Introduction

In recent days, strontium-based aluminate phosphor has attracted attraction due to its luminesce properties such as high quantum efficiency, long persistence of phosphorescence, and good stability [1–3]. In recent days inorganic light-emitting diodes (LEDs) have been widely used for different purposes due to their advantage over conventional sources [4-8]. The various rare earth (RE) elements are used for the luminescence properties in lasers, biosensors, fiber amplifiers, displays, optical thermometry, anti-counterfeiting applications, etc.[9-14]. According to the requirement of the color of emission, among them, the Eu$^{3+}$ ion has been widely used in doping of host materials significantly for red photoluminescence due to the downconversion process. Down conversion is an optical process in which a high-energy photon is converted into a low-energy photon [15]. According to energy level, the respective peak observed by Eu$^{3+}$ ion due to the Charge transfer band $O^2 – Eu^{3+}$, $^4D_{5/2} \rightarrow ^4I_{7/2}$, $^5D_{5/2} \rightarrow ^5D_{2}$, respectively [16]. There are various strontium aluminate-based phosphors reported earlier such as Sr$_3$La(AlO)$_3$(BO$_3$)$_2$ [17], SrAl$_2$O$_{19}$ [18], SrAl$_2$O$_3$ [19], and SrAl$_2$O$_{25}$ [20]. In this research work the novel phosphor matrix Sr$_3$Al$_3$O$_{51}$:Eu$^{3+}$ was synthesized and studied its photoluminescence property.

The material is subjected to structural characterizations such as X-ray diffraction (XRD), and the morphology of the given sample is determined by Scanning electron microscopy (SEM). The luminescent properties are evaluated using photoluminescence (PL) measurements in detail. The excitation spectrum shows peak positions at 257 nm, 395 nm, and 465 nm respectively for the given phosphor and emission spectra 593 nm and 613 nm respectively. The CIE diagram plotted by the color calculator of the given phosphor shows coordinates shifted in the red region. The given phosphor is used for red LEDs, display devices, photonic devices, and solid state lighting LEDs.

I. Experimental

The given phosphor Sr$_3$Al$_3$O$_{51}$:Eu$^{3+}$ is prepared by simple combustion technique for various concentrations
The starting raw material required for this technique is nitrate from Strontium nitrate, Aluminum nitrate, Europium oxide, and urea used as fuel. All these ingredients were weighed properly according to stoichiometric ratio for different concentrations and mixed in an aged mortar pestle. After mixing this ingredient pesty type solution form and convert this solution into the china disk and keep it at 525°C to 550°C. First of all, the solution is boiled and dehydrated, then a decomposition process occurs with the release of large quantities of gases (oxides of carbon, nitrogen and ammonia). Within 10 to 15 minutes white aluminous powder was formed. This powder sample was allowed to cool down to room temperature, then crushed (5-10 minutes), purified the impurities sample, and then annealed at 800°C for fifteen hours [21]. A schematic representation of the combustion method for the synthesis of Sr$_3$Al$_{32}$O$_{51}$:Eu$^{3+}$ phosphor is shown in Fig 1. Using a Rigaku miniflex d 600 X-ray diffractometer (XRD analysis), the phase and purity of the pure sample were studied. Morphology was studied by Scanning electron microscopy (SEM) analysis using the Carl Zeiss EVO-18. The Photoluminescence (PL) properties were examined using a SHIMADZU Spectrofluorophotometer RF-5301 PC.

II. Results and discussion

2.1. X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) analysis

Fig.2 represents the XRD analysis of the given matrix in pure form which confirms that the given phosphor matches with standard JCPDS database file no. 440024 which confirms that the given matrix prepared successfully forms a hexagonal structure. The maximum intense peak obtained at $2\theta = 33.307^\circ$ due to the (1 0 7) plane. Fig. 3 shows a scanning electron microscopy (SEM) micrograph of pure Sr$_3$Al$_{32}$O$_{51}$ phosphor synthesized by a simple combustion method. The SEM micrograph reveals the asymmetrical size grain type particles. Phosphorus particles are sub-micron in size and look like agglomerates. A large

![Fig. 1. Schematic representation of combustion method for the synthesis of phosphor Sr$_3$Al$_{32}$O$_{51}$:Eu$^{3+}$.](image)

![Fig. 2. XRD Analysis of the Sr$_3$Al$_{32}$O$_{51}$ pure matrix.](image)
Photoluminescence study of Sr₃Al₂O₅₁:Eu³⁺ phosphor for Solid state lighting applications

amount of gases is released in an exothermic combustion reaction. Although the particle are near to each other due to the necking which shows a spherical surface while size are in micrometer. The morphology shown in Fig. 3 reveals that the given phosphor be one of a useful candidate for solid-state lightening [22-23].

2.2. Photoluminescence (PL) study

Fig. 4 represents the energy level diagram of the Eu³⁺ ion. The energy level diagram be the important one to understand the phenomenon of photoluminescence, as shown in Fig. 4 the two important emission peak obtained generally in the Eu³⁺ ion due to the transition between the ⁵D₀→⁷F₁, ⁵D₀→⁷F₂ [24]. The excitation spectrum as shown in Fig. 5 of Sr₃Al₂O₅₁:Eu³⁺ shows the peak position at 257 nm, 395 nm and 465 nm. According to the energy level diagram the respective excitation peak observed for the Charge transfer band \(O²⁻ \rightarrow Eu³⁺ \), ⁵D₁₅/₂ \(\rightarrow \) ⁵L₆, ⁵D₁₅/₂ \(\rightarrow \) ⁵D₂ respectively [25]. Here important charge transfer band is obtained for the given phosphor which is used in the energy transfer process. Fig 6 (a, b, c) shows the Photoluminescence (PL) emission spectrum of Eu³⁺ ion-activated phosphor Sr₃Al₂O₅₁:Eu³⁺ at excitation wavelengths of \(\lambda_{ex} = 257 \) nm, 465 nm and 395 nm. The emission spectra show intense peak positions at 593 nm and 613 nm respectively [26]. The peak pattern is the same for all the concentrations while intensity may vary with the increase of concentration. On increasing the concentration (x = 0.5 to 2.5 mole %) intensity increases up to 2.0 mole% and above that intensity decline means the concentration quenching occurs at 2.0 mole% for the given phosphor. Concentration quenching effect observed at all excitation wavelength \(\lambda_{ex} = 257 \) nm, 395 nm, and 465 nm at 2.0 mole%. The concentration quenching mainly occurs due to the critical transfer distance [27,28]. On comparing luminescence emission intensity most intense peak was obtained for \(\lambda_{ex} = 257 \) nm as shown in fig.6 (d).

2.3. CIE Chromaticity

The CIE chromaticity of the Sr₃Al₂O₅₁:Eu³⁺ phosphor spectrum excited by 257 nm light using the CIE 1931 color matching function as shown in Fig.7. Chromaticity diagram of Sr₃Al₂O₅₁:Eu³⁺ phosphor intimates the CIE coordinates for Sr₃Al₂O₅₁:Eu³⁺ phosphor to be at (0.5074, 0.4876) in red region. To study the variation of PL intensity with the concentration of Eu³⁺ ion in the host Sr₃Al₂O₅₁, a series of samples (x= 0.5, 1.0, 1.5, 2.0, 2.5 mole %) were synthesized. The red emission intensity increased with the increase in Eu³⁺ ion concentration and the maximum intensity obtained for 2.0 mole %. The color purity of the synthesized phosphor was determined by using the formula [29,30]:

\[
\text{Color purity} = \frac{\sqrt{(X-x_i)^2 + (Y-y_i)^2}}{\sqrt{(X-d_i)^2 + (Y-d_i)^2}} \times 100\%
\]

Where, \((x, y)\) and \((x_i, y_i)\) are the color coordinates of the sample point and the CIE equal-energy illuminant,
Fig. 5. shows the Photoluminescence (Pl) excitation spectra for the Sr$_3$Al$_{32}$O$_{51}$:Eu$^{3+}$.

Fig. 6. Emission spectra of Sr$_3$Al$_{32}$O$_{51}$:Eu$^{3+}$ phosphor at (a) $\lambda_{ex} = 257$ nm (b) $\lambda_{ex} = 395$ nm (c) $\lambda_{ex} = 465$ nm (d) Comparison of emission spectra at $\lambda_{ex} = 257$ nm, $\lambda_{ex} = 395$ nm and $\lambda_{ex} = 465$ nm.

Fig. 7. CIE chromaticity diagram using a 1931 color calculator function.
Photoluminescence study of Sr₃Al₂O₅:Eu³⁺ phosphor for Solid state lighting applications

respectively; (xd, yd) is the chromaticity coordinate of the dominant wavelength of the light source. For Sr₃Al₂O₅:Eu³⁺ 2.0 mole % sample, the co-ordinates of (x, y) are (0.5074, 0.4876); coordinates of (xi, yi) are (0.333, 0.333); and dominant coordinates (xd, yd) are calculated taking values corresponding to dominant wavelength 257 nm which is (0.6722, 0.3276), substituting these values in above equation color purity of Sr₃Al₂O₅:Eu³⁺ at 2.0 mole % sample was found to be 58.45 %. Therefore, the present Sr₃Al₂O₅:Eu³⁺ sample showed good color purity and can be a potential red-emitting phosphor. The diagram shows that the given phosphor should be a potential candidate for red light emission.

Conclusion

Sr₃Al₂O₅:Eu³⁺ phosphors were successfully synthesized by a simple combustion method were urea used as a fuel. XRD analysis data shown prepared sample synthesized by a simple combustion method were urea

[5] L Zhou, P Du, L Li, Facile modulation the sensitivity of Eu²⁺/Eu³⁺-coactivated Li₂CaSiO₄ phosphors through adjusting spatial mode and doping concentration, Scientific report, 20180 (2020); https://doi.org/10.1038/s41598-020-77185-w.

[6] Z Ming, J Qiao, M S Molokeev, J. Zhao, H C Swart, Z Xia, Multiple Substitution Strategies toward Tunable Luminescence in Lu₂Mg₄Al₄SiO₁₂: Eu²⁺ Phosphors, American Chemical Society, 59(2), 1405 (2020); https://doi.org/10.1021/acs.inorgchem.9b03742.

S R Bhelave, A R Kadam, A N Yerpude, S J Dhoble, Intensity enhancement of photoluminescence in Tb³⁺/Eu³⁺ co-doped Ca₉Zn₂Al₁₀O₁₅ phosphor for WLEDs, Luminescence, 1 (2023); https://doi.org/10.1002/bio.4456.

R E Rojas-Hernandez, F Rubio-Marcos, M Á Rodriguez, F Fernandez, Long lasting phosphors: SrAl₂O₄:Eu, Dy as the most studied material, Renewable and Sustainable Energy Reviews 81, 2759 (2018); https://doi.org/10.1016/j.rser.2017.06.081.

H Liu, X Liu, X Wang, et al., Unusual thermal induced antithermal quenching of the Eu³⁺ emission at 490 nm in Sr₅Al₈Oₑ₅:Eu³⁺ for near ultraviolet excited white LEDs, Journal of the American Ceramic Society 103, 5758 (2020); https://doi.org/10.1111/jace.17306.

A R Kadam, S J Dhoble, Synthesis and luminescence study of Eu³⁺ doped SrYAl₃O₇ phosphor, Luminescence, 34(8), 1 (2019); https://doi.org/10.1002/bio.3681.

S K Ramteke, A N Yerpude, S J Dhoble, N S Kokode, Luminescence characterization of KBaPO₄:RE (RE = Sm³⁺, Eu³⁺, Dy³⁺) phosphors, Luminescence, 969 (2020); https://doi.org/10.1002/bio.3792.

W Hami, D Zambon, A Zegzouti, et al., Application of spectroscopic properties of Eu³⁺ ion to predict the site symmetry of active ions in AgLaP₃O₁₀: Eu³⁺ phosphors, Inorganic Chemistry Communications 107, 107475 (2019); https://doi.org/10.1016/j.inoche.2019.107475.

A Kumar, S J Dhoble, J Bhatt, et al., Structural characterization and influence of calcination temperature on luminescence properties of Sr₉₀/₉(MgAl₂₅Si₁₅O₃₀): Eu³⁺ nanophosphors, Powder Technology 354, 591 (2019); https://doi.org/10.1016/j.powtec.2019.06.031.

J Xiang, M Yang, Y Che, J Zhu, Y Mao, K Xiong, H Zhao, Photoluminescence investigation of novel reddish-orange phosphor Li₃NaBP₂O₆:Sm³⁺ with high CP and low CCT, Ceramics International 45, 7018 (2019); https://doi.org/10.1016/j.ceramint.2018.12.203.
Photoluminescence study of Sr$_3$Al$_{32}$O$_{51}$:Eu$^{3+}$ phosphor for Solid state lighting applications

С. Р. Бхелаве1, А. Н. Єрпуде2, С. Дж. Добле3

Дослідження фотолюмінесценції люмінофора Sr$_3$Al$_{32}$O$_{51}$:Eu$^{3+}$ для твердотільного освітлення

1Кафедра фізики, Грамліта Махавідьялая, Чимур, Індія
2Кафедра фізики, Н. Х. коледж, Брамхапурі, Індія, atulyerpude@gmail.com
3Кафедра фізики Р.Т.М. університет Нагпуру, Індія

Люмінофор Sr$_3$Al$_{32}$O$_{51}$:Eu$^{3+}$ отримано методом простого спалювання. Підготовлена матриця, синтезована для різних відсотків складу рідкоземельного Eu$^{3+}$ = (0,5; 1,0; 1,5; 2,0 і 2,5). Властивість фотолюмінесценції взято для даного легованого люмінофора, який демонструє пік збудження при 395 нм і 466 нм. Піки випромінювання спостерігалися при 593 нм і 613 нм для довжин хвилі збудження 395 нм і той самий пік випромінювання, що спостерігався для довжини хвилі збудження 466 нм був порівняно меншим інтенсивним, ніж 395 нм. Фаза синтезованого люмінофора, яка підтверджена рентгенівською дифракційною спектроскопією (XRD), скануючою електронною мікроскопією (SEM) і властивістю фотолюмінесценції (PI), показує, що дана матриця є одним із потенційних матеріалів, які можуть бути використані для твердотільного освітлення.

Ключові слова: лантаноїд; люмінофор алюмінату стронцію; спосіб простого спалювання; твердотільне освітлення.