PHYSICS AND CHEMISTRY OF SOLID STATE

V. 26, No.3 (2025) pp. 592-597

Section: Chemistry

DOI: 10.15330/pcss.26.3.592-597

Vasyl Stefanyk Carpathian National University

ФІЗИКА І ХІМІЯ ТВЕРДОГО ТІЛА Т. 26, № 3 (2025) С. 592-597

Хімічні науки

UDC: 546.882 ISSN 1729-4428 (Print) ISSN 2309-8589 (Online)

L. Romaka¹, Yu. Stadnyk¹, V.V. Romaka^{2,3}, Yu. Yatskiv¹, M. Konyk¹

Isothermal section of the Dy-Cr-Ge system at 1073 K

¹Ivan Franko National University of Lviv, Lviv, Ukraine, www.romaka@gmail.com
²Technische Universität Dresden, Chair of Inorganic Chemistry II, Dresden, Germany, witaliv.romaka@tu-dresden.de
³Institute for Solid State Research, IFW-Dresden, Dresden, Germany

The phase equilibrium diagram of the Dy–Cr–Ge ternary system was constructed over the whole concentration range at 1073 K using methods of powder X-ray diffractometry, metallography, and electron microprobe analysis. Three ternary compounds are formed in the Dy-Cr-Ge system at the annealing temperature: Dy117Cr52Ge112 (Tb117Fe52Ge112 structure type, space group Fm-3m, a = 2.8723(8) nm), DyCr6Ge6 (SmMn6Sn6 structure type, space group P6/mmm, a = 0.51642(1), c = 0.82767(2) nm), DyCr1-xGe2 (CeNiSi2 structure type, space group Cmcm, a = 0.41249(5)-0.4140(3), b = 1.58287(2)-1.5890(7), c = 0.40048(5)-0.4001(2) nm). The DyCr1-xGe2 compound with CeNiSi2 structure type is characterized by a small homogeneity range limited by the DyCr0.28Ge2 and DyCr0.30Ge2 compositions. The solubility of chromium in the binary germanide Dy5Ge3 (Mn5Si3-type) extends up to 4 at. %. The DFT calculations were used to evaluate the thermodynamic, elastic and electrical properties of the DyCr1-xGe2 compound.

Keywords: Intermetallics; X-ray diffraction, phase equilibria, crystal structure.

Received 07 November 2024; Accepted 16 September 2025.

Introduction

The investigation of phase equilibria of the Dy-Cr-Ge system is part of a systematic study of the interaction between the components in ternary systems based on rare earth metals with 3*d*-elements and germanium to find new intermetallic compounds and study their physical properties To better understand the physical properties of intermetallics, the important step is to determine their relation of equilibrium with other phases and peculiarities of the crystal structure.

Among the ternary systems R-Cr-Ge (R is a rare earth metal), phase equilibrium diagrams are studied for R = Nd, Y, Gd, Er, and Tm [1-5]. Analysis of the literature data shows that the most studied compounds are RCr_{1-x}Ge₂ (CeNiSi₂-type) [6], RCr₆Ge₆ (SmMn₆Sn₆-type) [7], and RCrGe₃ (BaNiO₃-type) [8]. RCrGe₃ germanides (R = La-Nd, Sm) are characterized by ferromagnetic behavior with high Curie temperatures ranging from 60 to 155 K [8]. Detailed structural study of the RCr₆Ge₆ compounds (R=Gd, Dy-Lu) shows that all studied compounds

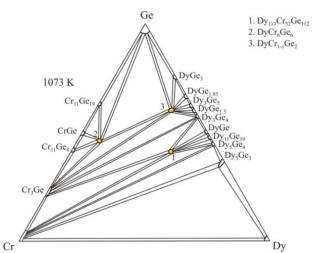
revealed the off-stoichiometric composition [7]. Magnetic property measurements of RCr₆Ge₆ germanides found magnetic ordering on TbCr₆Ge₆, DyCr₆Ge₆, and ErCr₆Ge₆ [9, 10], TmCr₆Ge₆ and LuCr₆Ge₆ are paramagnets down to 2 K [7]. YbCr₆Ge₆ germanide exhibits a magnetic transition at 3.4 K [7] with the ferrimagnetic ordering of the Cr and Yb sublattices. R₁₁₇Cr₅₂Ge₁₁₂ compounds with a giant unit cell (Tb₁₁₇Fe₅₂Ge₁₁₂-type, *a*~2.9 nm) were found with R=Nd, Sm, and Gd [11, 12, 4]. The complexity of their crystal structure, which provides low thermal conductivity, is a basis for the creation of promising thermomagnetic materials.

In this contribution, we present experimental results from a study of the interaction between the components in the Dy-Cr-Ge system at 1073 K.

I. Experimental methods

To construct the phase equilibrium diagram of the Dy-Cr-Ge system polycrystalline samples were synthesized by a direct arc-melting of the constituent components (metals were used in the form of ingots, with purity of dysprosium 99.9 wt.%; chromium, purity of 99.99 wt.%; and germanium, purity of 99.999 wt.%) under protected argon atmosphere (high purity Ti-gettered) on a watercooled copper bottom. The alloys were re-melted twice to provide better homogenization. The weight loss of the samples during the synthesis was less than 1 % of the initial total mass. Heat treatment of the produced alloys was performed in vacuum quartz ampoules at a temperature of 1073 K for 700 h. Then, the alloys were quenched in cold water without breaking the ampoules. The annealed samples were examined by X-ray diffractometry (DRON-4.0 diffractometer, radiation) to determine the phase composition. The observed diffraction intensities were compared with reference powder patterns of the binary phases, known ternary germanides, and pure elements (program PowderCell [13]). To control the chemical composition of the synthesized samples, determine the exact content of components in the phases, and confirm the phase composition, the method of energy-dispersive X-ray spectroscopy (EDRS) (electron microscope TESKAN VEGA 3 LMU, equipped by an X-ray analyzer with energy dispersive spectroscopy) was used. At least five measurements were taken to obtain the average value for each phase in each sample. For the crystal structure refinement, the diffraction data were collected at room temperature using STOE STADI P diffractometer (graphite monochromator, Cu $K\alpha_1$ radiation). Rietveld refinement of the crystal structure was performed using the FullProf Suite program package [14].

The DFT calculations were performed using Vienna Ab initio Simulation Package VASP v.5.4.4 with PAW-type potentials [15]. The Perdew-Burke-Enzerhoff (PBE) exchange-correlation functional in the generalized gradient approximation (GGA) [16] with an 11×11×11 Monkhorst-Pack *k*-point set [17] was used in both cases. The semi-core 4*f*-electrons of Dy atoms were treated as core states. Optimized crystal structures were used for the final total energy calculations. Complete geometry relaxation (atomic positions and lattice parameters) was achieved by minimizing forces, stress tensor components, and total energies. The Bader charge density analysis was performed using the Bader v1.05 code [18].


II. Experimental results

2.1. Isothermal section of the Dy-Cr-Ge system

The data concerning the binary boundary Dy–Ge, Cr–Ge, and Dy–Cr systems were taken from the reported phase diagrams [19, 20]. No binary phases are formed in the Dy–Cr system. In the Cr–Ge system, four binary phases were confirmed at the temperature of annealing: Cr₁₁Ge₁₉ (Mn₁₁Si₁₉-type), CrGe (FeSi-type), Cr₁₁Ge₈ (Cr₁₁Ge₈-type), and Cr₃Ge (Cr₃Si-type). The Cr₅Ge₃ binary with W₅Si₃ structure type was not identified at the investigation temperature. According to the performed phase analysis, the sample at the corresponding composition contains two binary phases, Cr₃Ge and Cr₁₁Ge₈, in equilibrium. As reported in the literature Cr₅Ge₃ binary is stable at higher temperature, formed by

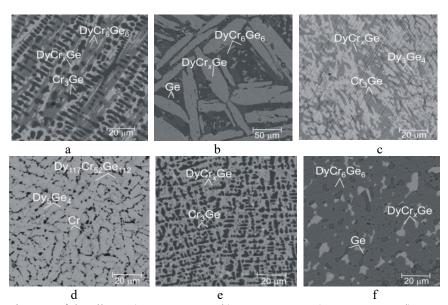
peritectic reaction at 1535 K and decomposes under the eutectoid reaction at 1269 K. Nine binary compounds were confirmed in the Dy-Ge system at 1073 K: DyGe₃ (DyGe₃-type), DyGe_{1.85} (DyGe_{1.85}-type), Dy₃Ge₅ (Y₃Ge₅-type), DyGe_{1.5} (AlB₂-type), Dy₃Ge₄ (Er₃Ge₄-type), DyGe (TlJ-type), Dy₁₁Ge₁₀ (Ho₁₁Ge₁₀-type), Dy₅Ge₄ (Sm₅Ge₄-type), and Dy₅Ge₃ (Mn₅Si₃-type).

To study the phase equilibria of the Dy-Cr-Ge ternary system, produced alloys were examined by X-ray diffractometry and energy dispersive X-ray spectroscopy. Based on the performed analysis, the isothermal section of the Dy-Cr-Ge system at 1073 K was constructed over the whole concentration range (Fig. 1). The Phase composition of individual alloys is presented in Table 1. Electron micrographs of some samples are shown in Fig. 2.

Fig. 1. Isothermal section of the Dy–Cr–Ge system at 1073 K.

At a temperature of 1073 K in the Dy–Cr–Ge system, the formation of two ternary compounds, DyCr₆Ge₆ and DyCr_{1-x}Ge₂, was confirmed, and the formation of a new compound, Dy₁₁₇Cr₅₂Ge₁₁₂, was identified. Analysis of the powder pattern of the sample with corresponding composition and the calculated lattice parameter (a = 2.8723(8) nm) indicated that the compound belongs to the Tb₁₁₇Fe₅₂Ge₁₁₂ (space group Fm–3m) structure type. Crystallographic characteristics of the ternary compounds from the Dy-Cr-Ge system are given in Table 2.

The solubility of Dy, Cr, and Ge in the binary compounds, except for Dy₅Ge₃, may be considered negligible (~1-2.5 at. %). The solubility of Cr in the Dy₅Ge₃ binary germanide extends up to 4 at. % (a = 0.8416(2), c = 0.6261(5) nm for Dy₅Ge₃; a = 0.8432(2), c = 0.6288(2) nm for Dy₆₃Cr₄Ge₃₃ sample).

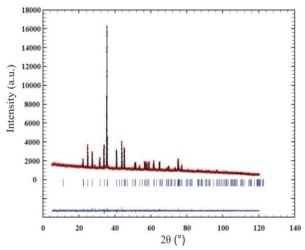

According to the data of the X-ray phase analysis, the $DyCr_{1-x}Ge_2$ compound (CeNiSi₂-type) is characterized by a small homogeneity range (x=0.7-0.72), which also includes the $DyCr_{0.3}Ge_2$ composition reported in Ref. [6]. The crystal structure was calculated for the sample $Dy_{31}Cr_9Ge_{60}$ (Fig. 3). Experimental details and refined atomic parameters are given in Tables 3, 4.

A detailed crystal structure study of the $DyCr_6Ge_6$ compound was reported in our recent manuscript [7]. It was found that the $DyCr_6Ge_6$ germanide crystallizes in the $SmMn_6Sn_6$ structure type, a disordered variant of the

Table 1.

Phase composition	and FPMA da	ta for individual	samples of the D	v_Cr_Ge system
rhase composition	and Drivia da	ua ioi illuividuai	i sambles of the 17	v—CI—Ge system

Pnas	se composition ar	ia EPMA data io			•			. 0/
Composition, at. %	Phase	Structure type	Lattice parameters, nr		ĺ	EPMA data, at. %		
Composition, at. 70			а	b	С	Dy	Cr	Ge
Dy ₃₀ Cr ₅₀ Ge ₂₀	Dy ₅ Ge ₃	Mn ₅ Si ₃	0.8424(3)		0.6273(4)			
Dy30C130GC20	Dy ₅ Ge ₄	Sm ₅ Ge ₄	0.7586(3)	1.4563(5)	0.7676(4)			
	(Cr)	(W)	0.2892(3)					
Dy ₆₀ Cr ₁₂ Ge ₂₈	Dy ₅ Ge ₃	Mn ₅ Si ₃	0.8431(3)		0.6291(3)	62.51	3.78	33.71
Dy _{58,57} Cr _{11,10} Ge _{30,33}	(Dy)	Mg	0.3592(3)		0.5654(3)	100.0		
Dy58,5/C111,10GC30,33	(Cr)	W		traces		100.0		
D C C-	Dy ₃ Ge ₄	Gd_3Ge_4	0.4057(2)	1.0637(4)	1.4197(4)			
Dy ₁₅ Cr ₅₅ Ge ₃₀	Cr ₃ Ge	Cr ₃ Si	0.4627(3)					
	Dy ₁₁₇ Cr ₅₂ Ge ₁₁₂	Tb ₁₁₇ Fe ₅₂ Ge ₁₁₂	2.8724(6)					
Dy ₄₀ Cr ₂₅ Ge ₃₅	Dy ₅ Ge ₄	Sm ₅ Ge ₄	0.7588(3)	1.4543(4)	0.7678(4)	54.31	1.44	44.25
Dy _{42.43} Cr _{33.53} Ge _{35.04}	Dy ₁₁₇ Cr ₅₂ Ge ₁₁₂	Tb ₁₁₇ Fe ₅₂ Ge ₁₁₂	2.8724(7)			42.76	18.16	39.08
•	(Cr)	(W)	0.2893(4)				100.0	
Dy ₁₀ Cr ₅₀ Ge ₄₀	DyCr ₆ Ge ₆	SmMn ₆ Sn ₆	0,5162(2)		0,8274(4)	7.99	46.55	45.46
Dy _{10.18} Cr _{53.36} Ge _{36.46}	DyCr _{1-x} Ge ₂	CeNiSi ₂	0.4139(3)	1.5900(7)	0.4001(1)	30.37	10.07	59.56
·	Cr ₃ Ge	Cr ₃ Si	0.4625(3)	` '		0.29	77.86	21.85
Dy ₁₅ Cr ₄₀ Ge ₄₅	DyCr _x Ge ₂	CeNiSi ₂	0.4139(3)	1.5893(6)	0.4001(2)	30.22	9.67	60.11
Dy _{15.47} Cr _{39.66} Ge _{44.87}	Cr ₃ Ge	Cr ₃ Si	0.4626(3)		` /	2.09	72.84	25.07
• • • • • • • • • • • • • • • • • • • •	Dy ₃ Ge ₄	Gd ₃ Ge ₄	0.4055(3)	1.0638(4)	1.4197(5)	42.61	0.08	57.31
Dy45Cr10Ge45	DyGe	TlI	0.4251(3)	1.0625(6)	0.3926(4)	51.44	0.15	48.41
Dy45.13Cr _{11.21} Ge _{43.66}	Dy ₁₁ Ge ₁₀	Ho ₁₁ Ge ₁₀	1.0869(4)		1.6351(5)	55.75	0.91	43.34
	Dy117Cr52Ge112	Tb ₁₁₇ Fe ₅₂ Ge ₁₁₂	2,8723(3)		` /	41.99	21.18	36.82
Dy ₇ Cr ₄₆ Ge ₄₇	DyCr ₆ Ge ₆	SmMn ₆ Sn ₆	0.5164(2)		0.8277(2)	8.27	46.08	45.65
Dy7.23Cr45.53Ge47.24	CrGe	FeSi	0.4796(3)		, , , , , , , , , , , , , , , , , , , ,		50.42	49.58
Dy40Cr10Ge50 Dy40.66Cr11.21Ge48.13	Dy ₃ Ge ₄	Gd ₃ Ge ₄	0.4056(2)	1.0638(4)	1.4197(4)	42.22	0.07	57.71
	Cr ₃ Ge	Cr ₃ Si	0.4628(3)	,		2.32	72.81	24.87
	Dy117Cr52Ge112	Tb ₁₁₇ Fe ₅₂ Ge ₁₁₂	2.8722(4)			41.22	21.36	37.42
	DyCr ₆ Ge ₆	SmMn ₆ Sn ₆	0.5164(3)		0.8276(4)	8.26	46.16	45.58
$Dy_{10}Cr_{40}Ge_{50}$	DyCr _{1-x} Ge ₂	CeNiSi ₂	0.4136(2)	1.5890(6)	0.4001(1)	30,43	9,40	60,17
Dy9,19Cr42,76Ge48,05	(Ge)	C	0.5646(3)	1.0000(0)	01.001(1)	0.45	0.43	99.12
	DyCr _x Ge ₂	CeNiSi ₂	0.4138(3)	1.5887(6)	0.4001(3)	32.07	9.01	59.92
Dy ₃₈ Cr ₇ Ge ₅₅ Dy _{39.11} Cr _{6.63} Ge _{54.26}	Dy ₃ Ge ₄	Gd ₃ Ge ₄	0.4054(3)	1.0638(5)	1.4196(4)	43.05	0.56	56.39
	Cr ₃ Ge	Cr ₃ Si	0.4625(4)	1.0030(3)	1.1170(1)	1.98	73.06	24.96
Dy ₃₅ Cr ₅ Ge ₆₀	DyCr _{1-x} Ge ₂	CeNiSi ₂	0.4023(4)	1.5889(6)	0.4001(2)	1.70	, 5.00	2 1.70
	Dy ₃ Ge ₄	Gd ₃ Ge ₄	0.4057(2)	1.0639(5)	1.4195(4)			
	DyGe _{1,5}	AlB ₂	0.3907(4)	1.0037(3)	0.4109(4)			
	DyCr ₆ Ge ₆	SmMn ₆ Sn ₆	0.5163(2)		0.4109(4)	8.52	46.10	45.38
Dy ₂₀ Cr ₁₅ Ge ₆₅	DyCr _{1-x} Ge ₂	CeNiSi ₂	0.3103(2)	1.5886(3)	0.3999(4)	30.45	9.75	59.80
$Dy_{18.73}Cr_{16.12}Ge_{65,15}$	(Ge)	C	0.5648(3)	1.2000(3)	0.3777(4)	0.33	2.13	99.67
* * * * * * * * * * * * * * * * * * * *	(36)		0.50+0(5)	l]	0.55	1	77.07



 $\begin{array}{c} \textbf{Fig. 2. SEM-images of the alloys: a)} \ Dy_{10}Cr_{50}Ge_{40}; \ b) \ Dy_{20}Cr_{15}Ge_{65}; \ c) \ Dy_{38}Cr_{7}Ge_{55}; \ d) \ Dy_{40}Cr_{25}Ge_{35}; \ e) \\ Dy_{15}Cr_{45}Ge_{40}; \ f) \ Dy_{10}Cr_{40}Ge_{50}. \end{array}$

Table 2.

Crystallographic characteristics of the ternary compounds from the Dy-Cr-Ge system

	0 1		<i>J</i>	J	J	
Compound	Space	Stanatura tura	Lattice parameters, nm			
Compound	group	Structure type	а	b	C	
DyCr ₆ Ge ₆	P6/mmm	$SmMn_6Sn_6$	0.51642((1)	0.82767(2)	
DyCr _{1-x} Ge ₂	C	C-Nic:	0.41249(5)- 1.5828(2)-	0.40048(5)-	
	Стст	CeNiSi ₂	0.4140(3) 1.5890(7)	c 0.82767(2)	
Dy ₁₁₇ Cr ₅₂ Ge ₁₁₂	Fm-3m	Tb ₁₁₇ Fe ₅₂ Ge ₁₁₂	2.8723(8)		

Fig. 3. Experimental (circles), calculated (line) and difference (bottom line) X-ray patterns of the alloy Dy₃₁Cr₉Ge₆₀.

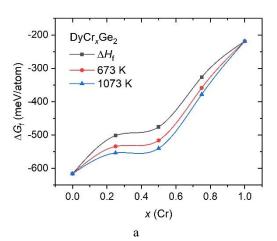
MgFe₆Ge₆-type. The experimental study that was performed was also confirmed by DFT modeling. These data agree with previous investigations of the isotypic RCr_6Ge_6 compound (R = Ho, Er, Y) studied by neutron diffraction [9].

2.2. DFT modeling

The DFT modeling was performed for the hypothetical DyCr_xGe₂ solid solution $(0 \le x \le 1)$, which includes the experimentally observed ternary DyCr_{0.28}Ge₂ compound. The symmetry of the crystal structure was reduced to introduce intermediate compositions (x = 0.25, 0.5, and 0.75). After geometry optimization, the corresponding enthalpies of mixing and formation were calculated, revealing that the formation of the continuous DyCr_xGe₂ solid solution $(0 \le x \le 1)$ is energetically unfavorable (Fig. 4a). Despite the enthalpy of formation becomes less negative with increasing Cr content, the common tangent lines between DyGe₂ and DyCr₆Ge₆ (ΔH_f = -199 meV/atom [7]) reveal that the most stable composition is ~DyCr_{0.4}Ge₂ with a narrow $(0.4 \le x \le 0.45)$ homogeneity region and two-phase regions towards the DyGe₂ and DyCr₆Ge₆ compounds.

The distribution of the density of electronic states of DyCr_{0.25}Ge₂ (Fig. 4b) predicts its metallic behavior with the valence band formed predominantly by the s- and p-states of Ge and d-states of Cr. The Dy atoms contribute mainly to the density of states above the Fermi level (E_F).

Table 3.


Experimental details and crystallographic data for DyCr_{0.28}Ge₂ compound

Experimental details and crystallog	grapnic data for DyCr _{0.28} Ge ₂ compound
Alloy composition	Dy ₃₁ Cr ₉ Ge ₆₀
Refined composition	$DyCr_{0.28(5)}Ge_{2}$
Structure type	CeNiSi ₂
Pearson symbol	oS16
Space group, Z	Cmcm; 4
Unit cell parameters:	
a, nm	0.41249(7)
b, nm	1.58287(2)
c, nm	0.40048(5)
Cell volume V , nm ³	0.2615(1)
Calculated density D_x , g/cm ³	8.181
Diffractometer	STOE STADI P
Radiation, wavelength λ (nm)	Cu K_{α} , 1.54056
Angular range / increment (°2θ)	5.000≤2θ≤120.185/0.015
Reliability factors R_{Bragg} , R_{f}	0.0439, 0.0551

Table 4.

Atomic coordinates and isotropic displacement parameters for DyCr_{0.28}Ge₂

The mid de et all and is ever epite displacement parameters for 2 j e10,28 e e2							
Атом	ПСТ	x	у	Z	Occupancy	B_{iso} , Å ²	
Dy	4 <i>c</i>	0	0.1036(2)	1/4	1	0.14(9)	
Cr	4 <i>c</i>	0	0.3048(9)	1/4	0.28(5)	1.52(1)	
Ge1	4 <i>c</i>	0	0.0506(7)	1/4	1	1.19(3)	
Ge2	4 <i>c</i>	0	0.7514(6)	1/4	1	1.79(3)	

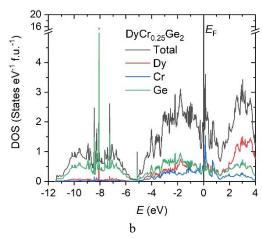


Fig. 4. Calculated energy of formation (ΔG_f) of the hypothetical solid solution DyCr_xGe₂ (a) and the distribution of the density of electronic states (DOS) (b) of DyCr_{0.25}Ge₂.

The calculated elastic properties of the $DyCr_xGe_2$ solid solution showed that the crystal structure of $DyCrGe_2$ is mechanically unstable. With the increasing Cr content, the bulk (B), Yung's (E), and shear (G) moduli change from 73.3, 106.2, and 42.2 GPa to 84.7, 64.0, and 23.3 GPa, respectively. Meanwhile, the Poisson's ratio increases from 0.259 (x=0) to 0.374 (x=0.75). Increasing Cr content leads to the almost linear rise of Pugh's B/G ratio from 1.738 to 3.638, indicating stronger ductile behavior and lower hardness. The corresponding Debye temperature decreases from 273.7 K (x=0) to 215.2 K (x=0.75).

Conclusions

An experimental study of the interaction of the components in the ternary system Dy-Cr-Ge in the whole concentration range at a temperature of 1073 K has confirmed the existence of ternary germanides DyCr₆Ge₆ and DyCr_{1-x}Ge₂ and the formation of a new ternary compound Dy₁₁₇Cr₅₂Ge₁₁₂ with a cubic structure of the Tb₁₁₇Fe₅₂Ge₁₁₂ type was established. Structural studies of the DyCr₆Ge₆ compound proved that it belongs to the SmMn₆Sn₆ structure type, a partially disordered variant of the MgFe₆Ge₆-type. It was established that the DyCr₆Ge₆ and Dy₁₁₇Cr₅₂Ge₁₁₂ compounds are characterized by a point composition, germanide DyCr_{1-x}Ge₂ with CeNiSi₂ structure type is characterized by a small homogeneity range, which is limited by the compositions DyCr_{0.28}Ge₂ and DyCr_{0.30}Ge₂. Solubility of Cr in the Dy₅Ge₃ binary (Mn₅Si₃ structure type) extends up to 4 at. % of Cr. The calculated distribution of the density of electronic states of

DyCr_{0.25}Ge₂ predicts its metallic behavior with the valence band formed predominantly by the s- and p-states of Ge and d-states of Cr. The thermodynamic modeling showed that the formation of the continuous DyCr_xGe₂ solid solution

 $(0 \le x \le 1)$ is energetically unfavorable, which is confirmed by the calculated elastic properties, and that the most stable composition is ~DyCr_{0.4}Ge₂ with a narrow $(0.4 \le x \le 0.45)$ homogeneity region and two-phase regions towards the DyGe₂ and DyCr₆Ge₆ compounds.

Acknowledgments

The work was carried out within the framework of the Ministry of Education of Ukraine (grant No 0124U000989). Authors Romaka L., Stadnyk Yu., Konyk M. also thank the Simons Foundation (SFI-PD-Ukraine-00014574) for financial support. The authors thank U. Nitzsche for technical assistance in running DFT calculations on the ITF/IFW computer cluster. V.V.R. is funded by the DFG (project-id 463049368).

Romaka Lyubov – Ph.D., Senior Researcher, Ivan Franko National University of Lviv;

Stadnyk Yuriy – Ph.D., Senior Researcher, Ivan Franko National University of Lviv;

Romaka Vitaliy – D.Sc., doctor of material science, Technische Universität Dresden, Germany;

Yatskiv Yuriy – student, Ivan Franko National University of Lviv;

Konyk Mariya – Ph.D., Senior Researcher, Ivan Franko National University of Lviv.

^[1] P.S. Salamakha, Y.M. Prots, *The neodymium-(vanadium, chromium, manganese)-germanium systems*, J. Alloys Compd. 215, 51 (1994); https://doi.org/10.1016/0925-8388(94)90817-6.

^[2] M. Konyk, L. Romaka, L. Orovčik, V.V. Romaka, Yu. Stadnyk, *Y-Cr-Ge ternary system at 1070 K*, Visnyk Lviv. Univ. Ser. Chem. 60(1), 38 (2019); https://doi.org/10.30970/vch.6001.038.

^[3] M. Konyk, L. Romaka, Yu. Stadnyk, V.V. Romaka, R. Serkiz, A. Horyn, *Er-Cr-Ge ternary system*, Phys. Chem. Solid State. 20(4), 376 (2019); https://doi.org/10.15330/pcss.20.4.376-383.

^[4] M. Konyk, L. Romaka, Yu. Stadnyk, V.V. Romaka, V. Pashkevych, *Phase equilibria in the Gd-Cr-Ge system at 1070 K*, Phys. Chem. Solid State. 22(2), 248 (2021); https://doi.org/10.15330/pcss.22.2.248-254.

- [5] L. Romaka, Yu. Stadnyk, V.V. Romaka, M. Konyk, *Interaction between the components in Tm-Cr-Ge system at 1070 K*, Phys. Chem. Solid State. 23(4), 633 (2022); https://doi.org/10.15330/pcss.23.4.633-639.
- [6] H. Bie, A. Tkachuk, A. Mar, Structure and magnetic properties of rare-earth chromium germanides RECr_xGe₂ (RE=Sm,Gd-Er), J. Solid State Chem. 182, 122 (2009); https://doi.org/10.1016/j.jssc.2008.10.013.
- [7] V.V. Romaka, L. Romaka, M. Konyk, L. T. Corredor, K. Srowik, B. Kuzhel, Yu. Stadnyk, Yu. Yatskiv, *Structure, bonding, and properties of RCr₆Ge₆ intermetallics (R = Gd-Lu)*, J. Solid State Chem. 338, 124874 (2024); https://doi.org/10.1016/j.jssc.2024.124874.
- [8] H. Bie, O.Y. Zelinska, A.V. Tkachuk, A. Mar, *Structures and physical properties of rare-earth chromium germanides RECrGe₃ (RE= La-Nd, Sm)*, Chem. Mater. 19, 4163 (2007); https://doi.org/10.1021/cm071276.
- [9] P. Schobinger-Papamantellos, J. Rodriguez-Carvajal, K.H.J. Buschow, Ferrimagnetism and disorder in the RCr₆Ge₆ compounds (R=Dy, Ho, Er, Y): A neutron study, J. Alloys Compd. 256, 92 (1997); https://doi.org/10.1016/S0925-8388(96)03109-X.
- [10] P. Schobinger-Papamantellos, J. Rodríguez-Carvajal, K.H.J. Buschow, *Atomic disorder and canted ferrimagnetism in the TbCr₆Ge₆ compound. A neutron study, J. Alloys Compd. 255, 67 (1997); https://doi.org/10.1016/S0925-8388(96)02872-1.*
- [11] P.S. Salamakha, Y.M. Prots, *The neodymium-(vanadium, chromium, manganese)-germanium systems*, J. Alloys Compd. 215, 51 (1994); https://doi.org/10.1016/0925-8388(94)90817-6.
- [12] A.V. Morozkin, Y.D. Seropegin, V.K. Portnov, I.A. Sviridov, A.V. Leonov, *New ternary compounds* $R_{117}Fe_{52}Ge_{112}$ (R = Gd, Dy, Ho, Er, Tm) and $Sm_{117}Cr_{52}Ge_{112}$ of the $Tb_{117}Fe_{52}Ge_{112}$ -type structure, Mater. Res. Bull. 33, 903 (1998); https://doi.org/10.1016/S0025-5408(98)00051-8.
- [13] W. Kraus, G. Nolze, *POWDER CELL a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns*, J. Appl. Crystallogr. 29, 301 (1996); https://doi.org/10.1107/S0021889895014920.
- [14] T. Roisnel, J. Rodriguez-Carvajal, *WinPLOTR: a Windows tool for powder diffraction patterns analysis*, Mater. Sci. Forum, 378–381, 118 (2001); https://doi.org/10.4028/www.scientific.net/MSF.378-381.118.
- [15] G. Kresse, D. Joubert, *From ultrasoft pseudopotentials to the projector augmented-wave method*, Phys. Rev. B 59, 1758 (1999); http://dx.doi.org/10.1103/PhysRevB.59.1758.
- [16] J.P. Perdew, K. Burke, M. Ernzerhof, *Generalized gradient approximation made simple*, Phys. Rev. Lett. 77(18), 3865 (1996); https://doi.org/10.1103/PhysRevLett.77.3865.
- [17] H. J. Monkhorst, J. K. Pack, *Special points for Brillouin-zone integrations*, Phys. Rev. B 13, 5188 (1976); http://dx.doi.org/10.1103/PhysRevB.13.5188.
- [18] G. Henkelman, A. Arnaldsson, H. Jónsson, *A fast and robust algorithm for Bader decomposition of charge density*, Comput. Mater. Sci. 36, 354 (2006); https://doi.org/10.1016/j.commatsci.2005.04.010.
- [19] T.B. Massalski in: Binary Alloy Phase Diagrams, ASM, Metals Park, Ohio (1990).
- [20] H. Okamoto Desk Handbook: Phase Diagrams for Binary Alloys, Materials Park (OH): American Society for Metals (2000).

Л. Ромака¹, Ю. Стадник¹, В.В. Ромака^{2,3}, Ю. Яцків¹, М. Коник¹

Ізотермічний переріз діаграми стану системи Dy-Cr-Ge при 1073 К

¹Львівський національний університет імені Івана Франка, Львів, Україна, <u>lyubov.romaka@gmail.com</u>
²Технічний Університет м. Дрезден, кафедра неорганічної хімії ІІ, Дрезден, Німеччина, <u>vitaliy.romaka@tu-dresden.de</u>

 3 Інститут дослідження твердого тіла ім. Лейбніца, Дрезден, Німеччина

Методами рентгенофазового, рентгеноструктурного і рентгеноспектрального аналізів досліджено взаємодію компонентів та побудовано ізотермічний переріз діаграми стану потрійної системи Dy–Cr–Ge при 1073 К у повному концентраційному інтервалі. У системі Dy–Cr–Ge за температури відпалювання утворюються три тернарні сполуки: Dy117Cr52Ge112 (структурний тип $Tb_{117}Fe52Ge112$, просторова група Fm-3m, a=2,8723(8) нм), DyCr6Ge6 (структурний тип SmMn6Sn6, просторова група P6/mmm, a=0,51642(1), c=0,82767(2) нм), DyCr1-xGe2 (структурний тип CeNiSi2, просторова група Cmcm, a=0,41249(5)-0,4140(3), b=1,5828(2)-1,5890(7), c=0,40048(5)-0,4001(2) нм). Сполука DyCr1-xGe2 характеризується областю гомогенності, яка обмежена складами DyCr0,28Ge2 і DyCr0,30Ge2. Помітною розчинністю третього

Ключові слова: Інтерметалід; рентгенівська дифракція, фазові рівноваги, кристалічна структура.

DFT розрахунки виконано для оцінки еластичних і електричних властивостей сполуки DyCr_xGe₂.

компонента характеризується германід DysGe3 (структурний тип MnsSi3), який розчиняє до 4 ат. % хрому.