

Fatemeh Mollaamin

Nano-based Materials for Environmental Soil Remediation due to Noxious Transition Metals Removal: Structural, Electromagnetic and Thermodynamic Analysis by DFT Outlook

*Department of Biomedical Engineering, Faculty of Engineering and Architecture, Kastamonu University,
Kastamonu, Turkey, fmollaamin@kastamonu.edu.tr*

The target of this research is removing transition metals of Cr, Mn, Fe, Zn, W, Cd from soil due to nanomaterial-based gallium nitride nanocage (B_5N_{10-nc}). The electromagnetic and thermodynamic attributes of toxic transition metals trapped in B_5N_{10-nc} were depicted by materials modeling. It has been studied the behavior of trapping of Cr, Mn, Fe, Zn, W, Cd by B_5N_{10-nc} for sensing the soil metal cations. B_5N_{10-nc} was designed in the existence of transition metals (Cr, Mn, Fe, Zn, W, Cd). Case characterization was performed by DFT method. The nature of covalent features for these complexes has represented the analogous energy amount and vision of the partial density of states between the p states of boron and nitrogen in B_5N_{10-nc} with and d states of Cr, Mn, Fe, Zn, W, Cd in $X \leftrightarrow B_5N_{10-nc}$ complexes. Furthermore, the nuclear magnetic resonance (NMR) analysis indicated the notable peaks surrounding Cr, Mn, Fe, Zn, W, Cd through the trapping in the B_5N_{10-nc} during atom detection and removal from soil; however, some fluctuations can be observed in the chemical shielding treatment of isotropic and anisotropy tensors. Based on the results in this research, the selectivity of toxic metal, metalloid and nonmetal elements adsorption by B_5N_{10-nc} (atom sensor) have been indicated as: Cd > Zn > Fe > Cr > Mn \approx W. In this article, it is proposed that toxic metal, metalloid and nonmetal elements—adsorbed might be applied to design and expand the optoelectronic specifications of B_5N_{10-nc} for generating photoelectric instruments toward soil purification.

Keywords: Soil contamination; B_5N_{10-nc} ; molecular modeling; nanomaterial; DFT.

Received 17 January 2025; Accepted 27 November 2025.

Introduction

Geogenic processes and anthropogenic activities are two important sources of soil pollution. Soils may inherit toxic metals from parent materials; however, soil pollution mostly results from industrial and agricultural activities. Contamination by metals can be indicated by the changes in chemical, biochemical, and microbial properties of soils and plant responses. The total concentration of toxic metals in soil is still the most widely used indicator for risk assessment although extractable amounts have been reported to be more closely related to plant uptake. Heavy metals remark to some metals and metalloids having biological toxicity like Cd, Hg, As, Pb, and Cr [1]. Heavy metal contamination of soil and the environment have

been accelerated in modern society due to industrialization, rapidly expanded world population, and intensified agriculture. Accumulation of heavy metals often results in soil/water degradation and ecosystem malfunction. Moreover, heavy metals enter food chains from polluted soil, water, and air, and consequently cause food contamination, thus posing a threat to human and animal health [2].

Trace metals in soils and dusts can be accumulated in the human body via direct inhalation, ingestion, and dermal contact absorption [3] or via the soil-crop system [4]. The anthropogenic sources of metals include traffic emission, industrial and domestic emission, atmospheric deposition, mining, waste disposal, sewage, pesticides, and fertilizers [5]. Without proper management,

abandoned mines will cause more serious environmental impacts compared with active mines [6]. Consumption of food crops growing in contaminated area is one of the important sources of human exposure to metals in mining areas [7].

Soil contamination in urban environment by trace metals is of public concerns. For better risk assessment, it is important to determine their background concentrations in urban soils. For instance, Molybdenum (Mo) is an essential trace element for human, animal, and plant health. Mo deficiency in soils has frequently been reported, especially under P-deficient conditions. However, Mo is also a potentially toxic contaminant to soils and aquifers that may pose significant threat to ecological and human health [8].

Another research studied the sources and extent of arsenic (As) contamination and the translocation and speciation from microbes to soil are illustrated [9].

Moreover, several activities can build up soil copper (Cu) concentrations leading to incorporation into the food chain and adversely affect natural and managed ecosystems [10].

The cobalt (Co)-contaminated soil has exposed potential toxicity to humans, plants, and animals. Recently, scientists have summarized the natural and anthropogenic sources arousing the increase of cobalt in soil and reviewed the cobalt species in soil and factors that influence the mobilization of cobalt [11].

Soil contamination in urban environment by trace metals is of public concerns. For better risk assessment, it is important to determine their background concentrations in urban soils. One investigation determined the concentrations of 9 trace metals including As, Ba, Cd, Co, Cu, Ni, Pb, Se, and Zn in 214 urban soils from 6 cities of different sizes from both public and commercial sites in Florida [12].

Remediation using chemical, physical, and biological methods have been adopted to solve the problem. Up to date, phytoremediation approach has affirmed to be a promising viewpoint to traditional methods as it is environmentally friendly, cost effective. Boron nitride nanomaterials have been used owing to their unique characteristics such as eco-friendly attributes for pollutant adsorption, big surface area, high chemical & mechanical strength and semiconducting property [13].

Boron nitride nanomaterials usually exhibit semiconducting behavior, which is considered a proper alternative to carbon nanotubes. The properties of boron and nitrogen atoms which are the first neighbors of carbon in the periodic table, make boron nitride as an interesting subject of numerous studies [14].

In recent years, different investigations on the adsorption of chemical contaminants and applying various boron nitride nanomaterials as adsorbents for water purification have been studied [15].

Various physical shapes of boron nitride (BN)-based nano adsorbents such as nanoparticles, fullerenes, nanotubes, nanofibers, nanoribbons, nanosheets, nanomeshes, nanoflowers, and hollow spheres have been broadly considered possible adsorbents owing to their exceptional characteristics such as large surface area, structural variability, great chemical/mechanical strength,

abundant structural defects, high reactive sites, and functional groups.

In this work, B_5N_{10-nc} has been modeled for trapping transition metals of Cr, Mn, Fe, Zn, W, Cd. Physical and chemical properties of the interaction binding between Cr, Mn, Fe, Zn, W, Cd, and boron/ nitrogen in B_5N_{10-nc} have been estimated.

I. Theory, substances, and approaches

1.1. Trapping metal, metalloid and nonmetal elements in B_5N_{10-nc}

The goal of this research article is to detect and trap the metal, metalloid and nonmetal atoms from soil by using B_5N_{10-nc} . The intention is to remove Cr, Mn, Fe, Zn, W, Cd from the soil medium containing toxic ingredients. The soil medium consists of metal, metalloid and nonmetal atoms and the added B_5N_{10-nc} (Figure 1a-f). B_5N_{10-nc} was modeled in the presence of Cr, Mn, Fe, Zn, W, Cd through computational methods of density functional method of *CAM-B3LYP-D3*.

The metal, metalloid and nonmetal atoms were successfully incorporated in the center of B_5N_{10-nc} toward formation of $Cr \leftrightarrow B_5N_{10-nc}$, $Mn \leftrightarrow B_5N_{10-nc}$, $Fe \leftrightarrow B_5N_{10-nc}$, $Zn \leftrightarrow B_5N_{10-nc}$, $W \leftrightarrow B_5N_{10-nc}$, and $Cd \leftrightarrow B_5N_{10-nc}$ complexes (Figure 1a-f) and charge distribution of these complexes has been computed owing to the parameter of Bader charge evaluation [16]. Irrespective of what element, the B_5N_{10-nc} becomes bigger for embedding these elements.

1.2. Method of Density functional theory (DFT)

There are many ions and electrons in a metallic solid which form a many-body system. DFT has been performed in this article due to projector / ameliorated / wave method, Perdew / Burke / Ernzerhof functional based on the generalized gradient approximation as the exchange-correlation functional, and non-empirical PBE functional [17].

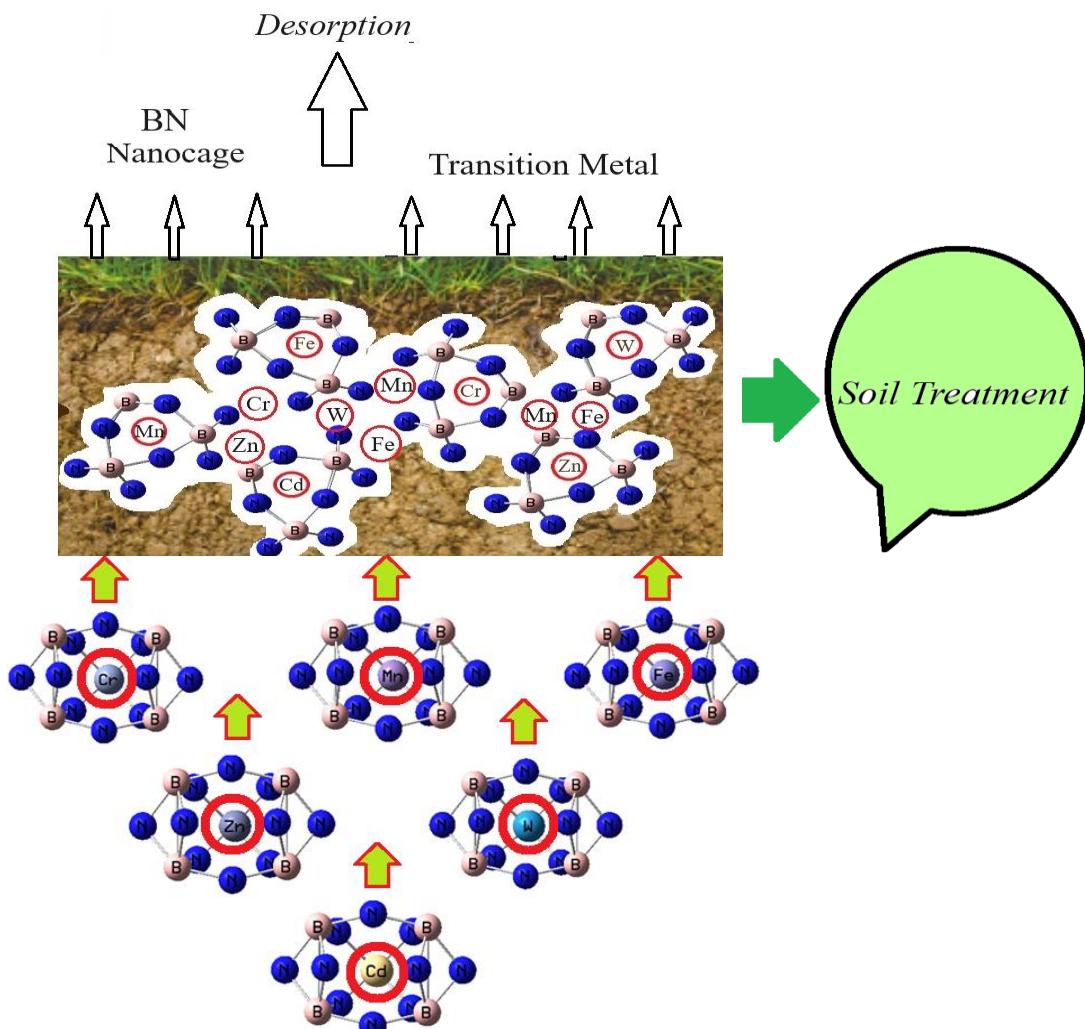
For years, metals and metalloids with computed bandwidths have been an important discussion through DFT. In this paper, it has been investigated first principles calculations for trapping transition metals of Cr, Mn, Fe, Zn, W, Cd by B_5N_{10-nc} using DFT methods.

The electronic density within the Kohn-Sham (KS) equations leads us to a considerable reduction in quantum computing towards Hamiltonian parameter [18]:

$$\begin{aligned} \hat{H}_s &= -\sum_i^M \frac{1}{2} \bar{V}_i^2 + \sum_i^M v_s(\vec{r}_i) = \sum_i^M \hat{h}_s; \\ \hat{h}_s &= -\frac{1}{2} \bar{V}_i^2 + v_s(\vec{r}_i), \end{aligned} \quad (1)$$

where M is non-interactive electrons, v_s is external potential. Thus, by measuring ψ_i (single particle orbitals), the parameter of electronic densities for electrons with noninteractions will be:

$$\rho(\vec{r}) = \sum_i^M |\psi_i(\vec{r})|^2 \quad (2)$$


So, the total energy will be:

$$E[\rho] = \sum_i^M n_i \langle \psi_i \left| -\frac{1}{2} \bar{V}^2 + v_{ext}(\vec{r}) + \frac{1}{2} \int \frac{\rho(\vec{r}')}{|\vec{r}-\vec{r}'|} d\vec{r}' \right| \psi_i \rangle + E_{xc}[\rho] + \frac{1}{2} \sum_{\beta}^N \sum_{\alpha \neq \beta}^N \frac{z_{\alpha} z_{\beta}}{|\vec{R}_{\alpha} - \vec{R}_{\beta}|} \quad (3)$$

Furthermore, B3LYP (Becke, Lee, Yang, Parr) function as a hybrid functional of 3-parameter basis function and LANL2DZ basis set for metals and metalloids within DFT approach [19]. In addition, a new hybrid exchange–correlation functional called CAM–B3LYP was suggested which merges B3LYP and the long-range correction [20]. Moreover, the DFT functionals with Grimme's D3 correction have been considered [21]. The approach of dispersion correction is added to Kohn-Sham density functional theory (DFT-D) with higher accuracy [22].

In this work, DFT computations were accomplished by Gaussian 16 revision C.01 program package [23]. The z-matrix coordination has been built for trapping transition metals of Cr, Mn, Fe, Zn, W, Cd in soil by the B_5N_{10-nc} using GaussView 6.1 [24] via the solid model and coordination (Figure 2 a–f).

The consequences will remark on the following challenges faced by the DFT approaches in accurately describing the (transition metals) - (boron and nitrogen) bonding.

Fig. 1. Trapping of some contaminant elements of Cr, Mn, Fe, Zn, W, Cd in polluted soil via B_5N_{10-nc} and formation of $Cr \leftrightarrow B_5N_{10-nc}$, $Mn \leftrightarrow B_5N_{10-nc}$, $Fe \leftrightarrow B_5N_{10-nc}$, $Zn \leftrightarrow B_5N_{10-nc}$, $W \leftrightarrow B_5N_{10-nc}$, and $Cd \leftrightarrow B_5N_{10-nc}$ complexes toward clean soil.

II. Results and Discussions

B_5N_{10-nc} has been modeled for trapping transition metals of Cr, Mn, Fe, Zn, W, Cd. Physical and chemical properties of the interaction binding between Cr, Mn, Fe, Zn, W, Cd, and boron/ nitrogen in B_5N_{10-nc} have been estimated.

2.1. Electronic Evaluation & PDOS

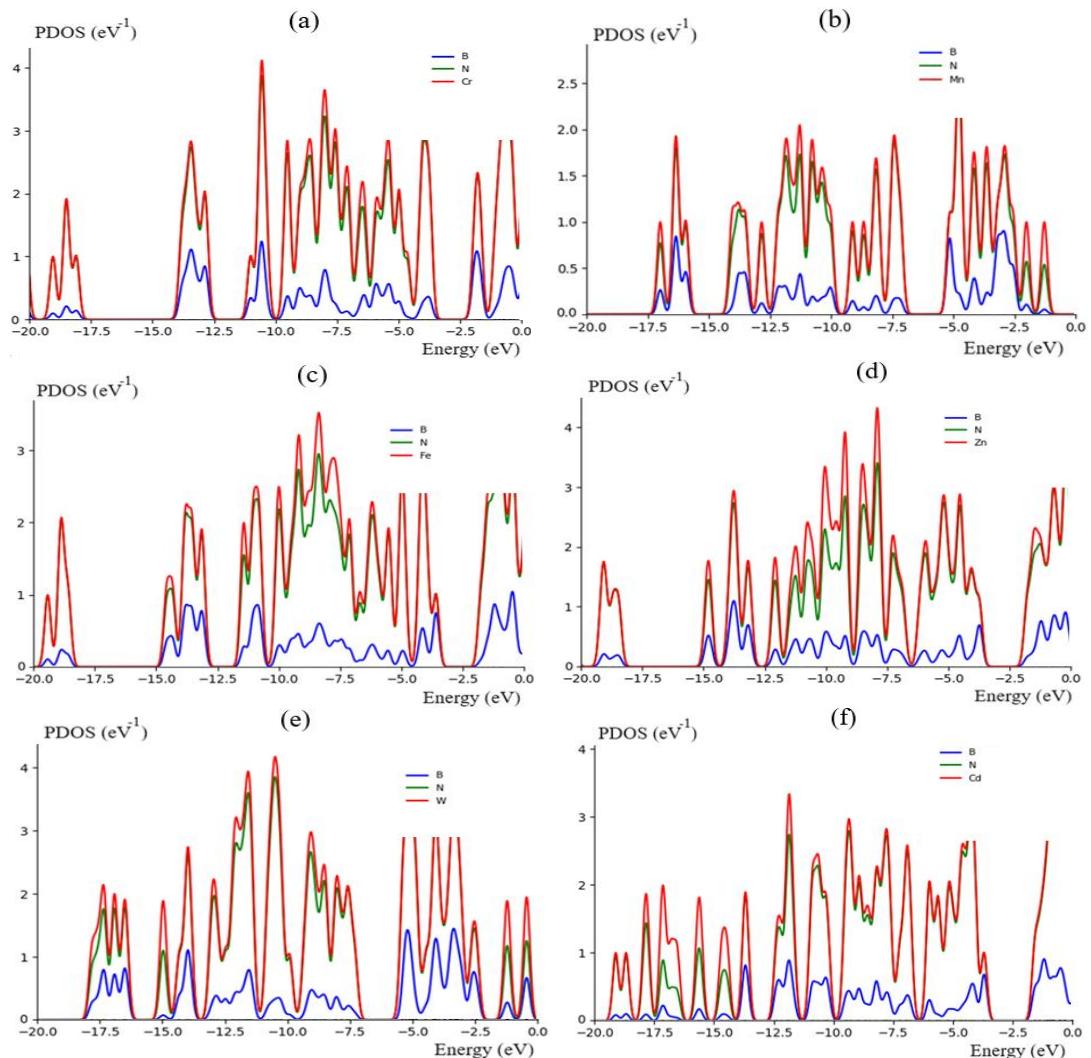
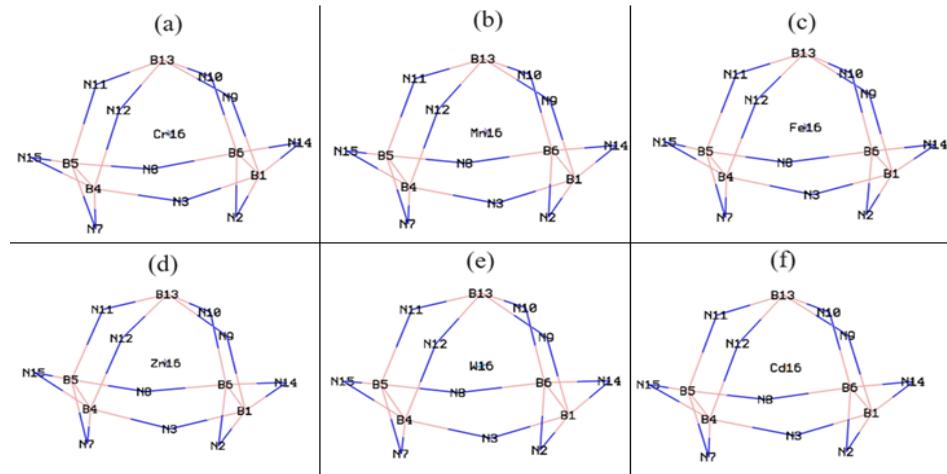


The electronic structure of toxic element trapping including Cr, Mn, Fe, Zn, W, Cd using B_5N_{10-nc} has been illustrated using *CAM–B3LYP–D3/6–311+G (d,p), LANL2DZ* level of theory.

Figure 3 (a–f) shows the projected density of state (PDOS) of $X \leftrightarrow B_5N_{10-nc}$ through Cr, Mn, Fe, Zn, W, Cd encapsulation. The existence of the energy states (*p*-orbital) of B, N, and (*d*-orbital) of Cr, Mn, Fe, Zn, W, Cd within the gap of $X \leftrightarrow B_5N_{10-nc}$ induces the reactivity of the system. It is clear from the figure that after trapping of

transitions metals, there is a significant contribution of d -orbital in the unoccupied level. Therefore, the curve of partial PDOS has described that p states of B, N atoms in B_5N_{10-nc} and d -orbital of Cr, Mn, Fe, Zn, W, Cd in $X \leftrightarrow B_5N_{10-nc}$ overcome due to the conduction band (Figure 3a-f). A distinguished adsorption trait might be

seen in $X \leftrightarrow B_5N_{10-nc}$ because of the potent interaction between the p states of boron and nitrogen in B_5N_{10-nc} with d states of As, Se, Co, Cu, Mo in $X \leftrightarrow B_5N_{10-nc}$ complexes.

Figure 3(a-f) shows that $Cr \leftrightarrow B_5N_{10-nc}$, $Mn \leftrightarrow B_5N_{10-nc}$, $Fe \leftrightarrow B_5N_{10-nc}$, $Zn \leftrightarrow B_5N_{10-nc}$,

Fig. 3. PDOS encapsulation of transition metals by B_5N_{10-nc} toward formation of complexes including a) $Cr \leftrightarrow B_5N_{10-nc}$, b) $Mn \leftrightarrow B_5N_{10-nc}$, c) $Fe \leftrightarrow B_5N_{10-nc}$, d) $Zn \leftrightarrow B_5N_{10-nc}$, e) $W \leftrightarrow B_5N_{10-nc}$, and f) $Cd \leftrightarrow B_5N_{10-nc}$ by CAM-B3LYP-D3/6-311+G (d,p), LANL2DZ.

$W \leftrightarrow B_5N_{10-nc}$, and $Cd \leftrightarrow B_5N_{10-nc}$ complexes have the most contribution at the middle of the conduction band between -5 to -15 eV, while contribution of boron and nitrogen states are enlarged and similar together, and grabbing of Cr, Mn, Fe, Zn, W, Cd depicts interfacial electronic of the B_5N_{10-nc} for selection of these atoms. $Cr \leftrightarrow B_5N_{10-nc}$ has indicated one sharp peak around -10 eV for Cr in Figure 3 (a), while $Mn \leftrightarrow B_5N_{10-nc}$ (Figure 3b) has a sharp peak around -5 eV for Mn. The complexes of $Fe \leftrightarrow B_5N_{10-nc}$ (Figure 3c) and $Zn \leftrightarrow B_5N_{10-nc}$ (Figure 3d) have exhibited a sharp peak around -8.5 eV for Fe and Zn atoms, respectively. Furthermore, $W \leftrightarrow B_5N_{10-nc}$ (Figure 3e) has exhibited a strong peak around -10 eV through the graphs for W. Moreover, Cd graph in $Cd \leftrightarrow B_5N_{10-nc}$ (Figure 3f) with a sharp peak around -12.5 eV attracts our attention.

As it can be seen, the order potency of atom grabbing

of Cr, Mn, Fe, Zn, W, Cd by B_5N_{10-nc} based on the PDOS might be shifted as:

$Cd \leftrightarrow B_5N_{10-nc} > W \leftrightarrow B_5N_{10-nc} \approx C \leftrightarrow B_5N_{10-nc} > Zn \leftrightarrow B_5N_{10-nc} \approx Fe \leftrightarrow B_5N_{10-nc} \gg Mn \leftrightarrow B_5N_{10-nc}$.

2.2. Theoretical Insight & Analysis of electric potential

Nuclear quadrupole is a resonance (NQR) related to NMR which shows the unsymmetrical distribution of electric charge of a spinning nucleus. All nuclei with a spin number $1 > 1$ have a magnetic moment and an electric quadrupole moment that measures the deviation of the distribution of the positive charge in the nucleus [25].

In this work, the quantum mechanics of NQR at zero-field containing the magnitudes of nuclear quadrupole moments have been carried out on trapping Cr, Mn, Fe, Zn, W, Cd by B_5N_{10-nc} [26]:

$$V(r) = V(0) + \left[\left(\frac{\partial V}{\partial x_i} \right) \Big|_0 \cdot x_i \right] + \frac{1}{2} \left[\left(\frac{\partial^2 V}{\partial x_i x_j} \right) \Big|_0 \cdot x_i x_j \right] + \dots \quad (4)$$

$$U = -\frac{1}{2} \int_D d^3 r \rho_r \left[\left(\frac{\partial^2 V}{\partial x_i^2} \right) \Big|_0 \cdot x_i^2 \right] = -\frac{1}{2} \int_D d^3 r \rho_r \left[\left(\frac{\partial E_i}{\partial x_i} \right) \Big|_0 \cdot x_i^2 \right] = -\frac{1}{2} \left(\frac{\partial E_i}{\partial x_i} \right) \Big|_0 \cdot \int_D d^3 r [\rho(r) \cdot x_i^2] \quad (5)$$

$$\chi = \frac{e^2 Q q_{zz}}{h} \quad (6)$$

$$\eta = \frac{q_{xx} - q_{yy}}{q_{zz}} \quad (7)$$

Since the electric field gradient (EFG) at the settlement of the nucleus in metal, metalloid and nonmetal atoms including Cr, Mn, Fe, Zn, W, Cd is defined by the valence electrons bent in the pure location with familiar nuclei of B_5N_{10-nc} through trapping of Cr, Mn, Fe, Zn, W, Cd, the frequency of NQR at which intermediates occur is only for $X \leftrightarrow B_5N_{10-nc}$ complexes ($X = Cr, Mn, Fe, Zn, W, Cd$) (Table 1). In the present research, the electric potential via Bader charge was estimated for $Cr \leftrightarrow B_5N_{10-nc}$, $Mn \leftrightarrow B_5N_{10-nc}$, $Fe \leftrightarrow B_5N_{10-nc}$, $Zn \leftrightarrow B_5N_{10-nc}$, $W \leftrightarrow B_5N_{10-nc}$, and $Cd \leftrightarrow B_5N_{10-nc}$ complexes (Table 1).

Furthermore, in Figure 4 (a-f), the graph of electric potential fluctuation via Bader charge for toxic transition metals of Cr, Mn, Fe, Zn, W, Cd grabbed by the B_5N_{10-nc} have been assessed.

In Figure 4 (a-f), the trapping fluctuation of Cr, Mn, Fe, Zn, W, Cd by B_5N_{10-nc} for sensing the toxic metal, metalloid and nonmetal atoms in the contaminated soil can be observed. The graph of B_5N_{10-nc} is bent by these toxic atoms. The sharpest curves for electric potential were nominated for metal, metalloid and nonmetal atoms trapped by the B_5N_{10-nc} that prove the electron attaining of these element aided by boron and nitrogen atoms of B_5N_{10-nc} based on the relation coefficient of R^2 as:
 $Cd \leftrightarrow B_5N_{10-nc} > Zn \leftrightarrow B_5N_{10-nc} \approx$
 $\approx Cr \leftrightarrow B_5N_{10-nc} > Fe \leftrightarrow B_5N_{10-nc} > Mn \leftrightarrow B_5N_{10-nc}$
 $> W \leftrightarrow B_5N_{10-nc}$ (Figure 4a-f).

2.3. Background & Application of Nuclear Magnetic Resonance (NMR)

The investigation of NMR of high- materials and other correlated-electron systems improved for

conventional superconductors and d-band transition metals, alloys, and intermetallic compounds [27].

As a matter of fact, magnetic field gradients fix it feasible to tag spatial coordinates within a model. The frequencies resonance of most atoms is well segregated from each other which causes NMR to be an element-specific method. Interactions of spins with their local environment direct to spectral alterations that evoke the local geometry and physico-chemical states. Therefore, NMR spectrum of B_5N_{10-nc} for trapping metal, metalloid and nonmetal atoms containing Cr, Mn, Fe, Zn, W, Cd might illustrate the possibility of B_5N_{10-nc} for sensing and grabbing of these toxic elements from contaminated soil toward measuring the isotropic chemical-shielding (CSI) and anisotropic chemical-shielding (CSA) [28]:

$$\sigma_{iso} = (\sigma_{11} + \sigma_{22} + \sigma_{33})/3; \quad (8)$$

$$\sigma_{aniso} = \sigma_{33} - (\sigma_{22} + \sigma_{11})/2 \quad (9)$$

The NMR quantities of isotropic (σ_{iso}) and anisotropic shielding tensor (σ_{aniso}) of Ba, As, Se, Co, Cu, Mo trapped on the in the B_5N_{10-nc} towards formation of $Cr \leftrightarrow B_5N_{10-nc}$, $Mn \leftrightarrow B_5N_{10-nc}$, $Fe \leftrightarrow B_5N_{10-nc}$, $Zn \leftrightarrow B_5N_{10-nc}$, $W \leftrightarrow B_5N_{10-nc}$, and $Cd \leftrightarrow B_5N_{10-nc}$ complexes was computed by Gaussian 16 revision C.01 program package (Table 2).

Table 2 has reported NMR amounts for transition metals of Cr, Mn, Fe, Zn, W, Cd encapsulated in the B_5N_{10-nc} . Grabbing Cr, Mn, Fe, Zn, W, Cd shows the spin polarization on the (Cr, Mn, Fe, Zn, W, Cd)-encapsulated B_5N_{10-nc} . The increase in the chemical shift anisotropy spans for atom trapping by the B_5N_{10-nc} are near N (2), N (3), N (7), N (8), N (9), N (10), N (11), N (12), N (14) and N (15) (Table 2). The observed weak signal intensity near the parallel edge of the nanocage might be owing to boron binding induced non-spherical distribution of these

Table 1.

The amounts of electric potential (E_p /a.u.) and Bader charge (Q /coulomb) through NQR calculation for $\text{Cr} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, $\text{Mn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, $\text{Fe} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, $\text{Zn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, $\text{W} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, and $\text{Cd} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ complexes.

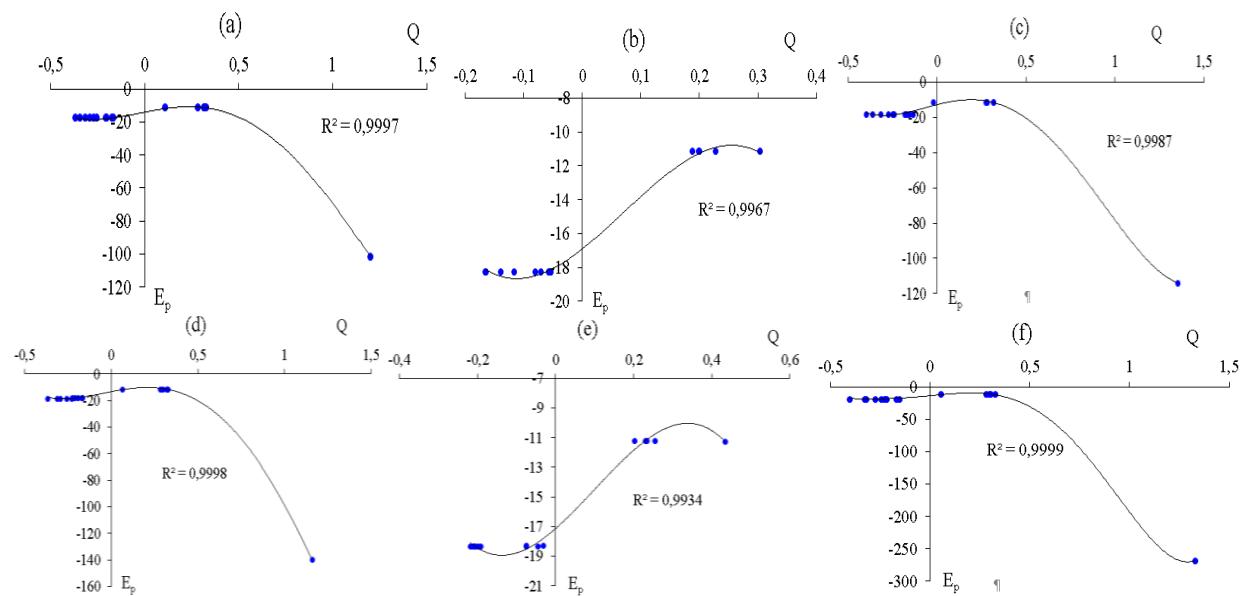
$\text{Cr} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$			$\text{Mn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$			$\text{Fe} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$		
Atom	Q	E_p	Atom	Q	E_p	Atom	Q	E_p
B1	0.282	-11.239	B1	0.188	-11.219	B1	0.271	-11.244
N2	-0.205	-18.105	N2	-0.052	-18.282	N2	-0.184	-18.089
N3	-0.254	-18.116	N3	-0.165	-18.305	N3	-0.251	-18.114
B4	0.330	-11.232	B4	0.201	-11.216	B4	0.314	-11.247
B5	0.320	-11.241	B5	0.227	-11.211	B5	0.313	-11.242
B6	0.319	-11.222	B6	0.199	-11.214	B6	0.278	-11.245
N7	-0.198	-18.117	N7	-0.055	-18.283	N7	-0.174	-18.100
N8	-0.269	-18.126	N8	-0.164	-18.294	N8	-0.243	-18.109
N9	-0.338	-18.141	N9	-0.051	-18.295	N9	-0.364	-18.145
N10	-0.312	-18.135	N10	-0.057	-18.291	N10	-0.319	-18.140
N11	-0.288	-18.145	N11	-0.070	-18.289	N11	-0.277	-18.131
N12	-0.365	-18.128	N12	-0.080	-18.297	N12	-0.398	-18.132
B13	0.110	-11.245	B13	0.304	-11.219	B13	-0.021	-11.270
N14	-0.162	-18.096	N14	-0.115	-18.294	N14	-0.136	-18.079
N15	-0.170	-18.112	N15	-0.138	-18.293	N15	-0.159	-18.097
Cr16	1.201	-101.752	Mn16	-0.172	-16.560	Fe16	1.352	-113.900
$\text{Zn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$			$\text{W} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$			$\text{Cd} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$		
Atom	Q	E_p	Atom	Q	E_p	Atom	Q	E_p
B1	0.280	-11.252	B1	0.201	-11.220	B1	0.277	-11.244
N2	-0.229	-18.124	N2	-0.076	-18.292	N2	-0.246	-18.137
N3	-0.213	-18.101	N3	-0.208	-18.308	N3	-0.223	-18.097
B4	0.323	-11.245	B4	0.229	-11.212	B4	0.323	-11.238
B5	0.317	-11.246	B5	0.254	-11.209	B5	0.301	-11.251
B6	0.298	-11.245	B6	0.232	-11.212	B6	0.294	-11.243
N7	-0.194	-18.112	N7	-0.046	-18.293	N7	-0.220	-18.134
N8	-0.226	-18.099	N8	-0.207	-18.307	N8	-0.230	-18.107
N9	-0.315	-18.133	N9	-0.199	-18.316	N9	-0.329	-18.128
N10	-0.295	-18.139	N10	-0.192	-18.308	N10	-0.320	-18.139
N11	-0.258	-18.133	N11	-0.212	-18.302	N11	-0.276	-18.142
N12	-0.369	-18.135	N12	-0.219	-18.316	N12	-0.406	-18.129
B13	0.061	-11.244	B13	0.434	-11.230	B13	0.051	-11.205
N14	-0.173	-18.114	N14	-0.032	-18.284	N14	-0.170	-18.108
N15	-0.166	-18.102	N15	-0.075	-18.287	N15	-0.154	-18.102

complexes. It is obvious that grabbing Cr, Mn, Fe, Zn, W, Cd by $\text{B}_5\text{N}_{10}\text{-nc}$ might promote the strength of the nanocage that concludes an increase in the magnetic of clusters (Table2).

Figure5(a-f) indicated the same desire of shielding factor for boron and nitrogen; however, a remarkable deviation is observed from trapping atoms of Cr (16) (Figure5a), Mn (16) (Figure5b), Fe (16) (Figure5c), Zn (16) (Figure5d), W (16) (Figure5e), Cd (16) (Figure5f) through interaction with boron and nitrogen of $\text{B}_5\text{N}_{10}\text{-nc}$.

In Figure5 (a-f), toxic elements of Cr, Mn, Fe, Zn, W, Cd in the complexes of $\text{Cr} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ (Figure5a), $\text{Mn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ (Figure5b), $\text{Fe} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ (Figure5c), $\text{Zn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ (Figure5d), $\text{W} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ (Figure5e), and $\text{Cd} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ (Figure5f) describe the oscillation in the chemical shielding during atom capture.

Figure5 (a-f) defines the chemical shielding between boron/nitrogen in $\text{B}_5\text{N}_{10}\text{-nc}$ and metal, metalloid and nonmetal atoms. Thus, it may be brought up that the turnover of electron admitting for the captured toxic atoms in the $\text{B}_5\text{N}_{10}\text{-nc}$ is $\text{Cd} > \text{Zn} > \text{Fe} > \text{Mn} > \text{Cr} \approx \text{W}$ that proves the strength of covalent bond across boron/nitrogen and


these elements toward atom catching.

The curves of metal, metalloid and nonmetal elements of Cr, Mn, Fe, Zn, W, Cd through the trapping in the $\text{B}_5\text{N}_{10}\text{-nc}$ during atom detection and removal from soil.

2.4. Interpreting Infrared (IR) Spectra

Trapping metal, metalloid and nonmetal elements of Cr, Mn, Fe, Zn, W, Cd in the $\text{B}_5\text{N}_{10}\text{-nc}$ has been evaluated by IR spectroscopy during atom sensing in soil. The complexes of $\text{Cr} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ (Figure6a), $\text{Mn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ (Figure6b), $\text{Fe} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ (Figure6c), $\text{Zn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ (Figure6d), $\text{W} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ (Figure6e), and $\text{Cd} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ (Figure6f) have been analyzed through the IR spectroscopy.

The graph of Figure 6 (a) has been shown in the frequency about $200\text{--}1800\text{ cm}^{-1}$ for $\text{Cr} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ with several sharp peaks around 655.26 , 691.58 , and 714.46cm^{-1} . Then, Figure 6 (b) was shown in the frequency limitation across $200\text{--}1100\text{ cm}^{-1}$ for $\text{Mn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ with several sharp peaks around 567.21 , 616.88 , 623.54 , and 680.89 cm^{-1} . Figure 6 (c) has indicated the frequency around $1800\text{--}1100\text{ cm}^{-1}$ for

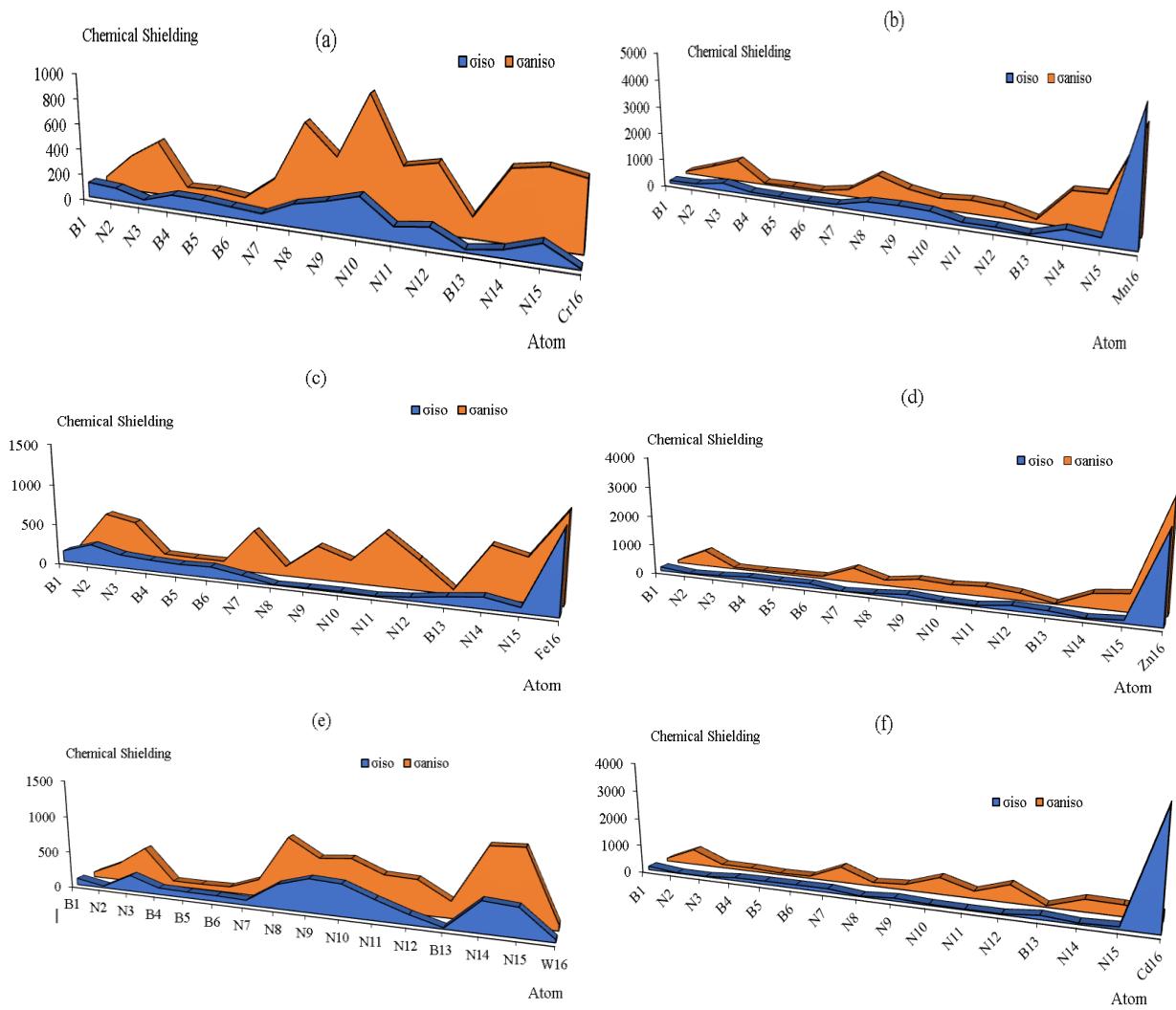


Fig. 4. The amounts of electric potential (E_p /a.u.) versus Bader charge (Q /coulomb) through NQR calculation for complexes of a) $\text{Cr} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, b) $\text{Mn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, c) $\text{Fe} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, d) $\text{Zn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, e) $\text{W} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, and f) $\text{Cd} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$.

Table 2.

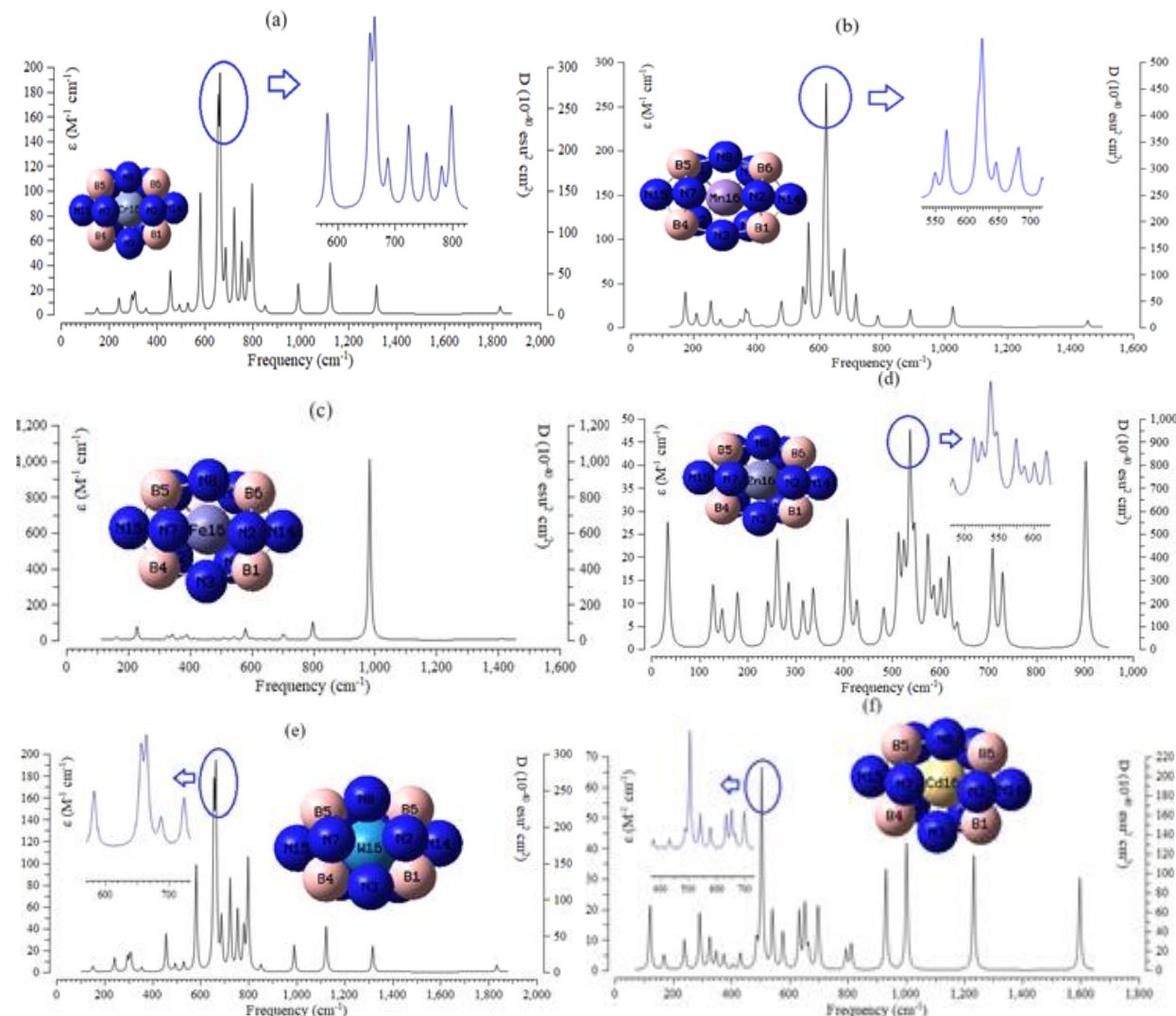
Data of NMR shielding tensors for selected atoms of $\text{Cr} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, $\text{Mn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, $\text{Fe} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, $\text{Zn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, $\text{W} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, and $\text{Cd} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ complexes using CAM-B3LYP-D3/LANL2DZ calculations.

$\text{Cr} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$			$\text{Mn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$			$\text{Fe} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$		
Atom	σ_{iso}	σ_{aniso}	Atom	σ_{iso}	σ_{aniso}	Atom	σ_{iso}	σ_{aniso}
B1	117.007	83.0844	B1	93.1958	74.3373	B1	136.1640	112.1263
N2	99.878	287.9554	N2	107.1708	412.4542	N2	252.7308	554.3353
N3	38.330	429.4735	N3	288.8404	780.6410	N3	163.8389	480.5763
B4	109.559	90.4106	B4	98.4627	54.7623	B4	137.8643	110.5202
B5	104.411	97.3531	B5	80.4756	75.4378	B5	125.1732	101.4723
B6	84.151	70.3800	B6	80.8233	69.2619	B6	137.0509	99.3871
N7	65.830	250.6901	N7	111.0482	258.3691	N7	76.0677	523.9335
N8	173.426	711.3619	N8	359.3933	935.9902	N8	5.1401	118.9943
N9	228.262	477.9766	N9	390.0925	580.1841	N9	11.8325	408.4318
N10	297.349	970.5455	N10	353.0870	404.1981	N10	15.6186	277.7235
N11	112.155	469.8254	N11	122.8970	484.1625	N11	8.1861	651.2432
N12	146.151	520.7535	N12	126.0121	403.8011	N12	40.8260	366.0072
B13	23.4107	161.6682	B13	51.7642	125.5008	B13	92.9565	56.1805
N14	61.4369	542.2817	N14	390.1933	1289.4891	N14	137.8765	620.3838
N15	144.2153	582.4029	N15	281.0691	1330.1789	N15	66.2572	524.5995
Cr16	8.8171	531.8666	Mn16	4675.2397	3740.2405	Fe16	982.3792	1080.9150
$\text{Zn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$			$\text{W} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$			$\text{Cd} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$		
Atom	σ_{iso}	σ_{aniso}	Atom	σ_{iso}	σ_{aniso}	Atom	σ_{iso}	σ_{aniso}
B1	130.5100	91.8778	B1	91.6888	68.8491	B1	127.2884	98.7797
N2	21.6821	546.0132	N2	23.4058	244.5637	N2	14.3171	555.9098
N3	56.0171	57.5374	N3	223.6585	505.2747	N3	13.4107	122.4605
B4	120.3790	53.0462	B4	92.2361	72.9567	B4	103.1204	115.3330
B5	115.0078	68.5589	B5	81.6149	72.3481	B5	118.2561	61.9536
B6	133.6303	81.2506	B6	79.3710	80.4153	B6	123.6742	80.8870
N7	1.3263	478.3851	N7	67.1424	230.3649	N7	131.6130	549.6007
N8	51.1373	184.3061	N8	331.0739	856.4636	N8	19.8739	130.0665
N9	134.4198	330.9866	N9	454.0576	614.2209	N9	97.3508	203.8768
N10	55.0733	270.0957	N10	432.1887	652.7413	N10	41.2612	585.3871
N11	35.5475	334.9535	N11	276.3243	480.2979	N11	26.8124	253.2975
N12	166.1786	238.3185	N12	133.3741	462.9130	N12	25.7318	620.6356
B13	126.7224	17.4660	B13	17.5072	225.2369	B13	139.3014	55.8459
N14	32.3937	478.1249	N14	413.1482	983.4193	N14	47.7721	423.7621
N15	104.9527	596.0890	N15	381.9037	1002.6071	N15	92.9321	392.1182
Zn16	2920.2381	3680.6586	W16	37.9252	77.2940	Cd16	3945.3535	242.5438

Fig. 5. The NMR spectrum for complexes of a) $\text{Cr} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, b) $\text{Mn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, c) $\text{Fe} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, d) $\text{Zn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, e) $\text{W} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, and f) $\text{Cd} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ using CAM-B3LYP-D3/LANL2DZ.

$\text{Fe} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ with one sharp peak around 983.42 cm^{-1} . Figure 6 (d) has shown the fluctuation frequency between $50\text{--}950 \text{ cm}^{-1}$ for $\text{Zn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ with two sharp peaks around 537.66 and 902.68 cm^{-1} . Figure 6 (e) has indicated the fluctuation of frequency between $200\text{--}1400 \text{ cm}^{-1}$ for $\text{W} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ with several sharp peaks around 582.28 , 656.11 , 664.63 , 723.76 , and 798.39 cm^{-1} . Figure 6 (f) has shown the frequency range between $100\text{--}1600 \text{ cm}^{-1}$ for $\text{Cd} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ with several sharp peaks around 504.75 , 1002.32 , and 1233.14 cm^{-1} . Table 3 has described that $\text{B}_5\text{N}_{10}\text{-nc}$ owing to capture transition metals including Cr,

Mn, Fe, Zn, W, Cd might be more efficient detector for sensing and catching these elements from soil.


Table 3 could introduce the ability of metal, metalloid and nonmetal elements of Cr, Mn, Fe, Zn, W, Cd trapped in the $\text{B}_5\text{N}_{10}\text{-nc}$ through ΔG_{ads}^0 which is related to the covalent bond between these elements and $\text{B}_5\text{N}_{10}\text{-nc}$ as a potent detector for soil purification.

The trapping process of metal, metalloid and nonmetal elements including Cr, Mn, Fe, Zn, W, Cd in the $\text{B}_5\text{N}_{10}\text{-nc}$ is affirmed by the ΔG_{ads}^0 quantities:

$$\Delta G_{\text{ads}}^0 = \Delta G_{\text{X} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}}^0 - (\Delta G_{\text{X-grabbed}}^0 + \Delta G_{\text{B}_5\text{N}_{10}\text{-nc}}^0); \quad \text{X} = \text{Cr, Mn, Fe, Zn, W, Cd} \quad (10).$$

Furthermore, Table 3 has shown that the dependence on the size of the atoms of during interaction between the adsorbates of the metal, metalloid and nonmetal elements as the electron acceptors and the adsorbent of $\text{B}_5\text{N}_{10}\text{-nc}$ as electron donor in the complexes of $\text{Cr} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, $\text{Mn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, $\text{Fe} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, $\text{Zn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, $\text{W} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, and $\text{Cd} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$. Therefore, the

selectivity of the metal, metalloid and nonmetal elements by $\text{B}_5\text{N}_{10}\text{-nc}$ (atom sensor) can be resulted as: $\text{Cd} > \text{Zn} > \text{Fe} > \text{Cr} > \text{Mn} \approx \text{W}$ (Table 3).

Fig. 6. IR spectra for complexes of a) $\text{Cr} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, b) $\text{Mn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, c) $\text{Fe} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, d) $\text{Zn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, e) $\text{W} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, and f) $\text{Cd} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ complexes.

Table 3.

The thermochemical characters of $\text{Cr} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, $\text{Mn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, $\text{Fe} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, $\text{Zn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, $\text{W} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$, and $\text{Cd} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$ complexes.

Compound	Dipole moment (Debye)	$\Delta E^\circ \times 10^{-3}$ (kcal/mol)	$\Delta H^\circ \times 10^{-3}$ (kcal/mol)	$\Delta G^\circ \times 10^{-3}$ (kcal/mol)	S° (cal/K.mol)
$\text{B}_5\text{N}_{10}\text{-nc}$	0.202	-420.550	-420.549	-420.579	100.650
$\text{Cr} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$	0.694	-1063.754	-1063.754	-1063.782	94.375
$\text{Mn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$	0.489	-485.602	-485.602	-485.629	90.852
$\text{Fe} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$	1.448	-1199.586	-1199.585	-1199.614	95.351
$\text{Zn} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$	0.941	-1518.749	-1518.748	-1518.780	105.321
$\text{W} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$	0.594	-462.747	-462.746	-462.774	90.867
$\text{Cd} \leftrightarrow \text{B}_5\text{N}_{10}\text{-nc}$	0.756	-3811.957	-3811.957	-3811.985	93.836

Conclusion

$\text{B}_5\text{N}_{10}\text{-nc}$ can be used to capture metal, metalloid and nonmetal elements from soil because of electrostatic interactions between metal, metalloid and nonmetal elements and $\text{B}_5\text{N}_{10}\text{-nc}$. The thermochemistry and electromagnetic parameters of Cr, Mn, Fe, Zn, W, Cd adsorbed $\text{B}_5\text{N}_{10}\text{-nc}$ have been illustrated by DFT method. The consequences have defined that Cr, Mn, Fe, Zn, W,

Cd trapped in $\text{B}_5\text{N}_{10}\text{-nc}$ are rather fixed with the most stable adsorption site being in the center of $\text{B}_5\text{N}_{10}\text{-nc}$ system. Catching Cr, Mn, Fe, Zn, W, Cd in the $\text{B}_5\text{N}_{10}\text{-nc}$ happens due to chemisorption phenomenon. The n-grabbing behavior can be found in $\text{B}_5\text{N}_{10}\text{-nc}$ after the adsorption of Cr, Mn, Fe, Zn, W, Cd. The work function of $\text{B}_5\text{N}_{10}\text{-nc}$ has remarkably exhibited the transition metals adsorption with maximum amount for the $\text{Cd} > \text{Zn} > \text{Fe} > \text{Cr} > \text{Mn} \approx \text{W}$ –adsorbed $\text{B}_5\text{N}_{10}\text{-nc}$ system.

Moreover, it is proposed that transition metals-adsorbed can be employed to design and progress the

optoelectronic specification of $B_5N_{10}-nc$ for inventing photoelectric instruments.

Fateme Mollaamin – Ph.D. degree of Physical Chemistry in the field of Quantum Chemistry, Professor, University Faculty Member.

Acknowledgements

In successfully completing this paper and its research, the author is grateful to Kastamonu University.

- [1] Changfeng Li, et el., *A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques*. Soil and Sediment Contamination: An International Journal, 28 (4), 380 (2019); <https://doi.org/10.1080/15320383.2019.1592108>.
- [2] Z. He, et el., *Heavy Metal Contamination of Soils: Sources, Indicators, and Assessment*, Journal of Environmental Indicators, 9, 17 (2015).
- [3] risk assessment of mercury in kindergarten dust. Atmos. Environ. 73, 169 (2013); <https://doi.org/10.1016/j.atmosenv.2013.03.017>.
- [4] G.Y. Sun, et el., *Geochemical assessment of agricultural soil: A case study in Songnen-Plain (Northeastern China)*. Catena, 111, 56 (2013); <https://doi.org/10.1016/j.catena.2013.06.026>.
- [5] O. Morton-Bermea, et el., *Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City*. J. Geochem. Explor. 101, 218(2009); <https://doi.org/10.1016/j.gexplo.2008.07.002>.
- [6] K. Ji, et al. *Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea*. Environ. Pollut. 178, 322 (2013); <https://doi.org/10.1016/j.envpol.2013.03.031>.
- [7] S. Kim, et el., *The effect of exposure factors on the concentration of heavy metals in residents near abandoned metal mines*. J. Prev. Med. Public Health, 44, 41(2011); <https://doi.org/10.3961/jpmph.2011.44.1.41>.
- [8] G.V. Motuzova, et el., *Soil contamination with heavy metals as a potential and real risk to the environment*, Journal of Geochemical Exploration, 144, Part B, 241 (2014); <https://doi.org/10.1016/j.gexplo.2014.01.026>.
- [9] N.H. Al-Makishah, M.A. Taleb, & M.A. Barakat, *Arsenic bioaccumulation in arsenic-contaminated soil: a review*. Chem. Pap., 74, 2743 (2020); <https://doi.org/10.1007/s11696-020-01122-4>.
- [10] Giovana Poggere, et el., *Soil contamination by copper: Sources, ecological risks, and mitigation strategies in Brazil*, Journal of Trace Elements and Minerals, 4, 100059 (2023); <https://doi.org/10.1016/j.jtemin.2023.100059>.
- [11] Miao Jiang, et el., *Technologies for the cobalt-contaminated soil remediation: A review*, Science of The Total Environment, 813, 151908 (2022); <https://doi.org/10.1016/j.scitotenv.2021.151908>.
- [12] Evandro B. da Silva, et el., *Background concentrations of trace metals As, Ba, Cd, Co, Cu, Ni, Pb, Se, and Zn in 214 Florida urban soils: Different cities and land uses*, Environmental Pollution, 264, 114737 (2010); <https://doi.org/10.1016/j.envpol.2020.114737>.
- [13] F. Mollaamin, *Features of parametric point nuclear magnetic resonance of metals implantation on boron nitride nanotube by density functional theory/electron paramagnetic resonance*. Journal of Computational and Theoretical Nanoscience, 11(11), 2393 (2014); <https://doi.org/10.1166/jctn.2014.3653>.
- [14] F. Mollaamin, et el., *Computational Modelling of Boron Nitride Nanosheet for Detecting and Trapping of Water Contaminant*. Russ. J. Phys. Chem. B, 18, 67 (2024); <https://doi.org/10.1134/S1990793124010330>.
- [15] R.S. Bangari, et el., *Fe_3O_4 -functionalized boron nitride nanosheets as novel adsorbents for removal of arsenic(III) from contaminated water*. ACS Omega, 5 (18) 10301 (2020); <https://doi.org/10.1021/acsomega.9b04295>.
- [16] G. Henkelman, A. Arnaldsson, and H. Jónsson, *A fast and robust algorithm for Bader decomposition of charge density*, Computational Materials Science 36(3), 354(2006); <https://doi.org/10.1016/j.commatsci.2005.04.010>.
- [17] J.P. Perdew, K. Burke, M. Ernzerhof, *Generalized gradient approximation made simple*. Phys. Rev. Lett., 77, 3865 (1996); <https://doi.org/10.1103/PhysRevLett.77.3865>.
- [18] W. Kohn, L. J. Sham, *Self-Consistent Equations Including Exchange and Correlation Effects*. Phys. Rev., 140, A1133(1965); <https://doi.org/10.1103/PhysRev.140.A1133>.
- [19] C. Lee, W. Yang, R.G. Parr, *Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density*. Phys Rev B, 37,785 (1988); <https://doi.org/10.1103/PhysRevB.37.785>.
- [20] Takeshi Yanai, David P Tew, Nicholas C Handy, *A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP)*, Chemical Physics Letters, 393 (1–3), 51 (2004); <https://doi.org/10.1016/j.cplett.2004.06.011>.
- [21] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J Chem Phys. 132(15),154104 (2010); <https://doi.org/10.1063/1.3382344>.
- [22] S. Grimme, S. Ehrlich, L. Goerigk, *Effect of the damping function in dispersion corrected density functional theory*. J Comput Chem, 32(7), 1456 (2011); <https://doi.org/10.1002/jcc.21759>.
- [23] M.J. Frisch, et al. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.
- [24] Dennington, Roy; Keith, Todd A.; Millam, John M., GaussView, Version 6.06.16, Semichem Inc., Shawnee Mission, KS, (2016).

- [25] V.K. Ahluwalia, *Nuclear Quadrupole Resonance (NQR) Spectroscopy*. In: *Instrumental Methods of Chemical Analysis*. Springer, Cham. (2023); https://doi.org/10.1007/978-3-031-38355-7_30.
- [26] Young, Hugh A., Freedman, Roger D. *Sears and Zemansky's University Physics with Modern Physics* (13th ed.). Boston: Addison-Wesley. 754, (2012);
- [27] I.P. Gerolahanassis, T. Kupka, *New Insights into Nuclear Magnetic Resonance (NMR) Spectroscopy*. Molecules, 30, 1500 (2025); <https://doi.org/10.3390/molecules30071500>.
- [28] M.T. Caccamo, et al., *Infrared spectroscopy analysis of montmorillonite thermal effects*. IOP Conf. Ser.: Mater. Sci. Eng. 777, 012002 (2020); <https://doi.org/10.1088/1757-899X/777/1/012002>.

Фатеме Меламін

Наноматеріали для екологічної ремедіації ґрунтів шляхом вилучення токсичних перехідних металів: структурний, електромагнітний та термодинамічний аналіз з використанням DFT

Кафедра біомедичної інженерії, Інженерно-архітектурний факультет, Університет Кастамону, Кастамону, Туреччина, fmollaamin@kastamonu.edu.tr

Метою дослідження є видалення з ґрунту перехідних металів Cr, Mn, Fe, Zn, W, Cd з використанням наноматеріалу на основі нітриду галію — наноклітки B_5N_{10} ($B_5N_{10}-nc$). Електромагнітні та термодинамічні характеристики токсичних перехідних металів, захоплених у $B_5N_{10}-nc$, описано за допомогою методів комп’ютерного моделювання матеріалів. Досліджено поведінку процесу захоплення іонів Cr, Mn, Fe, Zn, W, Cd нанокліткою $B_5N_{10}-nc$ з метою сенсорного виявлення катіонів металів у ґрунті. Структуру $B_5N_{10}-nc$ було змодельовано у присутності перехідних металів (Cr, Mn, Fe, Zn, W, Cd), а характеризацію систем проведено методом теорії функціонала густини (DFT). Ковалентна природа зв’язків у відповідних комплексах продемонструвала подібність енергетичних рівнів і характер часткової густини електронних станів між р-станами бору та азоту у $B_5N_{10}-nc$ і d-станами Cr, Mn, Fe, Zn, W, Cd у комплексах $X \leftrightarrow B_5N_{10}-nc$. Крім того, аналіз ядерного магнітного резонансу (ЯМР) виявив виражені піки навколо атомів Cr, Mn, Fe, Zn, W, Cd у процесі їх захоплення $B_5N_{10}-nc$ під час детектування та вилучення з ґрунту; водночас спостерігаються певні флюктуації у хімічному екрануванні ізотропних та анізотропних тензорів. На основі отриманих результатів встановлено селективність адсорбції токсичних металів, металоїдів і неметалів нанокліткою $B_5N_{10}-nc$ (атомний сенсор) у такому порядку: Cd > Zn > Fe > Cr > Mn \approx W. У роботі запропоновано використовувати системи з адсорбованими токсичними металами, металоїдами та неметалами для проектування та розширення оптоелектронних характеристик $B_5N_{10}-nc$ з метою створення фотоелектричних пристрій для очищення ґрунтів.

Ключові слова: забруднення ґрунтів, $B_5N_{10}-nc$, молекулярне моделювання, наноматеріал, DFT.