Aggregation Features of Monodisperse Palladium Nanoparticles Supported on g-Al2O3

Authors

  • Ye.Yu. Kalishyn L.V. Pisarzhevskii Institute of the Physical Chemistry of the National Academy of Sciences of Ukraine
  • I.B. Bychko L.V. Pisarzhevskii Institute of the Physical Chemistry of the National Academy of Sciences of Ukraine
  • Z.V. Kaidanovych L.V. Pisarzhevskii Institute of the Physical Chemistry of the National Academy of Sciences of Ukraine
  • A.I. Trypolskyi L.V. Pisarzhevskii Institute of the Physical Chemistry of the National Academy of Sciences of Ukraine
  • P.E. Strizhak L.V. Pisarzhevskii Institute of the Physical Chemistry of the National Academy of Sciences of Ukraine
  • V.V. Ordynskyi L.V. Pisarzhevskii Institute of the Physical Chemistry of the National Academy of Sciences of Ukraine

DOI:

https://doi.org/10.15330/pcss.17.4.487-492

Keywords:

palladium nanoparticles, catalyst preparation, aggregation, catalyst thermal stability

Abstract

The production of supported on γ-A12O3 palladium catalysts by colloidal solution deposition method have been improved. Influence of temperature on the structure and dispersion characteristics of supported nanosized palladium particles during catalyst preparation and activation was investigated. It has been shown that at temperatures below 300oC monodisperse particles palladium catalysts are stable. Further temperature increase leads to aggregation of monodisperse metal nanoparticles by the mechanism of reaction-limited aggregation (RLA) to form polydisperse system.

References

[1] J. Regalbuto, Catalyst Preparation: Science and Engineering, CRC Press, 2006.
[2] B. R. Cuenya, Thin Sol. Films. 518(12), 3127 (2010).
[3] M. S. Hoogenraad, R. A. G.M. M. van Leeuwarden, G. J. B. van Breda Vriesman, A. Broersma, Preparation of catalysts VI, Elsevier Science B.V., 263 (1995).
[4] M. L. Toebes, J. A. van Dillen, K. P. de Jong, J. Molec. Cat. A. 173(1-2), 75 (2001).
[5] R. A. van Santen, P. W. N. M. van Leeuwen, J. A. Moulijn, B. A. Averill, Study Surf. Sc. Cat., 123, (1999).
[6] D. W. Flaherty, D. D. Hibbitts, E. I. Gürbüz, E. Iglesia, J. Cat. 311, 350 (2014).
[7] A. Naitabdi, F. Behafarid, B. Roldan Cuenya, Appl. Phys. Lett. 94(8), 083102 (2009).
[8] F. P. Blondet, T. Vincent, E. Guibal, Int. J. Biol. Macromol. 43(1):69 (2008).
[9] A. N. Grace, K. Pandian, Mat. Chem. Phys. 104(1), 191 (2007).
[10] J. S. Bradley, E. W. Hill, S. Behal, C. Klein, B. Chaudret and A. Duteil, Chem. Mater., 4, 1234 (1992).
[11] J. Yi, Y. Luo, T. He, Z. Jiang, J. Li, C. Hu Catalysts, 6 (1), 12 (2016).
[12] A. Baylet, P. Marecot, D. Duprez, P. Castellazzi, G. Groppi and Pio Forzatti, Phys. Chem. Chem. Phys. 13(10), 4607 (2011).
[13] Catalyst Deactivation 1st Edition, (Elsevier Science, 1994).
[14] N Eustathopoulos, B Drevet, M. L Muolo,. Mat. Sc. Eng. A. 300(1–2), 34 (2001).
[15] V. M. Voloshchuk, Kinetychna teoriya koahulyatsii. (Hydrometeoyzdat, Leninhrad, 1984).
[16] W. G. Rothschild, Fractals in Chemistry (John Willey & Sons, New York, 1998.)
[17] J. E. Martin, A. J. Hurd, J. Appl. Cryst. 20(2), 61 (1987).
[18] J. E. Martin J. Appl. Cryst. 19(1), 25 (1986).
[19] P. Meakin Phys. Rev. Lett. 51(13), 1119 (1983).
[20] G. Bushell, R. Amal J. Coll. Interf. Sci. 205(2), 459 (1998).
[21] P. Meakin, The Fractal Approach to Heterogeneous Chemistry (Wiley, New York, 1989).
[22] D. Stauffer, A. Aharony, Introduction to percolation theory, 2nd. Ed. (Taylor & Francis, London, 1992).

Published

2016-12-15

How to Cite

Kalishyn, Y., Bychko, I., Kaidanovych, Z., Trypolskyi, A., Strizhak, P., & Ordynskyi, V. (2016). Aggregation Features of Monodisperse Palladium Nanoparticles Supported on g-Al2O3. Physics and Chemistry of Solid State, 17(4), 487–492. https://doi.org/10.15330/pcss.17.4.487-492

Issue

Section

Scientific articles