Peculiarities in structure formation and corrosion of cast quasicrystalline Al63Cu25Fe12 and Al63Co24Cu13 alloys in sodium chloride aqueous solution

Authors

  • O. V. Sukhova Oles’ Honchar Dniprovs’k National University
  • V. A. Polonskyy Oles’ Honchar Dniprovs’k National University

DOI:

https://doi.org/10.15330/pcss.21.3.530-536

Keywords:

icosahedral quasicrystals, decagonal quasicrystals, structure, electrochemical polarization, pitting corrosion

Abstract

In this work the structure and corrosion behavior of quasicrystalline cast Al63Cu25Fe12 and Al63Co24Cu13 alloys in 5-% sodium chloride solution (рН 6.9–7.1) were investigated. The alloys were cooled at 5 К/s. The structure of the samples was studied by methods of quantitative metallography, X-ray analysis, and scanning electron microscopy. Corrosion properties were determined by the potentiodynamic method. The made investigations confirm the formation of stable quasicrystalline icosahedral (y) and decagonal (D) phases in the structure of Al63Cu25Fe12 and Al63Co24Cu13 alloys correspondingly. In 5-% sodium chloride solution, the investigated alloys corrode under electrochemical mechanisms with oxygen depolarization. Compared with Al63Cu25Fe12 alloy, Al63Co24Cu13 alloy has a less negative value of free corrosion potential (–0.43 V and–0.66 V, respectively), and its electrochemical passivity region extends due to the inhibition of anodic processes. A corrosion current density, calculated from (E,lgi)-curve, for Al63Co24Cu13 alloy amounts to 0.18 mА/сm2 and for Al63Cu25Fe12 alloy – to 0.20 mА/сm2. The lower corrosion resistance of Al63Cu25Fe12 alloy may be explained by the presence of iron-containing phases in its structure. Based on obtained results, the Al63Co24Cu13 alloy was recommended as a coating material for rocket-and-space equipment working in a marine climate.

References

E. Huttunen-Saarivirta, Journal of Alloys and Compounds 363(1-2), 150 (2004) (https://doi.org/10.1016/S0925-8388(03)00445-6).

О.V. Sukhova, К.V. Ustinоvа, Functional Materials 26(3), 495 (2019) (https://doi.org/10.15407/fm26.03.495).

A.-P. Tsai, A. Inoue, T. Masumoto, Materials Transactions JIM 30(4), 300 (1989) (https://doi.org/10.2320/matertrans1989.30.150).

O.V. Sukhova, Y.V. Syrovatko, Metallofizika i Noveishie Tekhnologii 41(9), 1171 (2019) (https://doi.org//10.15407/mfint.41.09.1171).

S.S. Kang, J.M. Dubois, Journal of Materials Research 6(10), 2471 (1993) (https://doi.org/10.1557/jMR.1993.2471).

R.P. Matthews, C.I. Lang, D. Shechtman, Tribology Letters 7, 179 (1999) (https://doi.org/10.1023/A:1019185707264).

A. Rudiger, U. Koster, Materials Science and Engineering 294-296, 890 (2000) (https://doi.org/10.1016/S0921-5093(00)01037-6).

E. Huttunen-Saarivirta, T. Tiainen, Materials Chemistry and Physics 85, 383 (2004) (https://doi.org/10.1016/j.matchemphys.2004.01.025).

О.V. Sukhova, V.А. Polonskyy, К.V. Ustinоvа, Materials Science 55(2), 285 (2019) (https://doi.org/10.1007/s11003-019-00302-2).

O.V. Sukhova, Metallofizika i Noveishie Tekhnologii 31(7), 1001 (2009).

О.V. Sukhova, V.А. Polonskyy, К.V. Ustinоvа, Physics and Chemistry of Solid State 18(2), 222 (2017) (https://doi.org/10.15330/pcss.18.2.222-227).

G. Laplanche, A. Joulain, J. Bonneville, Journal of Alloys and Compounds 493, 453 (2010) (https://doi.org/10.1016/j.jallcom.2009.12.124).

I.M. Spiridonova, O.V. Sukhova, A.P. Vashchenko, Metallofizika i Noveishie Tekhnologii 21(2), 122 (1999).

O.V. Sukhova, Y.V. Syrovatko, Metallofizika i Noveishie Tekhnologii 33(Special Issue), 371 (2011).

Z.A. Duriagina, T.M. Kovbasyuk, S.A. Bespalov, Uspekhi Fiziki Metallov 17(1), 29 (2016) (https://doi.org/10.15407/ufm.17.01.029).

V.G. Efremenko, Yu.G. Chabak, A. Lekatou, A.E. Karantzalis, A.V. Efremenko, Metallurgical and Materials Transactions A 47A(2), 1529 (2016) (https://doi.org/10.1007/s11661-016-3336-7).

С. Zhou, R. Cai, S. Gong, H. Xu, Surface Coating Technology 201, 1718 (2006) (https://doi.org/10.1016/j.surfcoat.2006.02.043).

Y. Kang, C. Zhou, S. Gong, H. Xu, Materials Science Forum 475-479, 3355 (2005) (https://doi.org/10.4028/ www.scientific.net/MSF.475-479.3355).

I.M. Spiridonova, E.V. Sukhovaya, V.F. Butenko, А.P. Zhudra, А.I. Litvinenko, А.I. Belyi, Powder Metallurgy and Metal Ceramics 32(2), 139 (1993) (https://doi.org/10.1007/BF00560039).

S.I. Ryabtsev, V.А. Polonskyy, О.V. Sukhova, Powder Metallurgy and Metal Ceramics 58(9-10), 567 (2020) (https://doi.org/10.1007/s11106-020-00111-2).

S.I. Ryabtsev, О.V. Sukhova, Problems of Atomic Science and Technology 2(126), 145 (2020).

Published

2020-09-30

How to Cite

Sukhova, O. V., & Polonskyy, V. A. (2020). Peculiarities in structure formation and corrosion of cast quasicrystalline Al63Cu25Fe12 and Al63Co24Cu13 alloys in sodium chloride aqueous solution. Physics and Chemistry of Solid State, 21(3), 530–536. https://doi.org/10.15330/pcss.21.3.530-536

Issue

Section

Scientific articles