Heat Capacity of Decagonal and Icosahedral Quasicrystalline Phases at High Temperatures

  • Yu. V. Syrovatko Dnipropetrovsk Branch of the State Institution “Soil Protection Institute of Ukraine”
  • O. O. Levkovich Prydniprovsk State Academy of Civil Engineering and Architecture
Keywords: quasicrystals, decagonal phase, icosahedral phase, dispersive law, anisotropy, isotropy, temperature heat capacity dependence, excessive heat capacity, the Dulong-Petit lаw

Abstract

The paper deals with the calculations of heat capacity of quasicrystalline decagonal Al69Co21Ni10 and icosahedral Al63Cu25Fe12 quasicrystalline phases of Al–Co–Ni and Al–Cu–Fe alloys, respectively. According to the Gruneisen law, heat capacity is an energy characteristic, which reflects the phases’ resistance to failure. For calculations of the heat capacity, structure of quasicrystalline phases is considered in the model representation of anisotropic crystals. As a result, it is found that the heat capacity of quasicrystalline phases at high temperatures is the excessive one, i.e. it exceeds the Dulong-Petit value. Therefore, quasicrystalline phases at high temperatures are more stable, than the crystalline phase. For the decagonal quasicrystalline phase, heat capacity is more than 3R in the temperature range of ~480–1500 К, and for the icosahedral quasicrystalline phase – in the temperature range of ~380–1120 К. It follows that decagonal phases remain stable at high temperatures at which the icosahedral phases are destroyed.

References

O. F. Prekul, V. А. Kazantsev, N. I. Shchegolikhina, R. I. Guliaeva, L. Edagawa, Physics of the Solid State 50(11), 1933 (2008).

O. V. Sukhova, Yu. V. Syrovatko, Physics of Metals and Advanced Technologies 41(9), 1171 (2019) (https://doi.org/10.15407/mfint.41.09.1171).

B. Grushko, Philos. Mag. Lett. 66(3), 151 (1992) (https://doi.org/10.1080/09500839208229278).

M. Zhu, G. Yang, and L. Yao, J. Mater. Sci. 45(14), 3727 (2010) (https://doi.org/10.1007/s10853-010-4421-8).

O. F. Prekul, N. I. Shchegolikhina, А. B. Gaiduchenko, К. I. Grushevsky, Physics of the Solid State 53(10), 1885(2011).

K. Edagawa, K. Kajiyama, Mater. Sci. Eng. A, 294–296, 646 (2000) (https://doi.org/10.1016/S0921-5093(00)01132-1)

D.A. Shulyatev, A.S. Nigmatulin, A.V. Lobanova, T.A. Gasparyan., Philos. Mag. Lett. 88, 2319 (2008) (https://doi.org/10.1080/14786430801958372).

L. D. Landau, E. M. Lifshits, Statisticheskaya fizika (Nauka, Moscow, 1976).

M. Feuerbacher, M. Bartsch, B. Grushko, U. Messerschmidt, K. Urban, Philos. Mag. Lett. 76(6), 369 (1997) (https://doi.org/10.1080/095008397178788).

Yu. Kh. Velikov, M. А. Chernikov, Advances in Physical Sciences 180(6), 561 (2010) (https://doi.org/10.3367/UFNr.0180.201006a.0561).

Z. M. Stadnik, Physical Properties of Quasicrystals (Springer, Berlin, 1999).

M. А. Chernikov, Advances in Physical Sciences 175(4), 437 (2005).

O. V. Sukhova, Yu. V. Syrovatko, Visnik Dnipropetrovs’kogo Universitetu. Seria Fizika, radioelektronika 24(23), 53 (2016).

O. V. Sukhova, Yu. V. Syrovatko, Adgeziya rasplavov i payka materialov 47, 58 (2014).

Ye. V. Shalayeva, O. F. Prekul, The Physics of Metals and Metallography 109(4), 424 (2010).

M. Audier, Y. Brechet, De M. Boissieu, P. Guyot, Phil. Mag. B 63, 1375 (1991) (https://doi.org/10.1080/13642819108205568).

M. Jono, Y. Matsuo, Y. Ishii, Mater. Sci. Eng. A 294–296, 680(2000) (https://doi.org/10.1016/s0921-5093(00)01188-6).

M. Doblinger, R. Wittmann, D. Gerthsen, Phys. Rev. B 65(22), 201 (2002) (https://doi.org/10.1103/PhysRevB65.224201).

Published
2020-06-15
How to Cite
SyrovatkoY. V., & LevkovichO. O. (2020). Heat Capacity of Decagonal and Icosahedral Quasicrystalline Phases at High Temperatures. Physics and Chemistry of Solid State, 21(2), 260-265. https://doi.org/10.15330/pcss.21.2.260-265
Section
Scientific articles