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In the paper, a theoretical calculation of the coefficient of thermal conductivity of solid solutions of PbSnTe 

was carried out. The contribution of phonon scattering on substitution atoms to the effect of reducing thermal 

conductivity has been established. The composition of the PbSnTe solid solution, characterized by the lowest values 
of the lattice component of the thermal conductivity coefficient klat, was determined. The concentration of intrinsic 

charge carriers in solid solutions is calculated and their influence on the thermoelectric parameters of the material 

is shown. 
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Introduction 

A4B6 compounds are well-known thermoelectric 

materials [1-11]. Improvement of their operational 

parameters can be achieved by creating solid solutions. 

First of all, this leads to a decrease in the thermal 

conductivity of the material, which has a positive effect on 

the thermoelectric factor Z ( 2  /Z S k , where S is the 

Seebeck coefficient, σ and k are electrical conductivity and 

coefficient of thermal conductivity, T is the absolute 

temperature). The creation of solid solutions leads to a 

change in a number of fundamental characteristics of the 

material, in particular, the width of the band gap, the 

effective mass of carriers, etc. Thus, it is important to 

establish the influence of each of these factors on the 

magnitude of k, which will allow effective implementation 

of the technique of creating solid solutions to reduce the 

thermal conductivity of the base material. Since the 

coefficient of thermal conductivity of conductors can be 

represented as the sum of the coefficients of the electronic 

and lattice subsystems (k = kel + klat), the calculation of the 

coefficient of thermal conductivity k is usually reduced to 

two separate problems. The calculation of the electronic 

component is almost always based on the use of the 

Wiedemann-Franz law (kel = L0 T σ, where L0 is the 

Lorentz number). Different approximations in the 

calculation of kel are distinguished by taking into account 

or not taking into account the degeneracy of carriers in the 

material, using simplified expressions for calculating the 

Lorentz number or its sequential calculation through 

Fermi integrals, correctly taking into account the 

peculiarities (parabolicity or non-parabolicity) of energy 

zones. The accuracy of determining the Fermi level is 

important in these calculations, which will depend on the 

value of the calculated Fermi integrals and the Lorentz 

number itself [12]. 

The calculation of the lattice component of the 

coefficient of thermal conductivity of solid bodies is based 

on the use of the "phonon gas" approximation. At the same 

time, the thermal conductivity coefficient klat is 

determined by the formula obtained in the kinetic theory 

of gases (klat = 1/3 cvl or klat = 1/3 cv2; c - the heat 

capacity per unit volume, v - phonon speed, l - phonon free 

path length,  - relaxation time). The calculation of the 

heat capacity is based on the use of the continuous 

approximation [13]. This approximation is valid for long 

waves. That is, the features of short waves are ignored (or 

more precisely, their role is not highlighted). When 

calculating klat, knowledge of certain parameters is 

assumed: Debye temperature θ, Grüneisen parameter γ, 

phase and group of velocity νp, νg. The result of calculating 

the thermal conductivity coefficient is sensitive to the 

value of these values. And if the data on θ from different 
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sources do not differ significantly, then for γ the spread of 

values obtained by different authors is large [14]. And 

work [18] shows 6 methods of calculating the speed of 

sound in solid solutions, which, respectively, lead to 

excellent numerical values of the parameters calculated on 

their basis. 

Due to the complexity of calculating klat of solid 

solutions, often the analysis of the influence of the 

composition of the solution on the value of k is reduced to 

the sequential calculation of the electronic component, 

and then the calculation of the lattice component of 

thermal conductivity, by subtracting the theoretically 

calculated kel in various approximations from the 

experimental values of kexp. This approach is due to the 

fact that when creating solid solutions with a change in 

composition, a number of material parameters necessary 

for calculation changes, and the numerical values of the 

changes in these values are not always known with the 

required accuracy. Moreover, these are not only 

fundamental parameters, such as the width of the band 

gap, the effective mass of carriers, etc., but also the above-

mentioned Debye temperature, Grüneisen parameter, 

phase and speed velocity. 

In this work, the electronic and lattice thermal 

conductivity of PbSnTe solid solutions were calculated 

with a sequential analysis of the influence of the accuracy 

of the determination of the listed parameters and some 

model assumptions on the obtained results. One of the 

main tasks that was set at the same time was to analyze the 

sufficiency of taking into account the scattering of 

phonons on phonons and phonons on substitution atoms 

for the interpretation of experimental data k(T) for PbSnTe 

solid solutions. This task is due to the fact that other 

important mechanisms of phonon scattering and the 

participation of optical phonons in heat transfer processes 

are often discussed in the literature [18, 19]. In addition, 

in the work, the concentration of intrinsic charge carriers 

in solutions was calculated and their influence on the 

thermoelectric factor was discussed. Knowing the 

temperature at which intrinsic conductivity begins to 

dominate is important, as it often determines the upper 

temperature limit of effective application of materials. 

I. Experiment 

Solid solutions of Pb1-xSnxTe (x = 0, 0.25 and 0.5) for 

research were obtained by synthesis in vacuumed and 

specially cleaned quartz ampoules at a temperature of 

1290 К. The resulting ingots were crushed and pressed by 

the SPS method. The single-phase nature of the obtained 

ingots and samples was confirmed using the Bruker D8 

Advance X-ray diffractometer. The parameter of the unit 

cell of the studied materials corresponded within the error 

of dependence a(x) = 6.461 – 0.145 x (А) given in the 

work [17]. The thermoelectric property measurements 

were performed using NETZSCH SBA458 and 

NETZSCH LFA457. In more detail, the method of 

obtaining experimental samples and studying their 

properties is described in works [17, 20, 21]. 

The results of the measurements are presented in 

Figure 1. The numerical values and the qualitative course 

of the obtained temperature dependences of parameters S, 

σ, k correspond to literature data, in particular the work 

[17]. In particular, p-type conductivity is observed for 

pure PbTe up to a temperature of about 550 K, and n-type 

at higher temperatures. The addition of tin to the solution 

leads to the fact that the material is characterized by only 

p-type conductivity in the entire temperature range. As the 

Sn content increases, the specific electrical conductivity of 

the samples increases and the Seebeck coefficient 

decreases. The thermal conductivity coefficient is the 

smallest for the composition x = 0.25. 

II. Calculation of the electronic 

component of the thermal 

conductivity coefficient 

Calculation method. Taking into account the 

Wiedemann-Franz law, we note the electronic component 

of thermal conductivity (kel = L0 T σ), 
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where L0 is the Lorentz number. For a two-band Kane 

model, the Lorentz number L0 is expressed in terms of 

two-parameter Fermi integrals as follows [12]:  
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where k0 is the Boltzmann constant, e0 is the electron 

charge, r is the scattering parameter, η = μ/k0T is the 

reduced Fermi energy (μ – Fermi energy), β = k0T/Eg is 
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The reduced Fermi energy η was determined by fitting 

the Seebeck coefficient: 
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That is, for each given T, the value of μ was selected 

in such a way that the value of S calculated by formula (4) 

at a given temperature coincided with the experimental 

value. An important stage of the calculation is the 

determination of the scattering parameter r. It is known 

that the dominant mechanism of scattering of charge 

carriers in A4B6 materials is scattering by acoustic 

phonons, for which the parameter r = 0. If the calculation 

is carried out for all three possible values of this parameter 

(r = 0, 1, 2), then only for the case of r = 0 the calculated 

carrier concentrations (based on previously calculated μ) 

are realistic (in the range of 1018-1021 cm-3). In the case of 
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r = 1, the calculated chemical potential of electrons for 

some values of T is over 0.3 eV, and at  

r = 2 – over 1.9 eV, which seems unrealistic and thus 

confirms the dominance of carrier scattering by acoustic 

phonons. 

Calculation results and their discussion. Values of 

μ determined under the condition of realization of r = 0 are 

in the vicinity of the ceiling of the valence band or below 

(Fig. 2). (For the composition x = 0, experimental points 

for lattice thermal conductivity were obtained only up to 

450 K, since at higher temperatures two valence bands 

must be taken into account, which greatly complicates the 

calculation. First of all, the calculation of the chemical 

potential of electrons based on experimental data S(T) is 

meant). The calculation of μ was carried out in the 

approximation that the zones are non-parabolic. If the non-

parabolicity of the valence zone is neglected (for this it is 

sufficient to consider the parameter β equal to zero in the 

above formulas), then the determined values will lie 

deeper in the valence zone (Fig. 2, b). 

The zone inversion temperature, at which Eg = 0 eV, 

is outside the studied temperature range, in the region of 

lower temperatures (Fig. 2). However, in the vicinity of a 

temperature of 320 K for the composition x = 0.5 Eg is 

only ≈ 0.08 eV (for x = 0.25 – 0.2 eV). And although these 

values increase with increasing T (by approximately 

0.15 eV), we can still expect a significant influence of 

native carriers on the properties of materials of such 

compositions. 

In fig. 3a shows the dependence of the logarithm of 

the carrier concentration on the inverse temperature 

calculated on the basis of the determined values of μ. 

Calculation of p was carried out according to the 

dependence p = NV exp(-μ/kT). At the same time, two 

calculations were carried out, in one of which the effective 

mass was considered independent of the temperature and 

concentration of the carriers and equal to 0.17 m0 for  

x = 0.25 [22] and 0.16 m0 for x = 0.5 [22]. In the other case, 

it was considered that m*=m0·(1+2 μ/Eg). It was 

established that, as in the case of taking into account or not 

taking into account parabolicity, the quantitative changes 

are not significant, and the qualitative nature of all 

dependencies is unchanged. 

Fig. 3b shows for comparison the carrier 

concentrations obtained with and without taking into 

account the non-parabolicity of the valence bands. It can 

be seen that the qualitative course of the p(T) dependence  

    
a) b) 

    
c)     d) 

Fig 1. Temperature dependence of Seebeck coefficient S (a), electrical conductivity σ (b),  

thermal conductivity k (c), and the ZT parameter (d) of Pb1-xSnxTe (x = 0, 0.25 and 0.5) samples. 
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a)   b) 

Fig. 2. a) Fermi energy of carriers for PbTe, Pb0.75Sn0.25Te, Pb0.5Sn0.5Te (for r = 0) calculated in the approximation 

of non-parabolic zones based on experimental data S(T) according to formula (4). The figure also shows the values 

of the energy gaps (forbidden zones) between the conduction zone EC and the valence zones EV,l and EV,h.  

b) Comparison charts of the calculated dependencies μ(Т) in the approximation of parabolic zones (dashed curve) 

and non-parabolic zones (solid curve) (for the composition Pb0.75Sn0.25Te). 

 

 

    
a) b) 

 
b) d) 

Fig. 3. a) - The dependence of the hole concentration p on the inverse temperature for Pb0.75Sn0.25Te, Pb0.5Sn0.5Te 

solid solutions is calculated on the basis of those shown in Fig. 2. values of the Fermi energy. Dashed lines with 

open symbols show the result of calculating p, taking into account the dependence of the effective mass on the 

position of the Fermi level. The intrinsic concentration for the specified solid solutions and pure PbTe is also 

given (solid curves without dots).  

b) - Dependence of p(T) in the approximation of parabolic and non-parabolic zones for the composition x = 0.25.  

c, d) - The dependence of the electron concentration for Pb0.75Sn0.25Te (c) and Pb0.5Sn0.5Te (d) is calculated 

separately for the zones of light and heavy holes. 
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does not change. It should be noted that taking into 

account or not taking into account the non-parabolicity of 

the EC conduction zone does not affect the calculation 

result, since μ is far from the edge of this zone. 

Also in fig. 3 a shows the calculated intrinsic 

concentration of carriers in solid solutions. The 

calculation of ni was carried out according to the 

dependence 𝑛𝑖 = √𝑛𝑝 = √𝑁𝐶𝑁𝑉𝑒𝑥𝑝(−𝐸𝑔/2𝑘𝑇). At the 

same time, the concentration was calculated separately for 

Eg = EC - EV,l and for Eg = EC - EV,h (Fig. 3 c, 3 d). And 

presented in fig. 3 and the dependences are the sum of the 

concentrations obtained in these two calculations. In this 

case, the non-parabolicity of the zones (m*(μ) 

dependence) was not taken into account, since μ for an 

intrinsic semiconductor should be near the middle of the 

band gap. Therefore, according to the calculations, for the 

composition x = 0.5 at low T (around 300 K), the 

concentration of intrinsic carriers ni is higher (compared 

to the composition x = 0.25), which is due to the smaller 

gap width (the difference in the effective masses for of two 

compositions is not significant: 0.17 m0 for x = 0.25 [22] 

and 0.16 m0 for x = 0.5 [22]). As T increases, the difference 

in ni concentration for the two compositions decreases and 

asymptotically approaches the ni concentration for PbTe.  

The dependence of p(T) for the composition x = 0.5 is 

decreasing. For the same composition with x = 0.25 at 

1/Т ≈ 2, there is a deviation from a monotonous decrease 

in concentration, passing through a minimum and further 

growth. Moreover, the numerical values of carrier 

concentration at temperatures above the minimum 

approximately correspond to the carrier concentration 

itself. Obviously, it can be stated that the experimentally 

observed output to the saturation of the S(T) dependence 

for the composition x=0.25 starting from Т ≈ 500 K is 

caused by the own carriers. It can also be assumed that the 

bipolar component of thermal conductivity will have a 

more significant effect on the total coefficient of thermal 

conductivity for this component. This is confirmed by the 

non-monotonic behavior of the experimental dependence 

k(T) at T > 500 K (Fig. 1). 

The generation of own carriers is the limiting factor 

that determines the maximum temperature of the effective 

application of the thermoelectric material. That is, the 

material with the composition x = 0.25 will be effective 

(more effective than other compositions) only up to a 

temperature of about 550 K. A number of factors 

contribute to the faster manifestation of ni in the material 

with the composition x = 0.25 (compared to the 

composition x = 0.5). First, for the composition x = 0.25 

Eg, the influence of the second valence zone (heavy hole 

zone) begins to appear faster, that is, at lower T. Moreover, 

for heavy holes, Eg does not change with increasing T. And 

secondly, in composition 0.5, the impurity concentration 

of carriers is higher, due to a greater concentration of 

vacancies compared to composition x = 0.25. 

However, despite the manifestation of intrinsic 

conductivity for the composition x = 0.25 at lower 

temperatures, in general, the electronic thermal 

conductivity is higher for the composition x = 0.5 (Fig. 4), 

which is due to the higher concentration of carriers. For 

the same reasons, the Seebeck coefficient for this 

composition is smaller. Thus, from the analysis of the 

electronic component of thermal conductivity, it can be 

said that the composition x = 0.25 is characterized by a 

high bipolar component of thermal conductivity, and the 

composition x = 0.5 is characterized by a high electronic 

component. Therefore, to obtain materials with lower 

thermal conductivity, it is possible either to dope with 

donors of composition x = 0.5 to reduce the concentration 

of carriers (which was done in particular in [17]) and, 

accordingly, the electronic component of thermal 

conductivity. On the other hand, it is possible to use 

compositions with x < 0.5, but x > 0.25, so that the effect 

of the bipolar component must be smaller.  

 

 
Fig. 4. Temperature dependence of the electronic 

component of Pb0.75Sn0.25Te, Pb0.5Sn0.5Te solid solutions. 

III. Calculation of the lattice component 

of the thermal conductivity coefficient 

Calculation method. The theoretical calculation of 

the coefficient of lattice thermal conductivity can be 

carried out based on the following dependence [19, 23-

24]: 
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Here, сV is the specific heat (одиниці об’єму), vs is 

the speed of sound, vg is the group of speed of sound, τ is 

the relaxation time for phonons, ωD is the Debye 

frequency. Тhe specific heat at high temperatures (Т > θ) 

can be found as follows: 
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The main scattering mechanism that determines the 

order of magnitude of the thermal conductivity coefficient 

of single-crystal materials is phonon-phonon scattering. 

U- and N-processes are distinguished in phonon 

interaction. It is believed that the coefficient of thermal 

conductivity is determined mainly by U-processes, since 
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the total quasi-momentum of interacting phonons does not 

change during N-processes [25] [26]. (that is, N-processes 

do not create thermal resistance). In the case of U-

processes, a decreasing dependence of k(T) ~ 1/Т is 

assumed. With N-processes, k(T) can grow [25]. Since 

k(T) ~ 1/Т is observed experimentally, this is the basis for 

neglecting N-processes when calculating the thermal 

conductivity coefficient in most works on the calculation 

of k. 

Relaxation time for phonon-phonon Umklapp 

scattering [19]: 
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where M is the average atomic mass (ting into aczont that 

stanium and plumbum octsupi the nodes of the same 

sublattice in Pb1-xSnxTe, M was counted as 

1/M = 1/МTe+(1-x)/MPb+x/MSn) V is the atomic volume 

(determined how a3/N, N – is the number of atoms in the 

unit cell, a is the unit cell parameter; for PbSnTe N = 8, а 

(х) = 6.461 - 0.145 х (A) [17]), and γ is the Gruneisen 

parameter. 

For solid solutions, phonon scattering on 

substitutional atoms is also significant. For this 

mechanism [19]: 
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This fі = x(x-1), where x is the atomic fraction of impurity 

atoms, mi/m is the ratio of atomic masses between 

impurity and matrix atoms, ri/r is the ratio of atomic radii 

between impurity and matrix atoms. Here it is important 

to note that for small x, the approximation fi= x is often 

used, which is incorrect for large x. 

The analysis of expression (7) for the relaxation time 

during phonon-on-phonon scattering leads to known 

requirements for thermoelectric materials, which must be 

characterized by a low value of klat. Such materials should 

have a low Debye temperature θ and a high value of the 

Gruneisen parameter γ. In addition, a small reduced mass 

M and a large value of the volume per atom V. A detailed 

analysis of these requirements leads to the conclusion that 

their simultaneous implementation is difficult. Thus, in 

particular, smaller values of the reduced mass will usually 

correspond to smaller values of V. This pattern can be 

circumvented in the case of using materials with very 

hollow structures (small packing coefficient), such as 

Ba8Ga16Ge30 or some others presented, in particular, in 

[19]. The paper [19] also demonstrated the dependence of 

the thermal conductivity coefficient on the number of 

atoms in the unit cell N. In the case of phonon scattering 

by phonons, klat ~ N-1/3, and in the case of phonon 

scattering at grain boundaries,  

klat ~ N-1. This regularity is determined by the expression 

relating the speed of sound and the Debye frequency:  

ωD ~ N-1/3 vs (appendix 1, formula 3A). This representation 

shows a tendency to decrease the volume per atom in 

structures with large unit cells. This representation shows 

a tendency to decrease the volume per atom in structures 

with large unit cells. 

A more fundamental relationship between the 

parameters θ and γ. Both of these parameters, despite the 

fact that they can be experimentally determined 

independently, are related to each other through the 

dispersion dependences for phonons ω(k) (here k is the 

wave number) and their temperature dependence. In 

particular, according to [13] there is an unambiguous 

relationship between them: θ ~ V-γ; and therefore, when 

optimizing material properties, in particular when creating 

solid solutions, it is worth taking into account their 

change, firstly, simultaneously, and secondly, preferably 

within the framework of one approximation. From the 

analysis of the given proportionality, it also follows that 

larger values of the parameter γ will correspond to smaller 

values of θ. Taking into account the fact that k ~ θ3/γ2, it 

can be argued that anharmonicity in general will 

contribute to a decrease in the coefficient of thermal 

conductivity. Interesting conclusions regarding the 

relationship between these parameters were obtained in 

[27]. In it, based on ab initio calculations on the example 

of lithium, sodium, and potassium oxides, it is shown that 

an increase in temperature leads to an increase in γ and a 

decrease in θ (That is, an increase in T additionally 

decreases k, not only due to an increase in the scattering 

of phonons by phonons). But an increase in pressure leads 

to an increase in γ and a decrease in θ. That is, more 

compact structures will be characterized by a higher 

coefficient of thermal conductivity, which was already 

mentioned above. 

It also follows from the analysis (8) that for the 

intensification of phonon scattering processes in solid 

solutions, the masses of matrix atoms and substitution 

atoms, as well as their radii, should differ as much as 

possible. 

Some additional details and model assumptions of the 

klat calculation method and parameter selection are given 

in appendix 1. 

Calculation results. The numerical values of the 

Gruneisen parameter, Debye frequency, and sound speed 

for different values of x, required for the numerical 

calculation of the coefficient of thermal conductivity of 

Pb1-xSnxTe solid solutions, as in other similar works, in 

particular [17], were obtained by linear interpolation of the 

corresponding parameters for the binary compounds PbTe 

and SnTe. The calculated coefficient of thermal 

conductivity for compositions x = 0 and x = 0.25 is 

presented in Fig. 5. The obtained k(T) curves agree 

relatively well with the experimental data. In the range of 

temperatures T > 500 K, an increase in the experimental 

values of k is observed due to the manifestation of bipolar 

thermal conductivity. Since the working model does not 

take this into account, the correlation of the theoretical 

curve with the experimental points in this area 

deteriorates. According to the calculation results, the 

contribution of phonon scattering on point defects, 

although not decisive, is significant (Fig. 6). In particular, 

for the composition x = 0.25 at around 300 K, its inclusion 

changes the numerical value of the thermal conductivity 

coefficient by about a quarter. From fig. 7. it can be seen 

that the calculated dependence of klat(x) at 320 K quite 

accurately coincides with the experimental value of kexp at 

x = 0, however, as x increases, the theoretical curve lies 
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above all the experimental data presented in the figure. 

Taking into account the fact that both the parameters 

γ and θ can be determined through the speed of sound, it 

is possible to calculate k(T) using only the experimental 

values of the longitudinal and transverse components of 

the sound speed: vL and vT.  

 
Fig. 5. Temperature dependence of the lattice component 

of the thermal conductivity coefficient for PbTe and 

Pb0.75Sn0.25Te. Points - experimental data defined as  

ktot - kel, curves - calculation. 

 

 
Fig. 6. Temperature dependence of the lattice component 

of the thermal conductivity coefficient for Pb0.75Sn0.25Te 

taking into account the scattering of phonons on phonons 

(dashed curve) and phonons on phonons and phonons on 

substitution atoms (solid curve). 

 

The Debye frequency was determined according to 

(3A, Appendix 1), vs according to (5A, Appendix 1), and 

the Gruneisen parameter was determined as  

γ=3/2·(1+η)/(2-3η), where η=1/ 2·((vL/vT)2-2)/((vL/vT)2-1)  

is Poisson's ratio. At vL = 3050 m/s and vT = 1730 m/s 

[17], η = 0.26 is obtained for PbTe, which is in good 

agreement with the data [28]. As in the previous version 

of the calculation, we used the values of vL and vT for PbTe 

and SnTe from [17] and approximated them with a linear 

dependence to obtain the corresponding values for 

different compositions. The values of k calculated in this 

way for the composition x=0 are smaller than when using 

the approach used above (Fig. 7). However, in the range 

of compositions x = 0.25-0.6, the theoretical curve klat(T) 

lies much closer to the experimental points. 

The differences observed between the two theoretical 

curves can have several explanations. But first of all, this 

indicates a significant impact on the result of calculating 

the numerical values of parameters γ, θ, vS. Regarding the 

specific reasons for the disagreements. First, this may 

indicate the shortcomings of the linear approximation 

when determining the parameters γ, θ, vS for intermediate 

compositions of the solution. Although, for the unit cell 

parameter, such a dependence has been experimentally 

confirmed. However, this does not mean that it will also 

be valid for other values. 

 

 
Fig. 7. Concentration dependence of the lattice component 

of the thermal conductivity coefficient at 320 K for two 

calculation options: dashed curve – parameters θ, γ, vS are 

taken from separate experimental studies; solid curve – 

parameters θ, γ were calculated using experimentally 

measured vL and vT. 

 

Secondly, it is worth considering the approximation 

of the formula for the relaxation time during scattering on 

substitutional atoms τPD (8). It is worth mentioning that the 

proportionality of τPD ~ 1/ω was obtained in the long-wave 

approximation [29-30]. Also, this formula was not 

theoretically derived, but "constructed" (here we mean 

specifically the factor in brackets in formula (8)) based on 

assumptions about possible factors that will affect the 

intensity of phonon scattering when impurities are 

introduced. The first versions of this formula took into 

account only the mass factor (mi/m) [30]. Further, to 

improve the correlation of calculations with the 

experiment, the size factor (ri/r) was also introduced [30]. 

A significant improvement could be the introduction of an 

additional multiplier that will take into account the charge 

state of the substitution atoms. In particular, it was shown 

in [31] that ionized impurities in PbTe scatter phonons 

much more effectively due to the greater polarization of 

the crystal lattice in the vicinity of the impurity defect. In 

particular, for a thallium impurity in PbTe in the neutral 

state, the phonon scattering cross section is 0,74, and in 

the ionized state it is 4,7. In PbSnTe solid solutions, steel 

atoms are in a neutral state. However, the possibility of 

formation of metal vacancies with -1, -2, -4 charge states 

[32] may indicate significant redistribution of the electron 

density around atoms, which will lead to an increase in the 

scattering cross section. 
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It should be noted that the formula for the relaxation 

time during the scattering of phonons on phonons also at 

high T and high frequencies may differ from (7). First of 

all, the indicator of the degree of frequency is meant. 

According to works [33-35], the equality of this quantity 

"2" is not chosen on the basis of strict derivations using a 

generalized model and is sometimes not fulfilled. 

With such a discrepancy between the curves obtained 

as a result of the use of different numerical values and 

methods of calculating the parameters γ, θ, vs, it is difficult 

to assert the presence or absence of additional mechanisms 

of phonon scattering, in particular the participation of 

optical phonons. Appendix 2 also discusses other factors 

that may affect the accuracy of the calculation. However, 

it can be unequivocally stated that the contribution of 

phonon scattering on substitutional atoms is significant 

and its consideration is necessary for a quantitatively 

correct description of the experimental dependences of 

klat(T). 

Conclusions 

The experimental thermal conductivity for a PbSnTe 

solution can be satisfactorily explained by taking into 

account the scattering of phonons on phonons and 

phonons on point defects. Errors in the experimental data 

k, as well as the accuracy of the calculation of klat, due to 

both model assumptions and the accuracy of 

determination of individual crystal parameters, do not 

allow us to unambiguously establish the presence or 

absence of the influence of optical phonons on thermal 

conductivity. But its influence is definitely not decisive. 

The generation of own carriers is the limiting factor 

that determines the maximum temperature of effective use 

of PbSnTe thermoelectric materials: for composition 

x = 0.25 such temperature is about T ≈ 550 K, and for 

composition x = 0.5 this temperature consist T ≈ 650 K. 

Given that: 1) composition x = 0.25 is characterized 

by a low temperature of the onset of intrinsic conductivity; 

2) composition x = 0.5 has a high concentration of carriers 

and, accordingly, high electronic thermal conductivity; 3) 

According to calculations, composition x = 0.4 has the 

lowest lattice thermal conductivity; then we should 

probably expect optimal values of ktot for compositions 

around x ≈ 0.4. (possibly with additional doping to 

optimize μ). 

Calculation of the coefficient of thermal conductivity 

requires correct consideration of θ, γ, vS. But since these 

parameters are interconnected by analytical dependencies, 

it is possible to use a model in which the only (one instead 

of three) parameter is the transverse and longitudinal 

speed of sound. This method of calculating k is quite a 

practical approach, since it is the most easily measured of 

all three parameters, and the accuracy of measurements is 

not critical for subsequent calculations. 

 

Acknowledgments 

The authors would like to thank the support Professor 

Ya.P. Saliy for meaningful discussions that contributed to 

the work on the paper.  

Appendix 1 

The formula for the coefficient of thermal 

conductivity includes three parameters: specific heat 

capacity, group of velocity and relaxation time. Analytical 

expressions and numerical values of parameters for their 

calculation are obtained in certain approximations. Their 

clear understanding is necessary for correct interpretation 

of calculation results and adequate selection of numerical 

values of model parameters (primarily γ, θ, νs). 

Specific heat capacity. The specific heat capacity (6) 

is defined in the Debye approximation. The main 

assumptions of this theory are the use of the continuum 

approximation and the use of the assumption of a 

quadratic dependence of the density of states on the 

frequency with some maximum possible value of ωD 

(Debye frequency). The first approximation of the theory 

assumes a linear functional dependence of the frequency 

on the wave number: ω=vs k (here k is the wave number). 

The second approximation is analytically presented as 

[25]: 
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The limiting Debye frequency is found from the 

condition of the equality of the number of modes and the 

number of phonons: 
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Taking into account the previous form of the function 

g and carrying out the integration, we get 
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The value of ωD is an important parameter not only in 

view of its fundamental meaning. The numerical value of 

ωD determines the upper limit of integration in (5), and 

therefore significantly affects the accuracy of the thermal 

conductivity coefficient calculation. 

The complete expression for heat capacity in the 

Debye approximation [19, 25]: 
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Despite the fact that the obtained expression for the 

heat capacity takes into account the acoustic spectrum of 

phonons rather approximately and does not take into 

account the peculiarities of the spectrum of optical 

phonons (Fig. 1A), this approximation explains quite well 

a wide range of experiments and is widely used to 

calculate, in particular, the thermal conductivity 

coefficient. Such a result is a consequence of the use of 

certain model parameters, primarily the limiting 

frequency, by varying which it is possible to achieve a 

good correlation between the theory and the experiment. 
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It should be noted that the presented formula for cV 

takes into account the presence of three acoustic branches 

in the phonon spectrum - two transverse and one 

longitudinal [13, 25]. In the general case, these three 

branches are not identical (do not coincide), so each of 

them should be characterized by its speed of sound. 

Instead, the Debye model involves using an averaged 

value. That is, vs is some characteristic (model) parameter 

of the theory. Moreover, according to (3A), this value vs is 

uniquely related to another parameter of the model – the 

Debye frequency. 

The Debye frequency can be determined through the 

Debye temperature (𝑘0𝜃 = ħ𝜔𝐷), which in turn can be 

determined in different ways. Most often, it is chosen in 

such a way as to match the theoretical dependence of the 

specific heat capacity of the material on temperature with 

the experimental one. For PbTe according to [37] this 

temperature is about 120-125 K, and according to [38] – 

130 K. With such values of θ, using the above formula, the 

value of the Debye frequency is 1.64∙1013 Hz. 

Another way to determine θ is by measuring the speed 

of sound. Sound speed measurements are usually carried 

out by the Papadakis method [39] at frequencies in the 

megahertz range and below. That is, in the region of linear 

approximation ω=vs k (here k is the wave number), where 

the speed of sound should not depend on the frequency. At 

the same time, its longitudinal and transverse components 

are measured separately, and then the calculation is made 

according to the dependence [40]: 

 

 1/vs
3 = 1/vL

3+2/vT
3. (5A) 

 

At vL = 3050 m/s and vT = 1730 m/s [17]  

vs = 1333.71 m/s. And the actual Debye frequency 

determined by formula (11) is ωD = 1.64·1013 Hz. 

That is, from two different experiments (through the 

Debye temperature and through the transverse and 

longitudinal speed of sound) one and the same value of the 

Debye frequency is obtained. But here it is important to 

pay attention to the correctness of the calculation of the 

speed of sound, which should be included in the 

calculation formulas, in particular in (3A). It should be 

calculated exactly as (5A), which is the average value of 

the speed per one acoustic branch [40]. Often, the 

calculation of vs is carried out using a formula similar to 

the one given above, but in the numerator to the left of the 

equals sign there is a multiplier of 3. That is, it can be 

roughly said that the calculation is not carried out for one 

line, but "for three". Then When vL = 3050 m/s and  

vT = 1730 m/s [17] vs = 1920 m/s. And the actual Debye 

frequency determined by formula (11) is  

ωD = 2.31·1013 Hz, which does not agree with the 

calculation based on the Debye temperature. If we further 

calculate the Debye temperature at this frequency, the 

obtained values will be ≈ 180 K, which differs from the 

experimental 120-130 K [37]. The reason for the 

appearance of this multiplier lies in whether to consider 

the number of modes in equation (10) equal to N or 3N. In 

the second case, we get expression (5A), in the first case, 

expression (5A) with an additional factor. There are other 

formulas for calculating vs through longitudinal and 

transverse components (1/vs
2 = 1/vL

2+2/vT
2;  

3/vs
2 = 1/vL

2+2/vT
2; 3vs = vL + 2vT). However, with their 

use, it is not possible to obtain a Debye frequency that 

would agree with the calculation based on the Debye 

temperature. 

Group of velocity vg(ω). In the second factor under 

the integral in the expression for k, it is necessary to use 

the explicit dependence vg(ω) determined experimentally 

or theoretically calculated. However, this approach 

significantly complicates the task of finding the thermal 

conductivity coefficient. In [41], the authors investigated 

the influence of methods of approximating the real 

dispersion dependence v(k) (here k is the wave number) by 

various functions on the result of calculating the thermal 

conductivity coefficient. However, this does not lead to a 

significant simplification of the k calculation procedure. In 

view of what has been said, usually, the speed of sound 

included in the second (and third for similar reasons) 

coefficients of the expression under the integral is chosen 

the same as for the heat capacity, neglecting the frequency 

dependence. It is well known that this approach gives good 

results. But if in the expression for heat capacity, the 

choice of a constant numerical value of the speed of sound 

is theoretically justified and its effectiveness is 

experimentally confirmed, then here it is worth separately 

justifying the neglect of the contribution of short waves 

(high frequencies) and, in general, the frequency 

 
Fig. 1A. A typical experimental phonon spectrum of solids and the corresponding density of states (on the example 

of a silicon crystal [36]). It can be seen that only in the region of small k the dependence ω(k) can be considered 

linear. Similarly, for the density of states only in the region of low frequencies, the density of states ~ ω2. 
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dependence of vg(ω). 

A reasonable approach to choosing a constant value 

of the sound speed for the second and third multipliers 

could be to use the value determined at some average 

phonon frequency vg(<ω>) as the sound speed. In fig. 

Figure 2 shows the dependence of the product of the 

density of states and the distribution function (Bose-

Einstein) f(ω)g(ω). In fact, this is the dependence of the 

number of phonons on the frequency. It can be seen that 

this function is non-monotonic with a maximum at a 

frequency above the Debye frequency. The position of the 

maximum depends on the temperature. However, it is 

always at a frequency higher than ωD. Thus, the number 

of phonons with increasing frequency (i.e., short-wave 

phonons) increases in the entire frequency range. 

Importantly, the Debye frequency can also be a function 

of temperature. However, the order of magnitude does not 

change when this dependence is taken into account. 

 

 
Fig. 2A. The product of the density of states (f-la (9)) on 

the Bose-Einstein distribution function for PbTe crystals 

at temperatures of 500 K and 1000 K. The vertical line 

shows the Debye frequency (1.64·1013 Hz). 

 

If you find the average value of the phonon frequency 

according to the dependence: 
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The obtained average value of the phonon frequency 

is <ω> = 1.08 1013 Hz. If we take into account that short-

wave phonons are scattered more intensively than long-

wave phonons by multiplying the integral expressions in 

the numerator and denominator by the relaxation time U 

(when scattering phonons on phonons), then the average 

value of the frequency decreases by two orders of 

magnitude <ω> ≈3 1011 Hz. (the calculation was carried 

out for T = 1000 K). This value corresponds to the average 

frequency of phonons present in the crystal. However, the 

thermal conductivity cannot be estimated by this value, 

since different frequencies will give different 

contributions to the heat capacity of the crystal. Therefore, 

it is more correct to look for the average value of the 

frequency for the entire expression k: 
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Since we are interested in temperatures above the 

Debye temperature, it is convenient to use expression (6) 

to determine the heat capacity, according to which сV ~ ω2. 

The relaxation time is taken for the case of scattering of 

phonons on phonons (U-processes). In this form, it is easy 

to see that the frequency dependence of the integral 

expression for k is completely determined by the 

frequency dependence of the second factor - the group 

speed of sound (since the relaxation time is inversely 

proportional to the square of the frequency  ~ 1/ω2, and 

сV ~ ω2). 

For acoustic phonons, the group velocity decreases 

with increasing frequency from some constant value at 

k→0 (often in the literature, vs = (E/ρ)1/2 is used to estimate 

it, where E is Young’s modulus, ρ is density [42]) to zero 

at the edge of the Brillouin zone (that is, such phonons do 

not participate in heat transfer at all.). The phase velocity 

at k→0 coincides with the group velocity, and as k 

increases, it decreases more slowly than the phase velocity 

and is not equal to zero at the edge of the zone. Obviously, 

when using the phase speed in the expression for the 

average value of the frequency (7A), we will get a larger 

value of <ω>. Therefore, we will use this value for the 

above estimate. As an analytical expression for vs(ω), we 

can take the expression obtained for the model of a linear 

chain, which predicts a decrease in speed with an increase 

in frequency according to the law [42]:  

vр/vs = ((ω/(ωD))/arcsin(ω/ωD) ). The average value of the 

phonon frequency calculated in this way is 

<ω> ≈ 7·1012 Hz. 

Thus, as the average value of the speed of sound in the 

crystal to estimate the coefficient of thermal conductivity, 

it would be worth taking the value measured at a frequency 

of about 10 THz. This is approximately half the Debye 

frequency. Why, then, does the substitution of sound 

speed values measured at MHz frequencies in (5) give a 

satisfactory result in explaining the experimental data 

k(T)? It is known that the speed of sound decreases not 

even by an order of magnitude with a change in frequency. 

In particular, in the case of a linear chain, the numerical 

value vр(ω) within the first Brillouin zone decreases by ≈ 

30%. In fig. 3A shows a graph of such dependence. It can 

be seen that up to a frequency of 7·1012 Hz, the speed of 

sound decreases by no more than 3% from the values 

obtained for k → 0. Thus, due to the weak frequency 

dependence of the speed of sound, the values of vs 

measured in the MHz range do not lead to significant 

errors in the estimation values of k. And, therefore, the 
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value obtained at ultrasonic frequencies at the MHz level 

can be used as the speed of sound. 

It is important to note that this result was obtained 

under the condition that phonon scattering is dominated by 

phonons. In the case of dominance of phonon scattering 

on substitution atoms, the relaxation time is inversely 

proportional to the fourth power of the frequency. In this 

case, the average value of the frequency determined by 

(7A) will be <ω> ≈ 2·106 Hz. However, it should be noted 

here that for this scattering mechanism, the exact value of 

the average value will significantly depend on the lower 

limit of integration. That is, from the minimum frequency 

of phonons, which will be determined by the size of the 

crystal ωmin = vs/L, where L is the size of the sample. 

When L ≈ 1 m, and vs ≈ 105 m/s ωmin ≈ 105 Hz. The above 

value corresponds to just such a minimum frequency. If 

L ≈ 1 mm, and vs ≈ 105 m/s, then ωmin ≈ 108 Hz and 

<ω> ≈ 1 109 Hz. 

 

 
Fig. 3A. Dependence of phase speed on frequency 

(relative change vр/vs = ((ω/(ωD))/arcsin(ω/ωD)) for the 

linear chain model. Vertical dashed line – <ω>, vertical 

solid line – ωD. 

 

But, in fact, although the effect of phonon scattering 

on point defects must be taken into account for the correct 

quantitative interpretation of experimental data, phonon 

scattering on phonons is still decisive. If you compare the 

relaxation times U and PD, you can see that at a 

temperature of 500 K and frequencies around 1010 Hz, the 

difference is 6 orders of magnitude. At higher T, this 

difference increases. In the range of frequencies of 

1013 Hz, the orders of these two quantities are the same, 

but U is still half as small. 

 

Table 

Values of relaxation times for phonon-on-phonon and 

phonon-on-substitution atom scattering at two different 

frequencies and temperatures. 

T, K ω = 1010, Hz ω = 1013, Hz 

 U, c PD, c U, c PD, c 

500 K 1,11·10-6 2,16 1,11·10-12 2,16·10-12 

1000 K 5,56·10-7 2,16 5,56·10-13 2,16·10-12 

 

Gruneisen's parameter. Choosing the numerical 

value of the Grüneisen parameter requires special 

attention when calculating the thermal conductivity 

coefficient. The parameter γ is determined by the non-

parabolicity of the interatomic interaction potential U(r), 

which leads to anharmonicity of atomic vibrations and 

thermal expansion of the crystal lattice. This, in turn, leads 

to a change in the dispersion dependences ω(k). And 

therefore the parameter γ can be defined as [13]:  

𝛾 = −
𝑑 𝑙𝑛(𝜔)

𝑑 𝑙𝑛(𝑉)
 This equation was proposed by Gruneisen 

and determines the change in vibration frequencies with a 

change in crystal volume due to thermal expansion. 

Experimentally, the value of γ can be determined 

through the interatomic interaction potentials. In 

particular, in [17], this value was determined from 

EXAFS. The obtained values, in particular for PbTe, are 

1.54. You can also calculate the value theoretically. In 

particular, [15] presents this theoretically calculated 

parameter, which is 2.18. Such a significant difference is 

not a consequence of method errors, but is caused by the 

method of parameter calculation. These values differ by 

≈ 31/3 due to the fact (as in the case of sound speed) that 

the first value (γ = 1.54) is calculated as the average for 

one acoustic line of oscillations, and the second (γ = 2.18), 

apparently, "on 3 branches". 

It is worth noting that in general it is possible to enter 

Gruneisen parameters and Debye temperatures (Debye 

frequencies) separately for transverse T and longitudinal L 

phonons. In addition, it is also possible to take into account 

the temperature dependences for γ(T), θ(Т) for each of 

these branches [13, 25]. However, in this case, the model 

becomes much more complicated and the number of 

parameters increases. Therefore, one usually operates with 

one value averaged over branches for both γ and θ. 

Appendix 2 

In addition to the factors discussed in the main part 

that determine the accuracy of the k(T) calculation, in the 

detailed analysis of heat transfer processes, it is worth 

taking into account a number of other factors that can be 

significant under certain conditions. 

First of all, it is worth paying attention to two basic 

model questions: first, the correct analysis of the 

contribution of N-processes to the thermal properties of 

the crystal; secondly, the adequacy of the 3-phonon 

interaction model in heat transfer processes. 

Regarding the first. This issue was studied in [34]. 

Accurate determination of the ratio between the number of 

N- and U-processes is a difficult task [34]. From the 

dependencies derived in the work, it follows that if τU→∞ 

is assumed in the formulas (that is, U processes are absent, 

and only N is present), then the thermal conductivity 

coefficient will go to infinity k→∞. That is, the obtained 

dependences clearly confirm the fact that N-processes do 

not transfer heat. 

And this is the basis for neglecting N-processes in 

most works. But, according to [43], N-processes lead to 

the redistribution of momentum between phonons, which 

contributes to the emergence of new phonons (with large 

k, for example), which will contribute to the activation of 

U-processes. According to [43], at T < θ, the contribution 

of N-processes (to thermal conductivity) in BiSb can be up 
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to 40%. Also, according to [43], the intensification of 

phonon scattering on defects in solid solutions increases 

the role of N-processes (the author, however, studied the 

temperature range up to 100 K, and, according to [43], at 

high T the contribution of N-processes decreases). That is, 

in the case of highly doped materials or solid solutions, 

this effect can have a significant impact on the formation 

of the numerical value of the quantity k. The importance 

of taking into account N-processes to obtain numerical 

values of k that agree well with experimental ones is 

demonstrated in [44] on the example of interpreting the 

thermal conductivity of Si crystals. The authors also 

established the dominance of U processes at high 

frequencies at the THz level and above, and N processes 

at lower frequencies. The calculation was carried out for T 

= 300 K by the ab initio method. 

Regarding the second. The criterion of the adequacy 

of the 3-phonon approximation is the analytical 

dependence k ~ 1/T, which is obtained for the model of 

dominance of 3-phonon U-processes. Most of the 

experimental data within the limits of measurement errors 

correspond to just such a dependence. Deviation from 

such regularity is usually considered as a consequence of 

the influence of additional mechanisms of phonon 

scattering. However, according to [29], when T > θ, the 

role of 4-phonon interaction processes can be significant. 

However, there are practically no works in which such a 

model would be analyzed. 

Among other factors that can significantly influence 

the processes of phonon scattering and the formation of 

the numerical value of k, it is first of all worth noting 

optical phonons. The Debye theory, and therefore the 

expression for the heat capacity (6 or 4A) included in 

equation (5), does not distinguish their independent role in 

the formation of thermodynamic properties. That is, the 

Debye theory does not separate optical and acoustic 

phonons. An argument in favor of not taking optical 

phonons into account is their low group velocity (at least 

lower than the velocity of acoustic phonons, which is very 

well illustrated, in particular, in [19]). Accordingly, 

optical phonons can often be neglected to estimate the 

value of k. However, in the case of materials with a large 

number of atoms in the unit cell, the role of optical 

phonons in forming the numerical value of k increases, as 

the number of optical branches in the phonon spectrum 

increases [19]. 

When analyzing the participation of optical phonons, 

it is worth considering that they will not only contribute to 

heat transfer. Acoustic phonons will scatter on optical 

phonons. Thus, these two effects will partially compensate 

each other. Accordingly, k will not change as significantly 

as one might expect [18]. However, this influence is there. 

And, in particular, in work [45], on the basis of a 

theoretical calculation, the importance of taking this effect 

into account is shown on the example of silicon and 

diamond crystals. Moreover, as shown in the work, this 

interaction intensifies with increasing temperature. The 

authors also conclude that in materials with a small band 

gap between acoustic and optical phonons, the coefficient 

of thermal conductivity is lower (PbTe is given as an 

example in particular). 

In [18], the weight ratio of the cation and anion mass 

M1/M2 is considered to be the criterion for the importance 

of the contribution of optical phonons to heat transfer 

processes. At the same time, if this ratio is less than 3, then 

optical phonons can scatter acoustic phonons, reducing the 

value of k. If it is more, then the interaction of acoustic and 

optical phonons becomes insignificant, but under such 

conditions optical phonons can make a significant 

contribution to heat transfer. In particular, the authors 

showed that for PbSe the ratio of optical to acoustic 

phonons is ≈ 30%. For PbTe, this contribution is predicted 

to be smaller. 

Another element of the sequential analysis of 

thermoelectric coefficients, including the coefficient of 

thermal conductivity, is the consideration of the electron-

phonon interaction. However, as shown in [46], for 

degenerate semiconductors, this contribution is not 

significant (in the numerical values of α, σ, k). Therefore, 

it can be expected that for weakly degenerate 

semiconductors, which are usually effective 

thermoelectric materials, it will be even smaller and can 

be neglected in the first approximation. A similar 

conclusion was obtained in [47] during the experimental 

study of Ge:P. The author shows that the phonon 

scattering effect on electrons is important at T=1-5 K. 

In addition to the mechanism discussed above, the 

possibility of phonon scattering on dislocations is often 

analyzed. However, as shown in particular in [48], their 

influence, as well as the influence of the electron-phonon 

interaction, can be significant only at very low T. 
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В роботі проведено теоретичний розрахунок коефіцієнта теплопровідності твердих розчинів PbSnTe. 

Встановлено внесок розсіювання фононів на атомах заміщення на ефект зниження теплопровідності. 

Визначено склад твердого розчину PbSnTе, що характеризується найнижчими значеннями граткової 

складової коефіцієнта теплопровідності klat. Розраховано концентрації власних носіїв заряду у твердих 
розчинах та показано їх вплив на термоелектричні параметри матеріалу. 
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