Hydrogen Sorption Properties, Thermal Stability and Kinetics of Hydrogen Desorption From the Hydride Phase of The MgH2 of a Mechanical Alloys of Magnesium with Ti, Ni and Y
DOI:
https://doi.org/10.15330/pcss.21.1.167-175Keywords:
mechanical alloy, hydride MgH2, thermodesorption spectroscopy, hydrogen-sorption properties, thermal stability, kinetics of hydrogen desorptionAbstract
The mechanical alloys-composite MАs (Mg +10 % wt.Ti + 5 % wt.Y and Mg +10 % wt.Ni + 5 % wt.Y) were synthesized. The phase content, microstructure, the thermal stability, kinetics of hydrogen desorption from the MgH2 hydride phase of the obtained MAs were studiedby using XRD, SEM, TDS methods. It has been established that the addition of Ti + Y and Ni + Y to magnesium leads to significant improvement in the kinetics of hydrogen desorption from the MgH2 hydride phase, which is evidenced by a significant reduction (in 6 and 15 times)in the time of release of all hydrogen from MA1 and MA2, respectively. Due to, Ti, Ni,Y alloying, the decrease in the thermodynamic stability of MgH2 is not found.
References
W. Oelerich,T. Klassen, R. Borman, J. Alloys Compd. 315, 237 (2001) (https://doi.org/10.1016/S0925-8388(00)01284-6).
Z. Degouche, J. Goyette, T.K. Bose, R. Schulz, Int. J. Hydrogen Energy 28, 983 (2003) (https://doi.org/10.1016/S0360-3199(02)00196-9).
J. Huot, J.F. Pelletier, L.B. Lurio, M. Sutton, R. Schulz, J. Alloys Compound. 348, 319 (2003) (https://doi.org/10.1016/S0925-8388(02)00839-3).
C.X. Shang, M. Bououdina, Y. Song, Z.X. GuoInt, J. Hydrogen Energy 29, 73 (2004) (https://doi.org/10.1016/S0360-3199(03)00045-4).
A. Bassetti, E. Bonetti, L. Pasquini, A. Montone, J. Grbovic, V. Antisari J. Eur. Phys. B 43, 19 (2005) (https://doi.org/10.1140/epjb/e2005-00023-9).
N. Hanada, T. Ichikawa, H. Fujii, J. Alloys Comp. 404-406, 716 (2005) (https://doi.org/10.1016/j.jallcom.2004.12.166).
E. David, J. Achiev. Mat. Manufact. Eng. 20, 87 (2007).
V.D. Dobrovolsky, O.G. Ershova, Yu.M. Solonin, O.Y. Khyzhun, V. Paul-Boncour, J. Alloys Comp. 465, 177 (2008) (https://doi.org/10.1016/j.jallcom.2007.10.125).
M. Polanski, J. Bystrzycki, J. Alloys Compd. 486, 697(2009) (https://doi.org/10.1016/j.ijhydene.2009.06.02).
D.M. Liu, C.H. Fang, Q.A. Zhang, J. Alloys Comp. 485, 391 (2009) (https://doi.org/10.10 16 /j.Jallcom. 2009.05.114).
T. Sabitu, G. Gallo, A.J. Goudy, J. Alloys Compd. 499, 35(2010) (https://doi.org/10.1016/j.Jallcom. 2010. 03.128).
J. Mao, Z. Guo, X. Yu, H. Liu, Z. Wu, Int. J. Hydrogen Energy 35, 4569 (2010) (https://doi.org/10.1016/j.ijhydene.2010.02.107).
M. Tian, C. Shang J. Chem. Technol. Biotechnol. 86, 69 (2011) ( https://doi.org/10.1002/jctb.2479).
R. Rohit, P.T. Anand, M.A. Shaz, Int. J. Hydrogen Energy 38, 2778 (2013).
J.-L. Bobet, E. Akiba, B. Darriet,Int. J. Hydrogen Energy 26, 493 (2001) (https://doi.org/10.1016/S0360-3199(00)00082-3).
H. Imamura, M. Kusuhara, S. Minami, Acta Mater. 51, 6407 (2003) (https://doi.org/10.1016/j.Actamat. 20 03.08.010).
C.X. Shang, and Z.X.Guo, J. Power Sources 129, 73 (2004) (https://doi.org/10.1016/j.jpowsour. 2003.11.013).
S.N. Klyamkin, B.P. Tarasov, E.L. Straz, R.V. Lukashev, I.E. Gabis, E.A. Evard, A.P. Voyt, Int. Sci. J. Alternat. Energy Ecol. 1(21), 27 (2005).
T. Spassov, V. Rangelova, P. Solsona J. Alloys Compd. 398, 139 (2005) (https://doi.org/10.1016/j.jallcom. 2005.02.035).
P. Delchev, P. Solsona, B. Drenchev, J. Alloys Compd. 388, 98 (2005) (https://doi.org/10.1016/j.Jallcom. 2004.07.001).
A. Ming, Mater. Sci. Eng. B 117, 37(2005) (https://doi.org/10.1016/j.mseb.2004.10.017).
A. Montone, J. Grbovič, A. Bassetti, Int. J. Hydrogen Energy 31, 2088 (2006) (https://doi.org/10.1016/j.ijhydene.2006.01.020).
Z.G. Huang, Z.P. Guo, A. Calka, J. Alloys Compd. 427, 94 (2007) (https://doi.org/10.1016/j.jallcom.2006.03.069).
M.A. Lillo-Ródenas, Z.X. Guo, K.F. Aguey-Zinsou, Carbon 46, 126 (2008) (https://doi.org/101016/j.carbon.2013.01.058).
O.G. Ershova, V.D. Dobrovolsky, Yu.M. Solonin, O.Yu. Khyzhun, A.Yu. Koval, Materials Chemistry and Physics 62, 408(2015) (https://doi.org/10.1016/j.matchemphys.2015.06.007).
O. Ershova, V. Dobrovolsky, Yu. Solonin, Carbon Nanomaterials in Clean Energy Hydrogen Systems (B.Baranowski (Ed) Springer Science + Business Media B.V., 2008), p. 473.
O. Ershova, V. Dobrovolsky, Yu. Solonin, Carbon Nanomaterials in Clean Energy Hydrogen Systems (B.Baranowski (Ed) Springer Science + Business Media B.V., 2008), p. 467.
S.-N. Kwon, S.-H. Baek, R.D. Mumm, S.-H. Hong, M.-Y. Song, Int. J. Hydrogen Energy 33, 4586 (2008) (https://doi.org/10.1016/j.ijhydene. 2008.05.097).
O.G. Ershova, V.D. Dobrovolsky, Yu.M. Solonin, O.Yu. Khyzhun, A.Yu. Koval, Materials Chemistry and Physics 62, 408 (2015) (https://doi.org/10.1016/j.matchemphys.2015.06.007).
K.G. Bambhaniya, G.S. Grewal, V. Shrinet, N.L. Sindh, T.P. Govindan, Int. J. Hydrogen Energy 37, 3671 (2012) (https://doi.org/10.1016/j.ijhydene.2011.04.099).
O.G. Ershova, V.D. Dobrovolsky, Yu.M. Solonin, Physics and Chemistry of Solid State 14(1), 101 (2013).
M. Bououdina, Z.X. Guo, J. Alloys Comp.336, 222 (2002) (https://doi.org/10.1016/S0925-8388(01)01856-4).
M. Tanniru,D.K. Slattery,F. Ebrahimi, Int. J. Hydrogen Energy 35, 3555 (2010) (https://doi.org/10.1016/j.ijhydene. 2010.01.109).
M. Tanniru, D.K. Slattery, F. Ebrahimi, Int. J. Hydrogen Energy 36, 639 (2011) (https://doi.org/10.1016/j.ijhydene.2010.09.083).
C. Zhou, Z.Z. Fang, J. Lu, X. Luo, C. Ren, P. Fan, Y. Ren, and X. Zhang, J. Phys. Chem. C 118, 11526 (2014) (https://doi.org/10.1021/jp501306w).
S. Bouaricha, L.P. Dodelet, D. Guay, J. Huot, S. Boily, R. Schulz, J. Alloys Compd. 297, 282 (2000) (https://doi.org/10.1016/S0925-8388(99)00612-X).
J.F. Stampfer, C.E. Holley, J.F. Suttle, J. Amer. Chem. Soc. 82, 3504 (1960) (https://doi.org/10.1021/ja01499a006).
O.G. Ershova, V.D. Dobrovolsky, O.Yu. Khyzhun, Yu.M. Solonin, Phys. Chem. Solid St., 12(4), 1044 (2011).
V.D. Dobrovolsky, O.G. Ershova,Yu.M. Solonin, Hydrogen in the Alternative Power Industry and Novel Technologies, 1, 136 (2013) (in Ukrainian).
O.G. Ershova, V.D. Dobrovolsky, Yu.M. Solonin, A.Yu. Koval, J. Metalphys. AndNovel Technologies 39, 11, 1557 (2017) (in Ukrainian).
O.G. Ershova, V.D. Dobrovolsky, Yu.M. Solonin, J. Vidnovlyuvana Energetika 2, 26(2017) (in Ukrainian).
O.G. Ershova, V.D. Dobrovolsky, Yu.M. Solonin, A.Yu. Koval, J. Vidnovlyuvana Energetika1 23 (2019) (in Ukrainian).
Claudia Zlotea, Jun Lub, Yvonne Andersson, J. of Alloys and Comp. 426, 357 (2006) (https://doi.org/10.1016/j.jallcom.2006.02.024).
Claudia Zlotea, Acta Materialia 56, 2421 (2008) (https://doi.org/10.1016/j.actamat.2008.01.029).
Tai Yanga, Qiang Lia, Ning Liua, Chunyong Lianga, Fuxing Yina,Yanghuan Zhangc, J. of Power Sources 378, 636 (2018) (https://doi.org/10.1016/j.jpowsour.2018.01.003).
Xiaoying Shi, Jianxin Zou, Chuan Liu, Lifang Cheng, Dejiang Li,Xiaoqin Zeng,Wenjiang Ding, Int. J. of Hydrogen energy 39,8303 (2014) (https://doi.org/10.1016/j.ijhydene.2014.03.115).
C. Zlotea, M. Sahlberg, P. Moretto, and Y. Andersson,J. of Alloys and Comp. 489, 375(2010)(https://doi.org/10.1016/j.jallcom.2009.09.085).
Z. Li, X. Liu, L. Jiang, and S. Wang, Int. J. of Hydrogen Energy 32, 1869 (2007) (https://doi.org/10.1016/j.ijhydene.2006.09.022).
S.L. Ro’ntzsch, B. Kieback, Int.J.of Hydrogen energy 34, 7749 (2009) (https://doi.org/10.1016/j.Ijhydene.2009.07.053).
Q.A. Zhang, L.X. Zhang, Q.Q. Wang, J. of Alloys and Comp. 551, 376(2013) (https://doi.org/10.1016/j.jallcom.2012.11.046).
O.G. Ershova, V.D. Dobrovolsky, Yu.M. Solonin, J. Materials Science 51(4), 457(2016) (https://doi.org/1068-820X/16/5104–0457).
V.D. Dobrovolsky, O.G. Ershova, Yu.M. Solonin, O.Y, Khyzhun, Powder Metallurgy & Metal Ceramics 55(7), 477 (2016) (https://doi.org/10.1007/s11106-016-9830-z).
O.G. Ershova, V.D. Dobrovolsky, Yu.M. Solonin, A.Yu. Koval, Phys. Chem. Solid St. 16(3), 576(2015) (in Ukrainian).
O.G. Ershova, V.D. Dobrovolsky, Yu.M. Solonin, A.Yu. Koval, J. Vidnovlyuvana Energetika 3, 5 (2015) (in Ukrainian).
O.G. Ershova, V.D. Dobrovolsky, Yu.M. Solonin,Proc. Of XVIII International Scientific and Practical Conference “Renewable Energy and Energy Efficiency in the XXI Century”, (Sep. 25-27, 2017) (Kyiv, 2017), p. 173.
V.D. Dobrovolsky, S.N. Endrzhievskaya, A.K. Sinelnichenko, V.V. Skorohod, Powder Metallurgy 9/10, 94 (1997).