PHYSICS AND CHEMISTRY OF SOLID STATE

V. 24, No. 4 (2023) pp. 610-615

Section: Chemistry

DOI: 10.15330/pcss.24.4.610-615

ФІЗИКА І ХІМІЯ ТВЕРДОГО ТІЛА Т. 24, № 4 (2023) С. 610-615

Хімічні науки

UDC: 546.882

ISSN 1729-4428

L. Romaka¹, Yu. Stadnyk¹, V.V. Romaka², A. Zelinskiy¹, P. Klyzub¹, A. Horyn¹

Phase equilibrium diagram of Y-Cu-Sb system at 870 K

¹Ivan Franko National University of Lviv, Lviv, Ukraine, <u>lvubov.romaka@gmail.com</u> ²Institute for Solid State Research, IFW-Dresden, Dresden, Germany, <u>vromaka@gmail.com</u>

The interaction of the components in the Y-Cu-Sb ternary system was investigated using the methods of X-ray phase analysis, microstructure, and energy-dispersive X-ray spectroscopy in the whole concentration range at 870 K. At the temperature of investigation Y-Cu-Sb system is characterized by the formation of three ternary compounds: $Y_3Cu_{22}Sb_9$ (Dy₃Cu_{20+x}Sb_{11-x} structure type, space group *F*-43*m*, *a*=1.6614(3) nm), $Y_3Cu_3Sb_4$ (Y₃Au₃Sb₄ structure type, space group *I*-43*d*, *a* = 0.95357(5) nm), YCuSb₂ (HfCuSi₂ structure type, space group *P*4/*nmm*, *a* = 0.42580(1), *c* = 0.98932(3) nm). The solubility of copper in the binary compound YSb (NaCl structure type) extends up to 8 at. %.

Keywords: intermetallics, ternary system, phase equilibria, crystal structure.

Received 21 May 2023; Accepted 31 October 2023.

Introduction

The basis for the search for new materials is the study of the chemical interaction of elements in multicomponent systems. Rare earth metals (R=Y, La-Sm, Gd-Er) with copper and antimony form R₃Cu₃Sb₄ compounds with the $Y_3Au_3Sb_4$ structure type (space group *I*-43*d*) [1], which is a derivative of the Th₃P₄ structure type [2]. As well as half-Heusler RNiSb phases (MgAgAs structure type, space group F-43m) [3, 4], R₃Cu₃Sb₄ compounds are characterized by semiconductor properties [1, 5, 6]. Unlike half-Heusler RNiSb phases, the crystal structure of R₃Cu₃Sb₄ compounds is more complex, which ensures low thermal conductivity of these phases. It is known that both the methods of synthesis and the presence of impurity phases have a significant influence on the behavior of the electrical transport properties of semiconductor compounds. Therefore, when studying the interaction of components in the corresponding systems, it is possible to obtain important information about the conditions of formation, temperature and concentration stability, microstructure, and crystal structure of the original ternary compounds, as a basis for the search for new semiconductor materials. Phase diagrams of the R-Cu-Sb ternary systems were constructed for R=Ce, Nd, Ho, and Tm [7-9]. Separate ternary compounds were studied for other rare earth elements [7].

The purpose of this work is an experimental study of the interaction of components in the Y-Cu-Sb system and the construction of a phase equilibrium diagram at 870 K.

I. Experimental

To construct a phase diagram of the Y-Cu-Sb system, the alloys were synthesized by the arc-melting of a charge of metals (the content of the basic component is not less than 99.9 wt.%) in an argon atmosphere (sponge titanium was used as a getter). For better homogenization, the samples were remelted twice. Losses of Sb during melting were compensated by an excess of 2-3 wt. % of antimony. Homogenizing annealing of the alloys was carried out in vacuumed quartz ampoules at a temperature of 870 K for 700 hours with subsequent quenching in cold water.

The phase composition of the synthesized samples was determined based on the analysis of experimental powder diffraction patterns (DRON-4.0 diffractometer, FeK α radiation) by comparing them with theoretical diffraction patterns of pure components, binary compounds, and known ternary antimonides (PowderCell program [10]). The method of energy dispersive X-ray spectroscopy (EDRS) (electron microscope TESCAN VEGA 3 LMU, equipped with an X-ray analyzer with energy dispersive spectroscopy) was used to control the chemical composition of the synthesized samples and determine the exact content of components in the phases. At least five measurements were performed for each phase in each sample. Structural calculations were performed using WinCSD [11] and FullProf Suite [12] program packages.

The temperature limits of the stability of ternary compounds were investigated by the method of differential thermal analysis (DTA, synchronous thermal analyzer LINSEIS STA PT 1600). The samples were heated in an argon atmosphere up to 900°C (1170 K) at a rate of 10°C/min.

II. Experimental results

To study the Y-Cu-Sb ternary system, information on phase diagrams of Y-Cu, Y-Sb, and Cu-Sb binary systems, which limit the Y-Cu-Sb system, was used from Refs. [13, 14]. At the temperature of the investigation, the formation of Cu₃Sb (BiF₃ structure type) and Cu₂Sb (Cu₂Sb structure type) compounds was confirmed in the Cu-Sb system. The homogeneity range of the Cu₃Sb binary compound was determined by EDX analysis and is limited by the compositions Cu_{78,11}Sb_{21,89} and Cu_{67,45}Sb_{32,55}. Three binary compounds are formed in the Y-Sb system: Y₃Sb (Ti₃P structure type), Y₅Sb₃ (Mn₅Si₃ structure type), and YSb (NaCl structure type). The Y_4Sb_3 compound (Th₃P₄) structure type) exists at high temperatures (above 1660 K) [13], and the high-temperature modification of the Y₅Sb₃ compound with the Yb₅Sb₃ type structure was obtained at a temperature of 1538 K [15]. The existence of the Y₃Sb, Y₅Sb₃, and YSb compounds in the Y-Sb system at a temperature of 870 K was confirmed by us during the study of the Y-Ni-Sb system [4]. The Y-Cu system is characterized by the formation of five binary phases: YCu₅ (CaCu₅ structure type), Y_{0.8}Cu_{5.4} (Tb_{0.78}Cu_{5.44} structure type), YCu₂ (KHg₂ structure type), YCu (CsCl structure type), and Y₂Cu₇ with unknown structure. In the course of the study, the formation of binary compounds was confirmed according to literature data, except for the Y_2Cu_7 phase. Under the conditions of our study, the sample of the corresponding composition contained YCu₅ and YCu₂ compounds in equilibrium.

The phase equilibrium diagram of the Y-Cu-Sb system was constructed at 870 K based on the data from the X-ray phase, microstructural analyses, and scanning electron microscopy of the synthesized samples (Fig. 1). Microstructural and EDX analyses were used to confirm the chemical and phase composition of the samples. The phase compositions of selected alloys of the Y-Cu-Sb system according to X-ray phase and EDX analyses are given in Table. 1. Photographs of microstructures for some samples are shown in Fig. 2. At a temperature of 870 K in the Y-Cu-Sb system, the formation of three ternary compounds was confirmed [1, 16, 17], the crystallographic characteristics of which are given in the Table. 2.

Fig. 1. Isothermal section of the Y–Cu–Sb system at 870 K.

Information concerning the compound YCuSb₂ with HfCuSi₂ structure type is given in Ref. [16]. The authors of Ref. [18] consider the structure of the YCuSb₂ compound as defective with a structure of the CaBe₂Ge₂ type. The performed calculation of the crystal structure of the compound YCuSb₂ confirmed its belonging to the HfCuSi₂ structure type (space group *P4/nmm*, $R_{\text{Bragg}} = 0.0387$, $R_{\text{f}} = 0.0258$) (Fig. 3). The calculated of atomic coordinates in the YCuSb₂ structure are given in Table 3. According to the performed calculations and EDX data (Y_{26.25}Cu_{24.21}Sb_{49.54}), the compound YCuSb₂ under used conditions is realized at a stoichiometric composition.

The solubility of the third component in the binary compounds of the Cu-Sb and Y-Cu systems under the conditions of the study is insignificant (up to ~ 1.5 at. %). In the Y-Sb system, the binary compound YSb (NaCl structure type) dissolves up to ~8 at. % Cu, which is confirmed by the data of EDX analysis (Y_{46.18}Cu_{8.03}Sb_{45.79}). The lattice parameters vary from a = 0.6184(2) (for YSb) to a = 0.6192(2) nm (for the Y₄₅Cu₁₀Sb₄₅ sample). Significant solubility of copper in other binary compounds of the Y-Sb system was not observed.

The $Y_3Cu_{22}Sb_9$ and $Y_3Cu_3Sb_4$ compounds were studied using differential thermal analysis (DTA), which confirmed the limited temperature interval of the compounds stability (Fig. 4, heating regime).

Temperature transitions (heating mode) at temperatures of 1064 K for $Y_3Cu_{22}Sb_9$ phase (temperature transitions at 923 K corresponds to the melting temperature of the impurity phase Cu₃Sb) and 968 K for $Y_3Cu_3Sb_4$ phase indicate the decomposition of both compounds above the specified temperatures. There is practically no change in the mass of the tested samples during the measurement.

Table 1.

Nominal	<u> </u>	Structure	Lattice parameters, nm			EDX data, at. %		
composition/EDX	Phase	type	a	h	C	v	Cu	Sh
composition, at. %		type	u	υ	Ľ	1	Cu	50
$Y_{40}Cu_{40}Sb_{20}$	YSb	NaCl	0.6189(3)					
	YCu ₂	KHg ₂	0.4309(4)	0.6893(3)	0.7307(4)			
$Y_{65}Cu_{15}Sb_{20}$	YCu	CsCl	0.3472(3)					
	Y_5Sb_3	Mn ₅ Si ₃	0.8882(3)		0.6287(3)			
	Y ₃ Sb	Ti ₃ P	1.2363(5)		0.6178(3)		100.0	
$Y_{35}Cu_{45}Sb_{20}$	YCu _x Sb	NaCl	0.61891(3)			45.15	8.38	46.47
$Y_{37.47}Cu_{45.50}Sb_{17.03}$	YCu ₂	KHg ₂	0.4308(3)	0.6893(4)	0.7307(4)	34.66	64.64	0.70
	YCu ₅	CaCu ₅	0.4989(4)		0.4099(4)	16.54	83.46	
$Y_{40}Cu_{40}Sb_{20}$	YCu ₂	KHg ₂	0.4308(3)	0.6892(4)	0.7307(3)	34.66	64.65	0.69
Y37.47Cu45.50Sb17.03	YCu _x Sb	NaCl	0.6190(3)			47.68	5.02	47.30
	YCu ₅	CaCu ₅	0.4988(4)		0.4097(4)	16.44	83.56	
Y ₂₀ Cu ₅₅ Sb ₂₅	YCu _x Sb	NaCl	0.6190(3)			46.18	8.04	45.78
$Y_{21.22}Cu_{55.28}Sb_{23.50}$	Y ₃ Cu ₂₂ Sb ₉	Dy ₃ Cu ₂₂ Sb ₉	1.6614(7)			8.76	65.42	25.82
	(Cu)	Cu	0.3632(3)				100.0	
Y ₁₀ Cu ₅₅ Sb ₃₅	Y ₃ Cu ₂₂ Sb ₉	Dy ₃ Cu ₂₂ Sb ₉	1.6613(7)					
	Cu ₃ Sb	BiF ₃	0.5967(3)					
	YCuSb ₂	HfCuSi ₂	0.4259(3)		0.9936(4)			
$Y_{20}Cu_{40}Sb_{40}$	Y ₃ Cu ₂₂ Sb ₉	Dy ₃ Cu ₂₂ Sb ₉	1.6614(5)			9.19	63.75	27.06
$Y_{19.93}Cu_{41.99}Sb_{38.08}$	Y ₃ Cu ₃ Sb ₄	Y ₃ Au ₃ Sb ₄	0.9536(3)			30.05	30.26	39.69
	YCuSb ₂	HfCuSi ₂	0.4260(2)		0.9936(4)	27.11	24.62	48.27
$Y_{48}Cu_{12}Sb_{40}$	YCu _x Sb	NaCl	0.6189(3)			48.61	2.93	48.46
Y47.65Cu11.25Sb41.10	YCu ₂	KHg ₂	0.43091(3)	0.6891(4)	0.7307(4)	33.48	65.26	1.26
Y ₅₅ Cu ₅ Sb ₄₀	Y ₅ Sb ₃	Mn ₅ Si ₃	0.8881(3)		0.6288(3)	61.46	0.36	38.18
$Y_{55.42}Cu_{3.43}Sb_{41.15}$	YCu _x Sb	NaCl	0.6187(3)			49.02	2.25	48.73
	YCu ₂	KHg ₂	0.4309(3)	0.6891(3)	0.7308(5)	33.57	66.05	0.38
Y ₁₅ Cu ₃₅ Sb ₅₀	YCuSb ₂	HfCuSi ₂	0.4260(3)		0.9941(3)			
	Cu ₃ Sb	BiF ₃	0.5968(3)					
	(Sb)	As	0.4308(2)		1.1256(4)			

Phase composition and EDX data for selected alloys of the Y-Cu-Sb system

Fig. 2. Microphotographs of the alloys: Y₄₈Cu₁₂Sb₄₀ (a), Y₃₅Cu₄₅Sb₂₀ (b), Y₂₀Cu₅₅Sb₂₅ (c), Y₅₀Cu₂₀Sb₃₀ (d).

Table 2.

Crystanographic characteristics of the ternary compounds in the T Cu Sb						
Compound	Structure type	Space group	L			
			а	b	С	
Y ₃ Cu ₂₂ Sb ₉	$Dy_3Cu_{20+x}Sb_{11-x}$	F-43m				
Y ₃ Cu ₃ Sb ₄	Y ₃ Au ₃ Sb ₄	I-43d				
YCuSb ₂	HfCuSi ₂	P4/nmm	8		8	

Fig. 3. The experimental (circles), calculated (line) and difference (bottom) X-ray diffraction patterns for $Y_{25}Cu_{25}Sb_{50}$ sample.

Table 3.

Fractional atomic coordinates and isotropic displacement parameters *B*_{iso} for YCuSb₂ compound

Atom	Wyckoff position	x/a	y/b	z/c	$B_{\rm iso.} \cdot 10^2 ({\rm nm}^2)$
Y	2 <i>c</i>	1/4	1/4	0.2462(2	0.83(3)
Cu	2b	3/4	1/4	1/2	0.92(1)
Sb1	2c	1/4	1/4	0.6626(1	0.41(3)
Sb2	2a	3/4	1/4	0	0.52(4)

The analysis of the investigated system Y-Cu-Sb, literature data of the studied R-Cu-Sb systems (R = Ce, Nd, Ho, Tm), and selected ternary compounds shows that antimonides RCuSb₂ (HfCuSi₂- type) are formed with all rare earth metals, instead, compounds $R_3Cu_3Sb_4$ ($Y_3Au_3Sb_4$ -type) with Tm, Yb, and Lu are not realized.

For R=Tm, Lu, the formation of RCu₃Sb₂ compounds with TmCu₃Sb₂ structure type was observed. A feature of R-Cu-Sb systems is the absence of compounds with equiatomic composition, except RCuSb compounds where R = Eu and Yb with ZrBeSi structure type [19, 20].

Conclusions

The phase equilibrium diagram of the ternary system Y-Cu-Sb was constructed at a temperature of 870 K in the whole concentration range based on the results of an experimental study of the interaction of components. The investigated system at 870 K is characterized by the formation of three ternary compounds: $Y_3Cu_2Sb_9$, $Y_3Cu_3Sb_4$, and $YCuSb_2$. A solid solution is formed on the basis of the binary compound YSb (NaCl-type) up to a content of 8 at. % of copper. Differential thermal analysis indicated that compounds $Y_3Cu_2Sb_9$ and $Y_3Cu_3Sb_4$ are stable up to temperatures of 1064 K and 968 K, respectively.

Romaka L. – Ph.D., Senior Scientist of Ivan Franko National University of Lviv;

Stadnyk Yu. – Ph.D., Senior Scientist of Ivan Franko National University of Lviv;

Romaka V.V. – D.Sc., doctor of material science, Institute for Solid State Research, Dresden, Germany;

Zelinskiy A. – Ph.D., Senior Scientist of Ivan Franko National University of Lviv;

Klyzub P. – student of Ivan Franko National University of Lviv;

Horyn A. – Ph.D., Senior Scientist of Ivan Franko National University of Lviv.

- [1] R.V. Skolozdra, P.S. Salamakha, A.L. Ganzyuk, O.I. Bodak, New intermetallic compounds R₃Cu₃Sb₄ (R=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er) with semiconducting properties, Inorg. Mater. 29, 26 (1993).
- [2] S. Sportouch, M.G. Kanatzidis, *Th₃Co₃Sb₄: a new room temperature magnet*, J. Solid State Chem. 162, 158 (2001); https://doi.org/10.1006/jssc.2001.9206.
- [3] V. V. Romaka, L. Romaka, A. Horyn, P. Rogl, Yu. Stadnyk, N. Melnychenko, M. Orlovskyy, V. Krayovskyy, *Peculiarities of thermoelectric half-Heusler phase formation in Gd-Ni-Sb and Lu-Ni-Sb ternary systems*, J. Solid State Chem. 239, 145 (2016); <u>https://doi.org/10.1016/j.jssc.2016.04.029</u>.
- [4] V.V. Romaka, L. Romaka, A. Horyn, Yu. Stadnyk, *Experimental and theoretical investigation of the Y-Ni-Sb and Tm-Ni-Sb system*, J. Alloys Compd. 855, 157334 (2021); <u>https://doi.org/10.1016/j.jallcom.2020.157334</u>.
- [5] R. Skolozdra, M. Baran, A. Horyn, A. Szewczyk, Yu. Gorelenko, H. Szymczak, R. Szymczak, Magnetic and transport properties of R₃Cu₃Sb₄ compounds (R=La, Ce, Pr, Nd, and Sm), Acta Phys. Pol. A 102, 429 (2002); <u>https://doi.org/10.12693/AphysPolA.102.429.</u>
- [6] K. Fess, W. Kaefer, Ch. Turner, K. Friemelt, Ch. Kloc, E. Bucher, Magnetic and thermoelectric properties of R₃Cu₃Sb₄ (R=La, Ce, Gd, Er), J. Appl. Phys. 83, 2568 (1998); <u>https://doi.org/10.1063/1.367018.</u>
- [7] O.L. Sologub, P.S. Salamakha, Rare-earth-antimony systems in: K.A. Gschneidner, J.-C.G. Bunzli, V.K. Pecharsky (Eds.), Handbook on the Physics and Chemistry of Rare-Earths, 33, North-Holland, Amsterdam, 2003, pp. 35–146.
- [8] L. Zeng, H. Ning, Isothermal cross-section of the Cu–Ho–Sb phase diagram at 500 °C, J. Alloys Compd. 359, 169 (2003); https://doi.org/10.1016/S0925-8388(03)00199-3.
- [9] L.O. Fedyna, A.O. Fedorchuk, V.M. Mykhalichko, Z.M. Zhpyrka, M.F. Fedyna, *Isothermal section of the phase diagram and crystal structures of the compounds in the ternary system Tm–Cu–Sb at 870 K*, Solid St. Sci. 69, 7 (2017); <u>https://doi.org/10.1016/j.solidstatesciences.2017.05.003.</u>
- [10] W. Kraus, G. Nolze, POWDER CELL a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, J. Appl. Crystallogr. 29, 301 (1996); <u>https://doi.org/10.1107/S0021889895014920.</u>
- [11] L. Akselrud, Yu. Grin, WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Crystallogr. 47, 803 (2014); <u>https://doi.org/10.1107/S1600576714001058.</u>
- [12] T. Roisnel, J. Rodriguez-Carvajal, WinPLOTR: a Windows tool for powder diffraction patterns analysis, Mater. Sci. Forum, 378–381, 118 (2001); <u>https://doi.org/10.4028/www.scientific.net/MSF.378-381.118.</u>
- [13] T.B. Massalski, Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio (1990).
- [14] H Okamoto. Desk Handbook: Phase Diagrams for Binary Alloys, Materials Park (OH): ASM (2000).
- [15] Y.A. Mozharivskyj, H.F. Franzen, *High-temperature modification of Y₅Sb₃ and its ternary analogue Y₅Ni_xSb_{3-x}*, J. Alloys Compd. 319, 100 (2001); <u>https://doi.org/10.1016/S0925-8388(00)01463-8</u>.
- [16] O.L. Sologub, K. Hiebl, P. Rogl, H. Noel, O.I. Bodak, On the crystal structure and magnetic properties of the ternary rare earth compounds RETSb₂ with RE= rare earth and T= Ni, Pd, Cu and Au, J. Alloys Compd. 210, 153 (1994); <u>https://doi.org/10.1016/0925-8388(94)90131-7.</u>
- [17] O.L. Fedyna, O.I. Bodak, A.O. Fedorchuk, Y.O. Tokaychuk, M.F. Fedyna, *New ternary antimonides with* $Dy_3Cu_{20+x}Sb_{11-x}$ -type structure, Abstr. 9th Int. Conf. Crystal Chem. Intermet. Compd. 90 (2005).
- [18] X.X. Yang, Y.M. Lu, S.K. Zhou, S.Y. Mao, J.X. Mi, Z.Y. Man, J.T. Zhao, RCu_{1+x}Sb₂ (R= La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho and Y) phases with defect CaBe₂Ge₂-type structure, Mater. Sci. Forum 475/479, 861 (2005); https://doi.org/10.4028/www.scientific.net/MSF.475-479.861.
- [19] T. Mishra, I. Schellenberg, M. Eul, R. Pöttgen, Structure and properties of EuTSb (T=Cu, Pd, Ag, Pt, Au) and YbIrSb, Z. Kristallogr. Cryst. Mater. 226, 590 (2011); <u>https://doi.org/10.1524/zkri.2011.1387.</u>
- [20] H. Flandorfer, K. Hiebl, C. Godart, P. Rogl, A. Saccone, R. Ferro, *The crystal structure and magnetic properties of YbMSb*, M=Cu, Ag, Au, J. Alloys Compd. 256, 170 (1997); <u>https://doi.org/10.1016/S0925-8388(96)03007-1.</u>

L. Ромака¹, Ю. Стадник¹, В.В. Ромака², А. Зелінський¹, П. Клизуб¹, А. Горинь¹

Діаграма фазових рівноваг системи Y-Cu-Sb при 870 К

¹Львівський національний університет ім. І.Франка, Львів, Україна, <u>lyubov.romaka@gmail.com</u> ²Інститут дослідження твердого тіла ім. Лейбніца, Дрезден, Німеччина, <u>vromaka@gmail.com</u>

Взаємодія компонентів у потрійній системі Y-Cu-Sb досліджена методами рентгенівського, мікроструктурного аналізів та енергодисперсійної рентгенівської спектроскопії в повному концентраційному інтервалі за температури 870 К. За умов дослідження система характеризується існуванням трьох тернарних сполук: Y₃Cu₂₂Sb₉ (структурний тип Dy₃Cu_{20+x}Sb_{11-x}, просторова група *F*-43*m*, (структурний тип HfCuSi₂, просторова група *P*4/*nmm*, *a* = 0.42580(1), *c* = 0.98932(3) нм). Розчинність купруму в бінарній сполуці YSb (структурний тип NaCl) сягає 8 ат. %.

Ключові слова: інтерметаліди, потрійна система, фазові рівноваги, кристалічна структура.