Phenomenology of the Temperature-Frequency Dispersion of Electrical Properties of Aluminium-Substituted Lithium-Iron Spinel

Array

Authors

  • I.M. Gasiuk Vasyl Stefanyk Precarpathian National University
  • D.M. Chervinko Vasyl Stefanyk Precarpathian National University
  • M.I. Gasiuk Vasyl Stefanyk Precarpathian National University
  • L.Ya. Lozinska Vasyl Stefanyk Precarpathian National University

DOI:

https://doi.org/10.15330/pcss.20.4.423-431

Keywords:

Jonsher’s phenomenological approach, Cole-Cole method, electrical conductivity dispersion

Abstract

The conductivity of the Li-containing Al-oxoferrite samples has been studied. Using Jonsher’s phenomenological approach, existence of 2 types of conductivity (electronic and ionic) in the above mentioned samples has been confirmed. Using Cole-Cole method, the character of electrical conductivity dispersion of the samples has been shown. The activation energy for the series of samples have been calculated.  It has been found that the ionic contribution to the total conductivity of the system is much lower that the corresponding electronic contribution.

References

[1] I.M. Gasyuk, Physics and chemistry of solid state 12(2), 275 (2011).
[2] V.O. Kotsyubinsky, V.V. Moklyak, A.B. Grubyak, P.I. Kolkovsky, A.H. Al-Saedi, Journal of Nano-and Electronic Physics 5(1), 01024 (2013).
[3] B.E. Levin, Yu.D. Tretyakov, L.M. Letiuk, Physics and chemistry of production, properties and application of ferrites (Metallurgy, Moscow, 1979).
[4] L.I. Rabkin, S.A. Soskin, B.S. Epstein, Ferrites. Structure, properties, production technology (Energy, Leningrad, 1968).
[5] B.Y. Deputat, Herald of the Vasyl Stefanyk Precarpathian National University. Chemistry of the solids (XXI), 59 (2011).
[6] B.K. Ostafiychuk, I.M. Gasyuk, L.S. Kaykan, V.V. Uhorchuk, P.P. Yakubovskiy, V.A. Tsap, Yu. S. Kaykan, Temperature Metallofizika i Noveishie Tekhnologii 36(1), 89 (2014) (doi: 10.15407/mfint.36.1.89-102).
[7] N.M. Olekhnovich, Yu. V. Radiush, A.V. Pushkariov, Physics of solids 54(11), 2103 (2012).
[8] O. Flunt, Theoretical Electrical Engineering (61), 60 (2010).
[9] N.M. Galiarova, Solid State Physics 31(11), 248 (1989).
[10] G.S. Grigoryan, A.M. Solodukh Solid State Physics 51(7), 1375 (2009).
[11] V.A. Kotsyubynsky, B.M. Ostafiychuk, V.M. Moklyak, A.B. Grubiak, International conference on Oxide Materials for electronic engeneering - fabrication, properties and applications (OMEE, Lviv, 2014), p. 79 (doi: 10.1109/OMEE.2014.6912348).
[12] I.I. Popov, R.R. Nigmatulin, A. A. Khazmin, I.V. Lounev, Journal of Applied Physics 112(101), 094107 (2012) (doi: 10.1063/1.4764343).
[13] A.A. Volkov, G.V. Kozlov, S.P. Lebedev, A.S. Rakitin, Physics of Solids 32(2), 329 (1990).
[14] M.N. Abdullah, A.N. Yosoff, Journal of Alloys and Compounds 233(1-2), 129 (1996) (doi: 10.1016/0925-8388(96)80044-2).
[15] S.S. Bashkirov, V.N. Doronin, A.B. Lieberman, V.V. Parfenov, Phys. Electronics (20), 74 (1980).
[16] N.M. Galiarova, Solid State Physics 31(11), 248 (1989).
[17] M.A. Arillo, M.L. Lopez, E. Perez-Cappe, C. Pico, M.L. Veiga, Solid State Ionics 107(3-4), 307 (1998) (doi: 10.1016 / S0167-2738 (97) 00537-7).

Downloads

Published

2019-12-15

How to Cite

Gasiuk, I., Chervinko, D., Gasiuk, M., & Lozinska, L. (2019). Phenomenology of the Temperature-Frequency Dispersion of Electrical Properties of Aluminium-Substituted Lithium-Iron Spinel: Array. Physics and Chemistry of Solid State, 20(4), 423–431. https://doi.org/10.15330/pcss.20.4.423-431

Issue

Section

Scientific articles