{t_{cyl}}{t_{sp}} = \frac{\frac{R_0^3}{k_{sp}}}{4 \pi R_0^2(T) \rho \pi} = \frac{M(T)}{3 \cdot \frac{M(T)}{4 \pi R^2(T) \rho \pi}} = \frac{L}{4} = \frac{100}{3} R_0.
\]

so the dissolving time of spherical anode equals the dissolving time of cylindrical anode.

4.4. Amount of aluminium loss due to electrolysis per unit time calculation

Dependence of corrosion rate (CR), or weight-loss of aluminium per unit time, on temperature could be expressed in the form of the Arrhenius equation as [29]:

\[
C_{Al}^I(T) = A_{Al}e^{-\frac{k_{Al}^I}{RT}} = k_{Al}(T)\pi \rho \rho_{Al}.
\]

We can calculate the aluminium weight-loss per unit time using our experimental results [10, 14]:

\[
C_{Al}^I(20^\circ C) = k_{Al}(20^\circ C)\pi \rho \rho_{Al} = 2.78 \cdot 10^{-7} kg \cdot s^{-1};
\]

\[
k_{Al}(T=20^\circ C) = 7.29 \cdot 10^{-9} m^2/s.
\]

\[
C_{Al}^I(100^\circ C) = k_{Al}(100^\circ C)\pi \rho \rho_{Al} = 2.86 \cdot 10^{-7} kg \cdot s^{-1};
\]

\[
k_{Al}(T=100^\circ C) = 8.42 \cdot 10^{-9} m^2/s.
\]

Here, \(A_{Al}\) is the pre-exponential factor, \(E_{Al}^I\) is the activation energy of corrosion, \(R\) is the gas constant, \(T\) is
Copper and Aluminium Electrochemical Corrosion Investigation during Electrolysis and Heating from 20°C to 180°C...

The dissolving rate value of the copper anodes decreases approximately in 4 times due to the temperature increasing, so we can recommend to clear wastewater by electrocoagulation of Cu cathodes and anodes at lower temperature (20°C), so we can recommend to clear wastewater between electrodes during of EC processes.

Increasing temperature leads to dissolution rate value of the copper anodes decreasing while electric current value increases since average charge of the Cu ions increases too. Such result can be called as “inverse Arrhenius law”, so we can recommend to clear wastewater by electrocoagulation of Cu cathodes and anodes at lower temperature (20°C).

Increasing temperature leads to dissolution rate value of the aluminium anodes increasing and electric current value increases too. Such result agrees with Arrhenius law, so we can recommend to clear wastewater by electrocoagulation of Al cathodes and anodes at higher temperature (100°C).

The dissolving rate value of the copper anodes increases approximately in 4 times due to the temperature increasing effect, while the dissolving rate value of the aluminium anodes increases all the time due to the cylindrical shape effect:

$$\frac{dL_{\text{Al}}}{dt} = \frac{-k_{\text{cyl}}}{2} \sqrt{\frac{L_{\text{Al}}^3}{R}} \cdot t < L_{\text{dist}}.$$

where L_{dist} is dissolving time of an anode.

Conclusions

Increasing temperature leads to dissolution rate value of the copper anodes decreasing while electric current value increases since average charge of the Cu ions increases too. Such result can be called as “inverse Arrhenius law”, so we can recommend to clear wastewater by electrocoagulation of Cu cathodes and anodes at lower temperature (20°C).

Increasing temperature leads to dissolution rate value of the aluminium anodes and electric current value increases too. Such result agrees with Arrhenius law, so we can recommend to clear wastewater by electrocoagulation of Al cathodes and anodes at higher temperature (100°C).

The dissolving rate value of the copper anodes decreases approximately in 4 times due to the temperature increasing effect, while the dissolving rate value of the aluminium anodes increases all the time due to the cylindrical shape effect:

$$\frac{dL_{\text{Al}}}{dt} = \frac{-k_{\text{cyl}}}{2} \sqrt{\frac{L_{\text{Al}}^3}{R}} \cdot t < L_{\text{dist}}.$$

where L_{dist} is dissolving time of an anode.

[19] Farooq Sher, George Z. Chen. Electrochemical Production of Sustainable Hydrocarbon Fuels from CO2 Co-electrolysis in Eutectic Molten Melts. ACS Sustainable Chemistry & Engineering, 8, 12877 (2020); https://doi.org/10.1021/acssuschemeng.0c03314.

М. В. Ярмоленко1,2, С. О. Могілей1

Дослідження електрохімічної корозії міді та алюмінію під час електролізу та нагрівання від 20°C до 180°C з допомогою математичного моделювання

1Східноєвропейський університет імені Рахуфа Абілязова, Черкаси, Україна, yarmolenko@suemm.edu.ua
2Державний науково-дослідний інститут випробувань і сертифікації озброєння та військової техніки, Черкаси, Україна

Наші дослідження показують, що електрохімічна корозія міді відбувається швидше, ніж електрохімічна корозія алюмінію при температурах, нижчих 180°C та густині електричного струму 3,000 A/m² (або 30 A/dm²=3 мА/см²). Ми отримали: алюмінієві аноди (циліндричні або сферичні) розчиняються в концентрованому розчині NaCl під час електролізу швидше з підвищенням температури, а мідні аноди (циліндричні або сферичні) розчиняються повільніше з підвищенням температури від кімнатної до 180°C. Величина електричного струму також зростає з підвищенням температури. Дійсно, такий результат є неочікуваним. Загальна кількість іонів Cu²⁺ і Cl⁻ зменшується під час електролізу при всіх температурах, оскільки гази H₂ і Cl₂ утворюються поблизу електродів. Це зменшує величину електричного струму на 1.3%. Загальна кількість іонів Cu⁺ і Cu²⁺ також зменшується з підвищенням температури. Ми припускаємо, що для збільшення значення електричного струму має бути тільки одна причина: середній заряд іонів міді збільшується від +1 при кімнатній температурі до +1,5 при 100°C і до +2 при 180°C, а заряд іонів алюмінію залежить від температури. Для аналізу пропонується відповідна математична модель, а також використовуються літературні експериментальні дані.

Ключові слова: електрохімічна корозія, електроліз, електрокоагуляція, мідь, алюміній, математичне моделювання, металеві покриття.