Phase equilibria in the SnBi2Te4MnBi2Te4 system and characterization of the Sn1-xMnxBi2Te4 solid solutions
DOI:
https://doi.org/10.15330/pcss.21.1.113-116Keywords:
SnBi2Te4-MnBi2Te4 system, phase equilibria, solid solutions, tetradymite-like structure, topological insulatorAbstract
The phase diagram of the SnBi2Te4-MnBi2Te4 system was established over the entire concentration range by means of differential thermal analysis and powder X-ray diffraction techniques. It was shown that the system is non-quasi-binary due to the incongruent melting character of SnBi2Te4 and MnBi2Te4 compounds, but it is stable below solidus. The formation of a continuous series of solid solutions with the tetradymite-like layered structure was observed. Due to ionic radius differences of Mn2+ and Sn2+, both unit cell parameters of solid solutions increase linearly with the increasing amount of Sn. Phase equilibria above the solidus curve cannot be completed until the SnTe-MnTe-Bi2Te3 system fully studied.
References
Z.S. Aliev, et al., J. Alloys Compd. 789, 443 (2019) (https://doi.org/10.1016/j.jallcom.2019.03.030).
M.B. Babanly, et al., Russ. J. Inorg. 62(13), 1703 (2017) (https://doi.org/10.1134/S0036023617130034).
S.V. Eremeev, et al., Phys. Rev. B, 91, 245 (2015) (https://doi.org/10.1103/PhysRevB.91.245145).
K. Kuroda, et al., Phys. Rev. Lett. 108, 206803 (2012) (https://doi.org/10.1103/PhysRevLett.108.206803).
M. Papagno, et al., ACS Nano 10 (3), 3518 (2016) (https://doi.org/10.1021/acsnano.5b07750).
L.L. Wang, D.D. Johnson, Phys. Rev. B Condens. Matter. 83 (24), 241309 (2011)(https://doi.org/10.1103/PhysRevB.83.241309).
D. Niesner, et al., Phys. Rev. B 89, 081404 (2014) (https://doi.org/10.1103/PhysRevB.89.081404).
Y. J. Chen, et al., Phys. Rev. X 9 (4), 041040 (2019) (https://doi.org/10.1103/PhysRevX.9.041040).
C. Vidal Raphael et al., Phys. Rev. X 9(4), 041065 (2019) (https://doi.org/10.1103/PhysRevX.9.041065).
J.-Q. Yan, et al., Phys. Rev. B100(10), 104409 (2019) (https://doi.org/10.1103/PhysRevB.100.104409).
J. Teng et al., J. Semicond. 40 (8), 081507 (2019) (https://doi.org/10.1088/1674-4926/40/8/081507).
J. Li, C. Wang, et al., Phys. Rev. B 100 (12), 121103 (2019) (https://doi.org/10.1103/PhysRevB.100.121103).
A. Zeugner, et al., Chem. Mater. 31(8), 2795 (2019) (https://doi.org/10.1021/acs.chemmater.8b05017).
J. Wu, et al., Sci. Adv. 5(11), eaax9989 (2019) (https://doi.org/10.1126/sciadv.aax9989).
M.M. Otrokov, et al., Nature 576, 416 (2019) (https://doi.org/10.1038/s41586-019-1840-9).
I.I. Klimovskikh, et al., arXiv preprint arXiv:1910.11653. (2019)
Z.A. Jahangirli, et al., J. Vac. Sci. Technol. 37(6), 062910 (2019) (https://doi.org/10.1116/1.5122702).
O.G. Karpinskii, et al., Inorg. Mater. 39(3), 240 (2003) (https://doi.org/10.1023/A:1022669323255).
C. Chiu, et al., J. Electron. Mater. 41, 22 (2012) (https://doi.org/10.1007/s11664-011-1730-x).
B.A. Kuropatwa, H.Z. Kleinke, Anorg. Allg. Chem. 638 (15), 2640 (2012) (https://doi.org/10.1002/zaac.201200284).
A.E. Seidzade, New Materials, Compounds and Applications 3(3), 193 (2019)
A.E. Seidzade, M.B. Babanly, Azerbaijan Chemical Journal 4, 6 (2019) (https://doi.org/10.32737/0005-2531-2019-4-6-10).
Z.S. Aliev, Azerbaijan Chemical Journal 4, 54 (2019) (https://doi.org/10.32737/0005-2531-2019-4-54-58).
L. Pan, et al., Solid State Chem. 225, 168 (2015) (https://doi.org/10.1016/j.jssc.2014.12.016).