The Hollow Spherical Silica Molecule (SiO2)20(H2O)10: Theoretical Calculations of the IR spectrum

  • O. Filonenko A.A. Chuiko Institute of Surface Chemistry, National Academy of Sciences
  • V. Lobanov A.A. Chuiko Institute of Surface Chemistry, National Academy of Sciences
  • A. Grebenyuk A.A. Chuiko Institute of Surface Chemistry, National Academy of Sciences
Keywords: hollow spherical silica molecule, IR-spectroscopy, density functional theory

Abstract

The IR spectrum of hollow spherical molecule (SiO2)20(H2O)10 have been calculated within harmonic approximation using density functional theory method (exchange-correlation functional B3LYP and basis set 6-31G (d, p)) and an assignment have been made of the frequencies to the forms of vibrations. It has been shown that the theoretically calculated spectrum of molecule (SiO2)20(H2O)10 is consistent with the experimental spectra of nanospheres, so the molecule (SiO2)20(H2O)10 and its higher homologues can be used in quantum-chemical calculations of the properties of synthesized hollow nanospheres (d ≈ 290 nm).

References

[1] Y. Liu, X. Chen, J. H. Xin, J. Mater Sci. 41(16), 5399 (2006).
[2] Y. Le, M. Pu, J.-F. Chen, Materials Research Bulletin 41(9), 1714 (2006).
[3] Y. Le, M. Pu, J.-F. Chen, Journal of Non-Crystalline Solids 353(2), 164 (2007).
[4] N. M. Gorsd, L. R. Pizzio, M. N. Blanco, Procedia Materials Science 8, 567 (2015).
[5] V. M. Masalov, N. S. Sukhinina, E. A. Kudrenko, G. A. Emelchenko, Nanotechnology 22(27), 275718 (2011).
[6] W. D. Cheng, K.-H. Xiang, R. Pandey, J. Phys. Chem. B. 104(29), 6737 (2000).
[7] О. Filonenko, V. Lobanov, Chemistry, Physics, Technology of Surface 4(3), 260 (2013).
[8] X. Guo, X. Liu, B. Xu, T. Dou, Colloids and Surfaces A. 345(1-3), 141 (2009).
[9] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 14(11), 1347 (1993).
[10] A. P. Scott, L. Radom, J. Phys. Chem. 100(41), 16502 (1996).
[11] G. A. Zhurko, http://www.chemcraftprog.com.
[12] Y. Liang, C. R. Miranda, S. Scandolo, J. Chem. Phys. 125(19), 194524 (2006).
[13] M.Sitarz, W. Jastrzebski, P. Jeleng, E. Dlugong, M. Gaweda, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 132, 884 (2014).
[14] P. Innocenzi, Journal of Non-Crystalline Solids 316(2,3), 309 (2003).
[15] M. Heyde, S. Shaikhutdinov, H.-J. Freund, Chemical Physics Letters 550, 1 (2012).
[16] G. Fu, A. He, Y. Jin, Q. Cheng, J. Song, BioResources 7(2), 2319 (2012).
[17] E. S. Park, H. W. Ro, C. V. Nguyen, R. L. Jaffe, D. Y. Yoon, Chem. Mater. 20(4), 1548 (2008).
[18] J. N. Greeley, M. M. Banaszak Holl, Inorg. Chem. 37(23), 6014 (1998).
[19] N. Hu, Y. Rao, S. Sun, L. Hou, P. Wu, S. Fan, B. Ye, Applied Spectroscopy 70(8), 1328 (2016).
[20] A. Kolezynґski, W. Jastrzebski, W. Szczypka, A. Kowalewska, M. Nowacka, M. Sitarz, Journal of Molecular Structure 1044, 314 (2013).
[21] M. Sitarz, M. Handke, and W. Mozgawa, Spectrochimica Acta A 56(9), 1819 (2000).
[22] M. Sitarz, M. Handke, W. Mozgawa, Spectrochimica Acta Part A 55(14), 2831 (1999).
[23] M. Krуl, W. Mozgawa, W. Jastrzebski, K. Barczyk, Microporous and Mesoporous Materials 156, 181 (2012).
[24] M. Krol, W. Mozgawa, W. Jastrzebski, J Porous Mater 23(1), 1 (2016).
[25] J. C. Jansen, F. G. Gaag, H. Bekkum, Zeolites. 4(4), 369 (1984).
[26] H. Gies, Zeitschrift fur Kristallographie. 164, 247 (1983).
[27] H. Gies, Zeitschrift fur Kristallographie. 167, 73 (1984).
[28] B. C. Bunker, D. M. Haaland, T. A. Michalske, W. L. Smith, Surf. Sci. 222(1), 95 (1989).
[29] I. Roggero, B. Civalleri, P. Ugliengo, Chem. Phys. Lett. 341(5), 625 (2001).
[30] J. Sauer, J.-R. Hill, Chem. Phys. Lett. 218(4), 333 (1994).
Published
2017-03-15
How to Cite
Filonenko, O., Lobanov, V., & Grebenyuk, A. (2017). The Hollow Spherical Silica Molecule (SiO2)20(H2O)10: Theoretical Calculations of the IR spectrum. Physics and Chemistry of Solid State, 18(1), 111-116. https://doi.org/10.15330/pcss.18.1.111-116
Section
Scientific articles