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Досліджено вплив механічної обробки, іонного та хімічного травлення поверхні монокристалічного 

германію на його фотопровідність та можливість фотомодуляції в терагерцовій ділянці спектру. Визначено 

відносні зміни електропровідності матеріалу під впливом освітлення лазерним випроміненням з довжиною 
хвилі 660 нм при різних потужностях опромінення. Створено установку для дослідження 

фотомодуляційних властивостей германію на частоті 0,13ТГц і виявлено різке збільшення поглинання 

такого електромагнітного випромінювання навіть при малих потужностях освітлення. 
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Вступ 

Сучасний розвиток та використання терагерцових 

(ТГц) технологій [1] стимулює дослідження методів 

контролю та керування терагерцовим 

випромінюванням, його модуляцію, сканування, 

тощо. Поляризація, керування напрямком, 

фокусування ТГц променя, а також виготовлення ТГц 

резонаторів є ключовими технологіями, що 

забезпечують функціонування систем ТГц 

комунікацій та ТГц зображення з кодованою 

апертурою. Комплексні огляди методів модуляції ТГц 

та суб-ТГц випромінювання на частотах понад 100 

ГГц, включаючи оптичні, електронні та теплові 

модулятори, наведено у [2–5]. Оптичні модулятори 

ТГц випромінювання викликають значну увагу через 

їхню відносну простоту, можливість реалізації 

керування потоками випромінювання без 

необхідності перетворення сигналів у електричні, 

високу швидкість передачі інформації, широку смугу 

пропускання цих сигналів і незначне споживання 

енергії [6–8]. Модуляція ТГц випромінювання в цьому 

випадку здійснюється впливом оптичного джерела 

світла за рахунок зміни фотопровідності матеріалу, 

який використовується для модуляції [9, 10]. Як 

правило для виготовлення ТГц модуляторів 

використовуються напівпровід-никові матеріали. 

Cвітлове випромінювання з енергією, яка перевищує 

ширину забороненої зони напівпровідника, генерує в 

ньому нерівноважні носії заряду, що приводить до 

зміни фотопровідності. Густина фотоіндукованих 

нерівноважних носіїв залежить від інтенсивності 

падаючого оптичного випромінювання. Пропускання 

терагерцової хвилі через фотозбуджену 

напівпровідникову пластинку вираховується згідно із 

формулами Френеля і визначається кутом падіння 

хвилі, комплексним показником заломлення n і 

товщиною матеріалу. Очевидно, що під дією світла 

комплексний показник заломлення напівпровідника 

змінюється, а, отже, змінюється і пропускання ТГц 

хвиль через нього. Ефективність модуляції 

обмежується низкою факторів, зокрема умовами 
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роботи та властивостями використаного матеріалу. 

Одним із перспективних матеріалів для 

фотомодуляції ТГц випромінювання є кристалічний 

германій [11, 12]. Висока концентрація 

фотогенерованих носіїв заряду та значна глибина 

модуляції у зразках Ge порівняно з Si та GaAs 

зумовлені більшим коефіцієнтом оптичного 

поглинання на довжині хвилі збудження, вищим 

коефіцієнтом дифузії носіїв заряду та довшим часом 

їхнього життя. Вплив товщини досліджуваного зразка 

на глибину фотомодуляції, а також густини 

потужності та частотного діапазону освітлення, вже 

було досліджено теоретично [11]. Натомість 

експериментальні дані щодо реакції Ge на оптичне 

збудження, особливо з урахуванням ефектів, 

зумовлених обробкою поверхні Ge, залишаються не 

з’ясованими. Оскільки стан поверхні кристалічного 

германію суттєво впливає на його фотопровідність 

[13], а, отже, призводить до зміни пропускання 

терагерцового випромінювання, тому в цій роботі 

було досліджено вплив обробки поверхні зразків 

монокристалічного германію на його фотопровідність 

та фотомодуляцію ним електромагнітного 

випромінювання з частотою f = 0,13 ТГц. 

I. Матеріали та методи  

1.1. Матеріали 

Для проведення досліджень використовувалися 

зразки монокристалічного германію діаметром 

d = 30 мм і товщиною h = 0,5 мм. Товщину зразка 

вимірювали приладом Logitech CG10 Contact Gauge 

(Великобританія). Електрофізичні параметри 

вимірювали на установці HMS-3000 (Hall 

Measurement System, Франція). Результати 

вимірювань наведені в Табл. 1.   

 

Таблиця 1.  

Електрофізичні параметри монокристалічного Ge 

Питомий опір, ρ, Ом·см 60,5 

Рівноважна концентрація носіїв, Ne, 

см-3 

3,54·1013 

Рухливість, µ, см2/В·с 2,91·103 

Тип провідності n 

 

1.2. Методи 

1.2.1. Хімічне та іонне травлення  

Робочі поверхні зразків були механічно шліфовані 

та поліровані. Хімічне травлення проводили в розчині 

такого складу: 95 см3 1%-ого KOH та 75 см3 60%-ого 

H2O2 з pH = 7÷8. Процес травлення контролювали за 

зміною товщини і маси пластинки залежно від часу 

травлення. Швидкість хімічного травлення механічно 

обробленого зразка Ge визначали так: на зразок Ge 

посередині наносили смужку фоторезисту ФП-383. 

Ширина смужки становила 4 мм. Фоторезист 

задублювали 45 хвилин при температурі 120°C. Перед 

нанесенням фоторезисту поверхню зразка Ge 

знежирювали ацетоном. Потім зразок піддавали 

односторонньому травленню тривалістю від 1 хв до 25 

хв. Після завершення травлення фоторезист видаляли 

концентрованим розчином ацетону і за допомогою 

профілометра Dektak A визначали зміну нерівностей 

поверхні на межі розділу між захищеною 

фоторезистом та протравленою поверхнею (рис. 1). 

Виміряна швидкість травлення становила 70 нм/хв.  

Підготовку поверхні зразків Ge проводили також 

з допомогою іонного травлення аргоном впродовж 15 

хвилин. Іонне травлення здійснювали на установці 

вакуумного напилення Torr International Inc. 

 

 
Рис. 1. Зміна товщини поверхні зразка германію на 

межі розділу між поверхнею, захищеною 

фоторезистом, і протравленою поверхнею. Час 

хімічного травлення становив 25 хв. 

 

1.2.2. Фотопровідність 

Фотопровідність усіх зразків і механічно 

оброблених, і тих, що зазнали хімічного, а також 

іонного травлення, виміряли з допомогою 

імпедансного спектрометра Autolab (Metrohm Autolab 

B.V., Нідерланди) за кімнатної температури. 

Вимірювання здійснювалося в діапазоні частот 10-2 до 

106 Гц, амплітуда сигналу становила 5мВ. Для 

вимірювання було задано 99 точок. Контакти на 

поверхні матеріалу напилювали у вигляді 

прямокутників. Засвітку зразків здійснювали лазером 

з довжиною хвилі λ = 660 нм та потужністю 32 мВт 

(діаметр пучка становив 2 мм) без та з використанням 

нейтральних фільтрів з оптичною густиною: 0,3; 0,64 

та 1, а також в темряві. 

 

1.2.3. Фотомодуляція  

Для дослідження фотомодуляції ТГц 

випромінювання запропоновано вимірювальну 

установку, наведену на рис. 2.  

Випромінювач (передавач) ТГц випромінювання 

на частоті f = 0,13 ТГц був побудований на 

кремнієвому двопролітному лавинному діоді, 

встановленому в камері генератора. Рівень 

потужності передавача становив не менше 10 мВт. 

Активний елемент – діод встановлювався в камеру 

генератора, розраховану на роботу в ТГц діапазоні 

частот. Камера містить хвилеводні елементи для 

узгодження імпедансу активного елемента та його 

живлення від джерела постійного струму. Вона 

механічно кріпиться до фланця хвилеводу за 

стандартом UG-387/UM, який містить канал 

хвилеводу WR-07 (1,65х0,83) мм і розташований на 
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передній панелі пристрою. Рупорна антена, механічно 

закріплена на вихідному фланці передавача, формує 

діаграму спрямованості, і випромінює сигнал 

передавача. Ширина діаграм спрямованості рупорів 

на рівні половинної потужності становила не більше 

10°, а підсилення – не менше 25 дБ.  

 

 
Рис. 2. Установка для дослідження фотомодуляції ТГц 

випромінювання на частоті f=0,13 ТГц. 1 – передавач 

з рупорною антеною, 2 – тефлонові лінзи,  

3 – фотопровідний матеріал, 4 – SOLIS-565D - High-

Power LED (Thorlabs, США). 5 – приймач з рупорною 

антеною, 6 – осцилограф Tektronix TDS 3052. 

 

Приймач складався з детектора, підсилювача 

відеосигналу та рупорної антени. Корисний сигнал, 

прийнятий рупорною антеною, через проміжний 

вхідний фланець, який відповідає стандарту UG-

387/UM та має хвилевідний канал WR-07 

(1.65х0.83) мм, потрапляв у камеру детектора, 

детектувався, далі підсилювався та передавався для 

індикації. Детектор побудований на GaAs діоді 

Шотткі з низьким рівнем власного шуму, 

встановленим у хвилевідній камері детектора. Це 

забезпечувало узгодження опору діода з хвилеводом в 

робочому діапазоні частот і вивід сигналу. 

Підключений підсилювач відеосигналу забезпечував 

динамічний діапазон не менше 20 дБ і рівень 

вихідного сигналу не менше 100 мВ. Вихідний опір 

підсилювача відеосигналу становив 1 кОм. 

Максимум випромінювання для лампи Solis – 

565 D фірми Thor Labs припадав на довжину хвилі 

λ = 565 нм. Потужність випромінювання лампи 

змінювалася в межах від 0,05 Вт/см2 до 0,67 Вт/см2. 

Випромінювання лампи модулювалося у вигляді 

прямокутних імпульсів освітлення з тривалістю 1 мс 

та інтервалом між імпульсами 360 мс (рис.3). 

Вимірювання зміни пропускання зразками Ge 

електромагнітного випромінювання з частотою 

f = 0,13 ТГц під дією світлового випромінювання 

різної потужності (модуляція ТГц випромінювання) 

проводилася за такою методикою. За допомогою 

осцилографа міряли:  

- сигнал на увімкненому приймачі ТГц 

випромінювання без потрапляння на нього 

електромагнітного випромінювання (нульовий 

рівень);  

- сигнал на приймачі за потрапляння на нього 

електромагнітного випромінювання з частотою 

f = 0,13 ТГц, який передається через повітря (Ua);  

- сигнал на приймачі за потрапляння на нього 

електромагнітного випромінювання з частотою 

f = 0,13 ТГц, яке пройшло через зразок Ge (Us);  

- сигнал на приймачі за потрапляння на нього 

електромагнітного випромінювання з частотою 

f = 0,13 ТГц і проходженні через освітлений 

імпульсним оптичним випромінюванням зразок Ge. 

 

 
Рис. 3. Модуляція випромінювання лампи Solis– 

565 D. 

 

Початкове пропускання зразка розраховували за 

співвідношенням: T=Us/Ua. Останнім етапом є 

розрахунок пропускання для всіх точок записаного 

сигналу та побудова графіків T=f(Pi), де Pi – густина 

потужності оптичного випромінювання, що падає на 

зразок Ge.  

II. Результати досліджень та їх 

обговорення 

2.1. Фотопровідність 

Як механічно оброблені зразки, так і зразки, що 

зазнали (після механічного полірування) іонного 

травлення при засвітці з максимальною потужністю 

зміни провідності не виявили. Зміна 

електропровідних властивостей хімічно 

протравленого зразка Ge при засвітці представлена на 

рис. 4а у вигляді частотних залежностей дійсної 

Re Z(f) (рис. 4а) частини імпедансу, відносної зміни 

фотопровідності (рис. 4б), а також діаграм Найквіста 

(рис. 4в). 

Як і очікувалося, на низьких частотах <103 Гц 

(рис. 4а) спостерігається наявність делокалізованих 

носіїв заряду у Ge, що підтверджується частотною 

незалежністю провідності матеріалу. З ростом частоти 

провідність зростає, оскільки за вищих частот (в околі 

104 Гц) внесок у провідність роблять перескоки носіїв 

заряду по локалізованих станах поблизу рівня Фермі 

[14]. Причому стрімкіший ріст провідності з частотою 

(вище 104 Гц) спостерігається під час вимірювання у 

темряві, адже, в цьому випадку не проявляється 

стимуляція освітленням, яка робить більший внесок у 

провідність, порівняно з перескоками, що і 

відображається на кривих 2-5 рисунку 4а. Результати 

досліджень, представлені на рис. 4а, свідчать про 

значний фоторезистивний ефект навіть за 

використання фільтрів, які послаблюють потужність 

засвітки. Розрахунок відносної зміни фотопровідності 

здійснений за формулою: 

 δRe𝐺(𝑓) =
Re𝐺𝑖(𝑓)−Re𝐺0(𝑓)

Re𝐺0(𝑓)
, (1) 

 

де f – частота, ReG0(f), ReGi(f) – дійсні частини 
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провідності, визначені з дійсної частини 

комплексного імпедансу,  виміряного в темряві та при 

опроміненні лазером, відповідно. Результати 

представлено на рис. 4б. Як і очікувалося: зі 

зменшенням оптичної густини фільтрів (зі 

збільшенням густини потужності світлового сигналу) 

відносна зміна фотопровідності зростає у 3 рази. 

Найбільше її значення становить ≈5,5 разів і отримане 

під час вимірювання без фільтрів. Лазер із довжиною 

хвилі λ = 660 нм має енергією фотонів ≈ 1,88 еВ, що 

значно перевищує ширину забороненої зони германію 

Eg≈ 0,66 еВ. Таким чином, значний фоторезистивний 

ефект у германії реалізується в основному за рахунок 

генерації значної кількості носіїв заряду та їх високої 

рухливості. 
Під час освітлення зразків відбувається незначне 

зменшення δReZ(f) за високих частот, пов’язане зі 

внеском перескокової провідності (криві 3, 4, 5) та з 

домінуванням бар’єрних і поляризаційних процесів. 

Діаграма Найквіста (рис. 4в) на комплексній площині 

представляє дійсну Re Z(f) та уявну Im Z(f) частину 

годографу імпедансу. Форма годографів імпедансу 

відповідає вищезазначеним висновкам та вказує на 

зростання провідності матеріалу зі збільшенням 

питомої потужності. Беручи до уваги природу 

матеріалу, а також форму годографів, очевидно, що 

для опису процесів проходження струму потрібно 

використати модель Войта [15], що складається з двох 

R||C ланок. Кожна з них моделює скінченну 

провідність із відповідною сталою часу. 

 

2.2. Фотомодуляція ТГц випромінювання.  

Пропускання ТГц випромінювання з частотою 

f = 0,13 ТГц, модульованого імпульсами світлового 

випромінювання, через попереднього шліфований і 

полірований, а потім хімічно протравлений зразок Ge, 

представлене на рис. 5. Із рис. 5 видно, що вже при 

засвітці випромінюванням з P = 0,33 Вт/см2 

пропускання ТГц випромінювання цим зразком Ge 

знижується практично до нуля. Також видно, що час 

модуляції ТГц хвилі складає ~2 мс. Цей час 

складається із часу безпосередньої модуляції 

терагерцової хвилі ~1 мс і часу повернення зразка до 

початкового (перед освітленням) стану ~1 мс. 

Крім того, нами також було вивчено вплив 

шліфованої, а потім хімічно протравленої поверхні 

зразка германію на фотомодуляцію ТГц 

випромінювання з частотою f = 0,13 ТГц. 

Фотомодуляція ТГц випромінювання з частотою 

f = 0,13 ТГц при його падінні на поверхню зразка 

наведена на рис. 6.  

Видно, що модуляція ТГц випромінювання є дещо 

слабшою, але в той же час змінюється швидкість 

модуляції. Ефективність терагерцового модулятора 

   
Рис. 4. Частотна залежність дійсної частини ReZ комплексного імпедансу (а) хімічно травленого зразка Ge, 

відносної зміни фотопровідності (б), а також діаграма Найквіста (в), зняті в темряві (1) та при освітленні 

(λ=660 нм, 32 мВт) із використанням нейтральних фільтрів з оптичною густиною: 1(2); 0,64(3); 0,3(4) та без 

них (5). 
 

  

Рис. 5. Пропускання ТГц випромінювання з 

частотою f=0,13 ТГц попереднього шліфованим і 

полірованим, а потім хімічно протравленим зразком 

Ge за різних густин потужності засвітки 

(1 – P = 0,12 Вт/см2, 2 – P=0,33 Вт/см2,  

3 – P=0,67 Вт/см2).  

Рис. 6. Фотомодуляція ТГц випромінювання з 

частотою f=0,13 ТГц при його падінні на шліфовану 

та хімічно протравлену поверхню за різних густин 

потужності засвітки (1 – P = 0,12 Вт/см2,  

2 – P= 0,33 Вт/см2, 3 – P = 0,67 Вт/см2). 
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характеризується глибиною модуляції MF, яка 

визначається як [16]: 

 𝑀𝐹 =
𝑇0−𝑇𝑖

𝑇0
, (2) 

 

де T0 – коефіцієнт пропускання ТГц випромінювання 

за відсутності оптичної засвітки, Ti – коефіцієнт 

пропускання за різних інтенсивностей оптичної 

засвітки. 

У випадку хімічно протравленого зразка зі 

шліфованою та полірованою поверхнею (див. рис. 5, 

6) глибина модуляції рівна 100% для двох 

потужностей P = 0,33 Вт/см2 та P = 0,67 Вт/см2. Для 

хімічно протравленого зразка Ge зі шліфованою 

поверхнею (див. рис. 6) глибина модуляції також була 

близькою до 100%, але лише для P = 0,67 Вт/см2. 

Отримані результати перевершують дані оптичної 

модуляції ТГц хвилі за f = 0,34 ТГц як 

монокристалічного Ge, так і модифікованого 

нанострижнями золота [17]. 

Висновки 

Хімічне травлення поверхні монокристалічного 

Ge в розчині 95 см3 1%-ого KOH та 75 см3 60%-ого 

H2O2 з pH = 7÷8 спричиняє фоторезистивний ефект та 

ефективну фотомодуляцію цим зразком 

терагерцового випромінювання, на відміну від 

шліфування, полірування чи протравлення іонами Ar. 

Таке хімічне травлення поверхні Ge призводить до 

значної фотогенерації носіїв заряду, при якій відносна 

зміна фотопровідності нелінійно зростає  приблизно у 

5,5 разів при засвітці оптичним випромінюванням з 

довжиною хвилі λ = 660нм та потужністю 32мВт 

(діаметром пучка 2 мм). Це дозволяє забезпечити 

100% глибину модуляції ТГц випромінювання з 

частотою f = 0,13 ТГц, що було нами 

експериментально підтверджено на створеній 

установці. З метою вияснення оптимальних 

параметрів фотомодуляторів ТГц випромінювання на 

основі монокристалічного Ge необхідні подальші 

дослідження впливу товщини зразків, а також інших 

хімічних травників на параметри таких оптично-

керованих модуляторів. 

 

Подяка:  

Робота виконана за підтримки Національного 
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